TOPICS

- Conductance of electrolytic solution
- Specific conductance, Equivalent conductance,
 Molar conductance
- Kohlrausch's law

Electrolytes

- Substances whose solution in water conducts electric current.
- Conduction takes place by the movement of ions.
- Examples are salts, acids and bases.
- Substances whose aqueous solution does not conduct electricity are called **non electrolytes**.
- Examples are solutions of cane sugar, glucose, urea etc.

Types of Electrolytes:

- Strong electrolyte are highly ionized in the solution.
- Examples are HCl, H₂SO₄, NaOH, KOH etc
- Weak electrolytes are only feebly ionized in the solution.
- Examples are H₂CO₃, CH₃COOH, NH₄OH etc

Specific Conductivity

Conductivity (or **specific conductance**) of an electrolyte solution is a **measure** of its ability to conduct electricity.

Specific conductance,
$$\kappa = \frac{1}{\kappa}$$

But
$$\rho = \frac{a}{\ell}R$$

$$\therefore K = \frac{\ell}{a.R}$$

$$K = \left(\frac{\ell}{a}\right) \times Conductance$$

l/a is known as cell constant
The SI unit of Specific Conductance is Sm⁻¹

Molar Conductance

- It is defined as the conducting power of all the ions produced by 1 mole of an electrolyte in the given solution.
- It is represented as μ.

$$\mu = K \times V$$

K= specific conduction of the solution

V=volume in cc containing mole of the electrolyte

If M is the molarity of the solution then-

$$\mu = K \times 1000/M$$

SI unit is Siemen metre square per mol.

Equivalent Conductance

- It is defined as the conducting power of all the ions produced by 1 gram of an electrolyte in the given solution.
- Equivalent conductance is represented by $_{\lambda}$

Mathematically,

$$\lambda = \mathbf{k} \times \mathbf{V}$$

K= specific conduction of the solution

V= volume in cc containing 1 gram equivalent of the electrolyte

If N is the normality then-

$$\lambda = k \times \frac{1000}{Normality}$$

Effect of Dilution on Conductivity

- Specific conductivity decreases on dilution.
- Equivalent and molar conductance both increase with dilution and reaches a maximum value.
- The conductance of all electrolytes increases with temperature

Relation between equivalent conductivity and molar conductivity

 μ = valency factor(or n - factor) × λ

i.e.

Molar conductivity = n- factor x equivalent conductivity

Kohlrausch's Law

"Limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte."

$$\lambda_{\infty} = \lambda_{a} + \lambda_{c}$$

Where λ_a and λ_c are known as ionic conductance of anion and cation at infinite dilution respectively.

Kohlrausch's Law

Statement: "At time infinite dilution, the molar conductance of an electrolyte can be expressed as the sum of the contributions from its individual ions" i.e. $\Lambda^{\infty}_{m} = v_{+} \lambda^{\infty}_{+} + v_{-} \lambda^{\infty}_{-}$

where, v_+ and v_- are the number of cations and anions per formula unit of electrolyte respectively and, λ^{∞}_+ and λ^{∞}_- are the molar conductivities of the cation and anion at infinite dilution respectively.

For e.g. The molar conductivity of HCl at infinite dilution can be expressed as,

$$\Lambda^{++}_{HCI} = v_H^+ \lambda^{-+}_{H}^+ + v_{CI} \lambda^{-+}_{CI}$$
; For HCI, $v_H^+ = 1$ and $v_{CI} = 1$.

So,
$$\Lambda_{HCI}^{-} = (1 \times \lambda_{H+}^{-}) + (1 \times \lambda_{H-}^{-})$$
; Hence,

$$V_{aa}^{bac} = y_{aa}^{ba} + y_{aa}^{bac}$$

Kohlrausch's law of independent migration of ions

- High accuracy in dilute solutions, molar conductivity is composed of individual contributions of ions.
- Limiting conductivity of anions and cations are additive, the conductivity of a solution of a salt is equal to the sum of conductivity contributions from the cation and anion

$$\Lambda_{m}^{0} = \Lambda_{+} \Lambda_{+}^{0} + \Lambda_{-} \Lambda_{-}^{0}$$

Applications of Kohlrausch's law

Determination of A[∞]_m for weak electrolytes:

The molar conductivity of a weak electrolyte at infinite dilution (Λ^{∞}_{m}) cannot be determined by extrapolation method. However, Λ^{∞}_{m} values for weak electrolytes can be determined by using the Kohlrausch's equation.

Determination of the degree of ionization of a weak electrolyte:

The Kohlrausch's law can be used for determining the degree of ionization of a weak electrolyte at any concentration. If λ^c_m is the molar conductivity of a weak electrolyte at any concentration C and, λ^c_m is the molar conductivity of a electrolyte at infinite dilution. Then, the degree of ionization is given by, $\alpha = \Lambda^c_m = \Lambda^{c_m}/(v_*, \lambda^m, +v_*, \lambda^m)$

Thus, knowing the value of Λ^c_m , and Λ^∞_m (From the Kohlrausch's equation), the degree of ionization at any concentration can be determined.