Lecture 7 DNA REPLICATION

. A double helix separate into two single strands and each strand serves
as a template on which complementary strand is synthesized.

. A -mechanism is required to separate the strands locally for
replication.

. A mechanism is required to release the strain created by local
unwinding.

. A -mechanism is required to account for the high fidelity of
duplication, 1 per 10%° nt.

. A mechanism is required to account for the speed of replication; 2000
nt per sec in E.coli.

. Direction of the replication?

. How to replicate the ends of linear DNA?



DNA double helix structures
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Semiconservative replication
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Three replication models: conservative, semiconservative, and random disperse models



Replication fork
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Three models: continuous, semidiscontinuous, and discontinuous.



Replication fork

Radioactivity (103 cpm/0.1 ml)

Reiji Okazaki's predictions and experiments
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Reiji Okazaki's experiments: at least half
of the newly synthesized DNA appears
as short pieces(1000-2000 nt); if no
ligation, short pieces will accumulate.
Replication of T4 phage DNA in E. coli,
wild type vs. ligase mutant, with 3H-
thymidine pulse labeling (when ung- E.
coli mutant was used, >50%

of newly labeled DNA was still in

short pieces).

at least half of the newly synthesized DNA appears first as short pieces(1000-2000 nt);



Priming

Tuneko Okazaki's experiment
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Direction of Replication

Three possible mechanisms
(a) Predicted fiber autoradiographic pattern
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Origin of replication
The consensus sequence of oriC

Tandem array Binding sites for dnaA protein
of 13-mer sequences
(AT rich) I [
e - TR B

&S'GATCTNTTNTTTT-B’

3-CTAGANAANAAAA-Y
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Minimal bacterial replication origin: 13-mer and 9-mers
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Regardless of organism, replication origins are unique DNA segments with multiple short repeats, recognized by
multimeric origin-binding proteins, and usually contain an A-T rich stretch.
oriC: origin of replication in E. coli: OriC 245 bp (3 13-nt and dnaA binding sites) in 4.8 m bp genome.



Origin of replication

Construction of an oriC plasmid
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Priming at oriC
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DnaA binds to ATP forming multimers which together with HU bind to the four 9-mers (dnaA boxes),
inducing bend and destabilizes the 13-mer repeats and causes local melting, allowing DnaB binding (with DnaC help)



Helicase for unwinding
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E. coli DnaB helicase: the enzyme will translocate along dsDNA from 3’ to 5’ direction.



Helicase assay
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JBC 261, 4740, 1986)



Bacterial helicase

Domain B2

Amino acid sequence

Conserved regions:
Al and B1 interface and along ATP binding site

Bacterial helicase (PcrA):
Al with P-loop NTPase fold, B1 similar to A1 without loop



Helicase for unwinding

Domain B2
- For DNA duplex to replicate, the two strands must be
separated from each other,at least locally. Helicase
uses ATP energy to perform this strand separation job.
Both Al and B1 bind to ss DNA. ATP hydrolysis leads
Domain A2 to cleft closure and sliding of ssDNA. Since Al has a

tighter grip of ssDNA, this causes a net translocation of
the enzyme toward the dsDNA

Unwinding mechanism:
(i) Here the Al and B1 domain bind to ssDNA.

(i) Upon ATP binding the cleft between Al and B1
closes and Al slides along DNA,;

(iif) Upon hydrolysis cleft opens, pulling B1 to Al.

Domain B1
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Reaction catalyzed by DNA polymerases and the formation of phosphodiester bond,
DNA polymerase: 5-p(N)n-3' + dNTP - 5-p(N)n+1-3’
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E. coli DNA polymerase I
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Exonuclease

E. coli DNA polymerase I:
102 kD—>Klenow fragment (polymerase activity + 3'>5' exonuclease activity) and small domain (5'>3' exonuclease activity);
all DNA pol have similar shape, thumb, palm and finger.

DNA pol I= 1 polypeptide (polymerase, 3'-->5" exonuclease proofreading, 5’-->3’exonuclease);
processivity 20, catalytic rate 10 nt/sec
DNA pol Il = 10 polypeptides, 900 kD, processivity >5000, rate 1000 nt/sec



Crucial metals

Two metal ions (Mg or Mn) are
crucial to the action of DNA
polymerase. One metal
coordinates with 3'-OH at the
primer whereas the alpha

phosphate group from dNTP
bridges between two metals



DNA pol TIT holoenzyme

Proposed structure of DNA pol Il holoenzyme (900 kD, 10 subunits, asymmetric dimer, one for leading, one

for lagging strand (a is polymerase, ¢ is proofreading 3'->5' exonuclease, 2 and 62 for processivity). The
sliding clamp for processivity is done by 2.

DNA pol | = 1 polypeptide, processivity 20, catalytic rate 10 nt/sec.
DNA pol Il = 10 polypeptide, processivity >5000, rate 1000 nt



Fidelity

Fidelity of polymerase: R and Q from polymerase serve as a ruler by forming H-bonding at
the minor groove of base pair at the active site.



Shape selectivity

The binding of the correct dNTP induces a conformational change, generating a tight pocket



Proofreading
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Mismatched base will cause pause or stall and give extra time to excise it.
Mismatched base can leave polymerase site and swing into exonuclease site to be cleaved.
The newly formed duplex in the polymerase site assumes A-form for extensive H-bonding at minor groove.



Processivity

Nucleotide Direction
being added of synthesis

to 3' end !/7
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5' Template DNA Cell 69, 427, 1992;
strand 84, 643, 1996
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DNA polymerase lll has a dimeric structure. [J is polymerase, 2 and 62 confer the processivity.
1000 nt added per sec means a sliding of 100 turns of duplex through the central hole of B2 per sec



Ligase reaction
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Helicase
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Coordination between the leading and the lagging strands: looping of the template for the lagging strand enables
a dimeric DNA pol 11l holoenzyme to synthesize both daughter strands



Detailed view of the £&. col/i fork
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In vitro replication of SV40 DNA
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Termination

oriC

E. coli
chromosome

Bacterial termination site: E. coli Ter sites (Ter E, D, A
stop the ccw fork; Ter F,B,C stop the CW fork; EM of torus catenanes from replication of
Tus, terminus utilization pBR322 in mutant S. typhimurium

substance, binds to the terminator sites and helps
arrest the moving forks).
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Termination
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Supercoil
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Linear DNA unwound by two right-hand tums
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Lk = Tw + Wr (linking number is the sum of twisting number and writhing number)



EM picture of two topoisomers
(molecules differ in linking
numbers) showing relaxed circular
and negatively supercoiled DNA

Supercoil

Separation of SV40 DNA topoisomers by
gel electrophoresis. Lane 1, relaxed and
maximally supercoiled DNA; lane 2 topo |
for 3 min; lane 3, topo | for 30 min



Two types of topoisomerases
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Negatively supercoiled DNA
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Topo | binds and cleaves one stand. The broken strand will rotate around the
Human Topoisomerase | with DNA other one and rejoin, which leads to partial or complete relaxation of a supercoil

Topo | action, from three negatives to 2 negatives



Topo IT cleaves both strands and create supercoiling
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1959 "for their discovery of the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic acid

Severo Ochoa Arthur Kornberg
1905-1993 1918-

1930-1975
Okazaki



