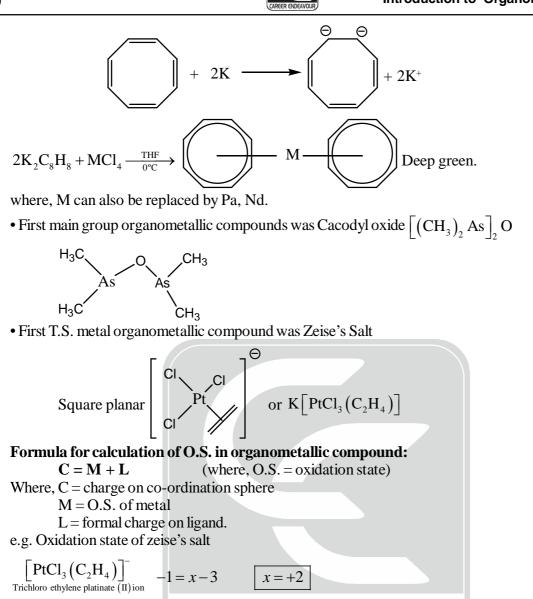

Chapter 1


Introduction to Organometallic Compounds

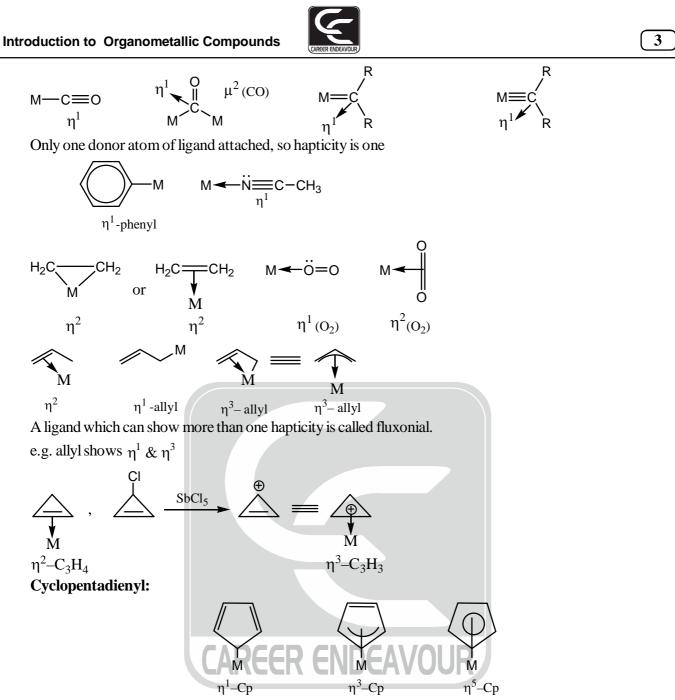
Introduction :

Edward Frankland was father of organometallic chemistry for a complex to be organometallic compound, there should be atleast one metal-carbon bond. For example, RMgX

- e.g. Rh(PPh₂)₃Cl, Pd(PPh₂)₄, R₂CuLi, Fe(CO)₄.
- (3) Lanthanide/Actinide organometallic compound : If metal is from f-block metals.

Effective Atomic Number (EAN) rule:

Sidgwick proposed this rule. The sum of the electrons on the metal plus electrons donated by ligands is called EAN. When EAN is equal to 36(Kr), 54(Xe), 86(Rn) then it is said that EAN Rule is obeyed and the compound is found to be stable. In this concept metal is consider to be Lewis Acid and ligand is consider to be Lewis Base.


(1)
$$\operatorname{Ni}(\operatorname{CO})_4$$
 (2) $\operatorname{Cr}(\operatorname{CO})_6$ (3) $(\operatorname{C}_5\operatorname{H}_5)_2\operatorname{Fe}$
EAN = 28+8 = 36 EAN = 24 + 12 = 36 EAN = 10 + 26 = 36

Hapticity :

It is the property of ligand. It is represented by η . The number of donor atom of a ligand is directly attached with the metal is said to be the hapticity.

 $n^{n \rightarrow \text{Number of donar atom attached with metal.}}$ e.g. $M \xrightarrow{\eta^1} R$ $M \xrightarrow{\eta^1} CH_3$ $M \xrightarrow{\eta^1} CH_2 \longrightarrow CH_3$ $M \xrightarrow{\eta^1} CH_3$

A ligand which joins two /more metals is said to be bridged. It is represented by μ^n this indicates the number of metals bridges, where n is number of metal bridged.

18 electron rule :

The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal *d* electrons and the electrons conventionally considered as being supplied by the surrounding ligands equals 18.

- 18 electron rule is only applicable for transition metal organometallic compound.
- The main group organometallic compound follows octet rule.
- Square planar complex follows 16 electron rule.
- The complex which follow 16 and 18 electron rule are stable.
- Complex which follow 17 electron rule and 19 electron rule are paramagnetic
- Organometallic compound which follows this configuration $\rightarrow ns^2 np^6 (n-1)d^{10}$ than complex is stable.

$$2+6+10=18 e^{-1}$$

For complex, total number of electron = the number of valence electron donated by the metal + number of electron donated by the ligand \pm charge.

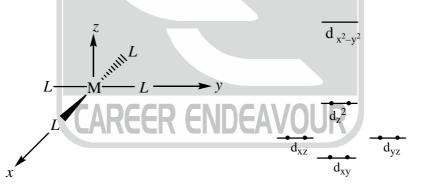
There are two methods for calculation of 18 electron

(1) Oxidation state method	(2) Neutral atom method		
e.g. (i) Ferrocene			
Oxidation State Method :	^	Neutral atom method :	
O.S. of Fe	$\langle \bigcirc \rangle$	$Cp = 5 \times 2 = 10$	
O = M - 2	\square	$Fe = 8 \times 1 = 8$	
M = +2	Fe	18 e ⁻	
$Fe = 6 \times 1 = 6$		Ferrocene follows 18 electron rule.	
$Cp = 6 \times 2 = 12$	\bigcirc		
18 e ⁻			

(ii) Mn(CO)₅CH₃.

Neutral atomic method := 7 + 10 + 1 = 18 electron

O.S. Method = 6 + 2 + 10 = 18 electron 0 = M - 1. M = +1


$$0 = M - 1, M = -$$

Note : Why 16 electron is stable?

Metals with d⁸ electrons : The d⁸ metals have a tendency to form square planar 16-electron complexes. This tendency is weak for group 8 (Fe, Ru and Os in zero oxidation state) and strong for group 9, 10 and 11 (Rh(I),

Pd(II), Pt(II), Au(III). A square planar complexes TVE = 16. This is due to the fact that the $d_{x^2-y^2}$ orbital

cannot be occupied in the square-planar geometry, because it has a high energy. Thus, the complexes are stable with the 16-electron count.

Note:

- Complex which follows 17 electron rule is strong oxidizing agent.
- Complex which follows 19 electron rule is strong reducing agent.
- e.g. Which of the following complex is strong oxidizing agent and strong reducing agaent?

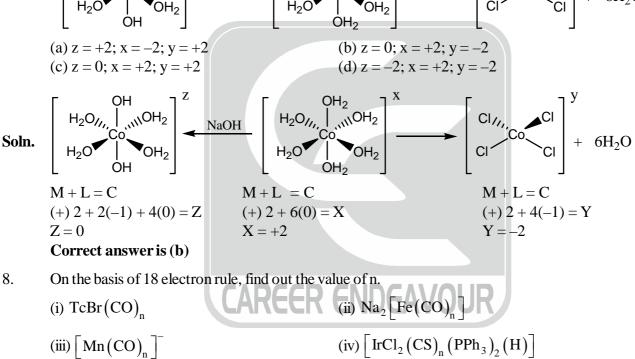
(a)
$$\operatorname{Fe}(\operatorname{CO})_{5}(18 \, \mathrm{e}^{-})$$
 (b) $\left[V(\operatorname{CO})_{6} \right]^{2-}(19 \, \mathrm{e}^{-})$
(c) $\left[\operatorname{Co}(\operatorname{CO})_{4} \right]^{-}(18 \, \mathrm{e}^{-})$ (d) $\left[\operatorname{Mn}(\operatorname{CO})_{5} \right](17 \, \mathrm{e}^{-})$

Soln. (d) is strong oxidizing agent because follows 17 electron rule.

(b) is strong reducing agent because follows 19 electron rule.

Table: Common ligands and their electron contributions.

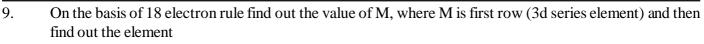
Ligand	Neutral Oxidation Sta		State	State Ligand	Neutral	Oxidation State	
	atom	Electron	Formal		atom	Electron	Formal
	-	contribution	-	TT 1	1	contribution	charge
Carbonyl (M–CO)	2	2	0	Halogen (M-X)	1	2	-1
Phosphine (M–PR ₃)	2	2	0	Alkyl (M–R)	1	2	-1
Amine M–NR ₃)	2	2	0	Aryl (M-Ar)	1	2	-1
Amide (M-NR ₂)	1	2	-1	Acyl (M–C(O)-R	1	2	-1
Hydrogen (M-H)	1	2	-1	η ¹ - Cyclopenta dienyl	1	2	-1
Alkene (Sidewise) η^2 .	2	2	0	η ¹ -Allyl	1	2	-1
Alkyne (sidewise) η^2	2	2	0	η ³ -Allyl	3	4	-1
η^2 -C ₆₀	2	2	0	η ⁵ - Cyclopenta dienyl	5	6	-1
Nitrosyl bent	1	2	-1	η ⁶ -Benzene	6	6	0
Nitrosyl Linear	3		ER E	η ⁷ - Cycloheptat rienyl	7 IUR	6	+1
Carbene (M=CR ₂)	2	4	-2	Carbyne $(M \equiv CR)$	3	6	-3
Alkoxide (M–OR)	1	2	-1	Thiolate (M–SR)	1	2	-1
μ-CO (M– (CO)–M)	2	2	0	μ-H	1	2	-1
µ–Alkyne	4	4	0	µ–X(M–X– M) X=Halogen	3	4	-1
µ–Alkyl	1	2	-1	μ–Amido (M-(NR ₂)– M	3	4	-1
μ–Phosphi do (M– (PR ₂)-M	3	4	-1	µ–Alkoxide (M-(OR)-M	3	4	-1



6

	SOLVE	D PROBLEMS	
1.	The compound which obeys 18-electron rule	is:	[GATE 2000]
	(a) $\operatorname{Mn}(\operatorname{CO})_3$ (b) $\operatorname{Fe}(\operatorname{CO})_4$	(c) $V(CO)_6$	(d) $\operatorname{Cr}(\operatorname{CO})_6$
Soln.	$\left\lceil Cr(CO)_{6} \right\rceil$		
	$TVE = 6 + 6 \times 2 = 6 + 12 = 18$		
2.	Correct option is (d) The complex which obeys the 18 electron rule	eis	[GATE 2002]
	(a) $\operatorname{Fe}(\operatorname{CO})_4$ (b) $\operatorname{Ni}(\operatorname{CO})_3(\operatorname{PPh}_3)$		(d) $Cr(C_5H_5)_2$
Soln.	Ni(CO) ₃ (PPh ₃) TVE = $10 + 3 \times 2 + 2 = 18$ Correct option is (b)		
3.	The bonding of cyclopentadienyl in $Ti(Cp)_4$ is	such that	[GATE 2002]
	(a) all Cp rings are pentahapto(b) one Cp ring is pentahapto and the other th	U I	
	(c) two Cp rings are monohapto and the other(d) All Cp rings are monohapto		to
Soln.	Structure of Ti(Cp) ₄ \rightarrow d° \Rightarrow follow 16 elect TVE = 4 + 2×1 + 2×5 = 16	ron rule.	
	$\eta^5 $		
	η^5 η^1		
4	Correct option is (c) Amount the complement (i) $\left[(C, H_{c}), C_{r} \right]$ (ii)	$\left[\operatorname{IIM}_{n}(\operatorname{CO})\right]$ ("") $\left[\left(\operatorname{CO}\right)\right]$	$(CU, CO) \mathbb{P} (CO) \mathbb{I}^{-1} = \mathbb{I} (CO)$
4.	Among the complexes (i) $\left[\left(C_6 H_6 \right)_2 Cr \right]$, (ii)	1 -1\11.1(-45\/(.))	JR /
	$\left[CpFe(CO)_2(CH_3) \right]$, the 18-electron rule is (a) iii only (b) ii and iii	(c) i and iv	[GATE 2003] (d) ii only.
Soln.	(i) $\left[\left(C_6 H_6 \right)_2 Cr \right]$,	$TVE = 6 + 6 \times 2 = 18$	•
	(ii) $\left[HMn(CO)_{5} \right]$,	$TVE = 7 + 2 \times 5 + 1 =$	= 18
	(iii) $\left[(CH_3CO) Rh(CO) I_3 \right]^-$,	TVE = 9 + 1 + 1 + 2	$2 + 3 \times 1 = 16$
	(iv) $\left[CpFe(CO)_2(CH_3) \right]$,	$TVE = 8 + 5 + 2 \times 2 +$	1= 18
	Correct option is (a)		
5.	The neutral complex which follows the 18-electric $(x^5 - C H)$) $F_{2}(CO)$		[GATE 2005]
	(a) $\left(\eta^{5} - C_{5}H_{5}\right)Fe(CO)_{2}$	(b) $\left(\eta^{5} - C_{5}H_{5}\right)Mo($	
~ -	(c) $\left(\eta^5 - C_5 H_5\right)_2 CO$	(d) $\left(\eta^{5} - C_{5}H_{5}\right) \operatorname{Re}\left(\eta^{5} - C_{5}H_{5}\right) \operatorname$	$\eta^{\circ} - C_6 H_6 \big)$
Soln.	$(\eta^{5} - C_{5}H_{5})Re(\eta^{6} - C_{6}H_{6})$ TVE = 5 + 7 + 6 = 18 Correct option is (d)		

 $(v) \left[Rh(CO)_3 \right]^n$


Soln. (i)
$$\operatorname{TcBr}(\operatorname{CO})_n$$

7 + 1 + 2n = 18
n = 5

(m)
$$[Mn(CO)_n]$$

7 + 2n + 1 = 18
2n = 10 = 5

(v)
$$[Rh(CO)_3]^n$$

6 + 9 + n = 18
n = 18 - 15, n = 3

(ii) $\operatorname{Na}_2[\operatorname{Fe}(\operatorname{CO})_n]$ 8 + 2 + 2n = 18, 2n = 8n = 4(iv) $\left[\text{IrCl}_2(\text{CS})_1(\text{PPh}_3)_2(\text{H}) \right]$

$$9 + 2 + 4 + 1 + 2n = 18, \ 2n = 18 - 16$$

n = 1

(i)
$$(Co)_5M \longrightarrow OCH_3$$

(ii) $\left[\left(\eta^3 \text{-allyl}\right)\left(\eta^5 \text{-}Cp\right)M(CO)\right]^-$
(iii) $\left[\left(\eta^3 \text{-allyl}\right)\left(\eta^5 \text{-}Cp\right)M(CO)\right]^-$
Soln. (i) $(OC)_5M \longrightarrow OCH_3$
(ii) $\left[\left(\eta^3 \text{-allyl}\right)\left(\eta^5 \text{-}Cp\right)M(CO)\right]^-$
M $\rightarrow 1$ st row (3d)
10 + M + 2 = 18
M = 6
So, M = Cr.
So, M = Cr.
(ii) $\left[\left(\eta^4 \text{-}C_4H_4\right)\left(\eta^5 \text{-}C_5H_5\right)M\right]^+$
4 + 5 -1 + M = 18
M = 10
So, M = Ni
UNSOLVED PROBLEMS
1. What change could be necessary for the following complex to obey 18 electrons rule.
(a) $[Co(CO)_3]^2$
(b) $[Ni(CO)_3(NO)]^2$

(c)
$$[(\eta^5 - Cp)Fe (CO)_2(PhC_2H)^2]$$

Ans. (a) z = 3 (b) z = +1 (c) z = +1

2. On the basis of 18 electrons rule, identify the first row transition metal for each of the following complexes.

Ans.(a) M = Cr(b) M = Ni(c) M = Mn3.Organometallic compound $[Mo(Cp)_2(CO)_2]$ follow 18 electrons rule the heptacity of two *cp* group are

(a)
$$\eta^5, \eta^5$$
 (b) η^3, η^5 (c) η^3, η^3 (d) none of these

Ans. (b)

4. The complex that does not obey 18 electrons rule

(a)
$$[Ru(N)(Br_2)(PMe_3)(NMe_2)]^-$$
 (b) $[CpCr(NO)_2Me]$
(c) $[CpTi(CO)_4]^-$ (d) $[Co(CO)_2(CS)(PPh_3)(Br)]$

(c) $[Cp11(CO)_4]$ Ans. (a)

- 5. What is the heptacity of cycloheptatrienyl ligand in a complex $[(C_7H_7)Mo(CO)_3]$ (a) 2 (b) 5 (c) 6 (d) 7
- Ans. (c)

(a)

(1, 2, 3)

(c) $\left[Be(\eta^{1}Cp)(\eta^{3}Cp) \right]$

(2, 0, 1)

PRACTICE SET

Match each of the compounds in List-I with appropriate oxidation state from List-II and the coordination 1. number from List-III. [GATE 1995] List-I List-III List-II (1) Zeise's salt 3 0 4 (2) Ni(CO), 1 $(3) [Co(NH_3)_5Cl]Cl_7$ 2 5 3 6 List-I List-II List-III

(3, 4, 6)

(1, 2, 3)(2, 3, 1)(b) (3, 4, 5)(1, 2, 3)(3, 0, 1)(5, 4, 6)(c) (2, 0, 3)(1, 2, 3)(3, 4, 5)(d) Which case of the following is most easily reduced? [GATE 1996] 2. (a) $V(CO)_6$ (b) $Cr(CO)_{6}$ (c) $Fe(CO)_{5}$ $(d) Ni(CO)_{4}$ The organometallic compound $W(C_5H_5)_2(CO)_2$ follows the 18-electron rule. The hapticities of the two 3. cyclopentadienyl groups are [GATE 1996] (a) 5 and 5 (c) 3 and 3 (d) 1 and 5 (b) 3 and 5 Which one of the following molecules does not obey the 18-electron rule? [GATE 1997] 4. (d) $\left[Mn(CO)_4 Cl_2 \right]^{2-1}$ (b) $Fe(CO)_5$ (c) $\left[Cr(CO)_{5} \right]^{2-}$ (a) $\left[Mn(CO)_{6} \right]^{+}$ 5. Among the following, the unstable carbonyl species is [GATE 1998] (b) $[Mn(CO)_{\epsilon}]^{-}$ (a) $Mn(CO)_{\epsilon}Cl$ (c) $[Mn(CO)_{5}]^{+}$ (d) $Mn(CO)_{\epsilon}$ Which of the following does not obey 18 electron rule? [GATE 1999] 6. (a) $Cr(CO)_{\epsilon}$ (b) $Fe(CO)_{\epsilon}$ (c) $V(CO)_{6}$ (d) $Mn_2(CO)_{10}$ 7. Which of the following obey 18 electron rule? [GATE 2000] (b) Fe (CO) (c) $V(CO)_6$ (d) $Cr(CO)_{\epsilon}$ (a) $Mn(CO)_{2}$ Which of the following complex do not obey 18 electron rule. 8. (b) $\left[W(CO)_3(SiMe_3)(Cl)(NCMe)_2 \right]$ (a) $\left[CpRu(Cl)(CO)(PPh_3) \right]$ (c) $\left[\text{IrCl}_3(\text{PPh}_3)_2(\text{AsPh}_2) \right]^{-1}$ $(d) \left[As(N) Br_2(PMe_3)(NMe_2) \right]^{-1}$ Which of the following Beryllium complex is stable? 9. (a) $\operatorname{Be}(\eta^5 \operatorname{Cp})_2$ (b) $\left[\operatorname{Be}(\eta^2 \operatorname{Cp})(\eta^1 \operatorname{Cp}) \right]$

Note: Main group elements follow octet rule, Valence electron of Be = 2, So, to complete octet, Needs 6 electrons.

(d) $\left[Be(\eta^{1}Cp)(\eta^{5}Cp) \right]$

ANSWER KEY					
Questions	1	2	3	4	5
Option	(a)	(a)	(b)	(d)	(d)
Questions	6	7	8	9	
Option	(C)	(d)	(d)	(d)	

9