

Exploration Geophysics

AKHIL KUMAR DWIVEDI ASSISTANT PROFESSOR MOHANLAL SUKHADIA UNIVERSITY UDAIPUR

Introduction

- ➢The science of geophysics is based on the principles of physics to the study of the whole of earth e from the deepest interior to the surface.
- ➢The subject of geology, geography, geochemistry and geophysics together play a key role in earth science.
- ➢The former two disciplines involve direct observations of rock exposures on the surface or subsurface workings or borehole cores.
- These are more often descriptive and qualitative. Geochemistry is partly descriptive and mainly quantitative.
- ➢The geophysical tools operate much above the ground from aircraft or helicopter platform fitted with multisensors or on the ground in general.
- <u>Geophysics</u> is the application of physical principles and methods to problems in Earth Sciences
- Geophysical studies are always quantitative and involve real measurements based on the variation of response pattern or contrast of propagating waves passing through nonhomogeneous medium.
- > The propagation parameters are seismicity, density, magnetic susceptibility, electrical conductivity, resistivity, electromagnetic (EM) and radiometric radiance.

Passive versus Active methods

≻Passive methods:

Use naturally present sources/fields to investigate properties of the subsurface

Examples: ≻Gravity ≻Earth's magnetic field ≻Earthquakes

≻Active methods:

Use man-made source to image structure of subsurface

Examples: ►Dynamite, air guns, ... ►EM waves ►Electrical currents

Applied geophysics

To select the most appropriate geophysical method to investigate a certain task/problem, following aspects need to be considered:

What are the relevant *physical properties*? (porosity, pemeability, seismic velocity, density, …)

>What *spatial scales* are relevant?

>What are the *field conditions*? (e.g. urban, offshore, ...)

>Which *acquisition geometries* are optimal? (e.g. 2D vs 3D seismics)

>Is there useful a priori information?

➤Is there a *cheaper* alternative?

The answer to these questions will depend strongly on the particular task/problem

Why geophysics?

An Introduction to Applied and Environment Geophysics , Second Edition. John Reynolds © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

Figure 1.2 Ground models derived from (A) an intrusive investigation only, (B) a combined profile from a comprehensive geophysical survey, and (C) final interpretation of a subsequent intrusive investigation targeted on the geophysical anomalies. [C]

ayered sedimentary
es, chromite, salt kimberlite, sin.
enite, pyrrhotite-rich
sulfide ore.
dissemination,
graphite,
aphite deposits.
ium, radium.
mineralization in

Geophysical Surveying Methods with Parameters and Properties Suitable for Type Deposits

Applied geophysics infers property contrasts inside the earth from surface (borehole) measurements

\rightarrow Remote sensing

Figure 1.6 Contrasts in physical properties from different geological targets give rise to a target. When there is no contrast, the target is undetectable geophysically. [C]

Geophysical	Chapter	Dependent physical			App	licatio	ons (se	e key	' belo	w)		
method	number	property	1	2	3	4	5	6	7	8	9	10
Gravity	2	Density	Р	Р	S	s	S	s	!	!	s	!
Magnetic	3	Susceptibility	Р	Р	Р	S	!	m	1	P	P	1
Seismic refraction	4,5	Elastic moduli; density	Р	Р	m	Р	S	S	!	!	!	!
Seismic reflection	4,6	Elastic moduli; density	Р	Р	m	S	S	m	i	!	!	1
Resistivity	7	Resistivity	m	m	Р	Р	P	Р	Р	S	P	m
Spontaneous potential	8	Potential differences	!	!	Р	m	Ρ	m	m	m	!	!
Induced polarization	9	Resistivity; capacitance	m	m	Р	m	S	m	m	m	m	m
Electromagnetic (EM)	10	Conductance; inductance	S	Р	Р	Р	Р	Р	Р	Р	Р	m
EM-VLF	11	Conductance; inductance	m	m	Р	m	S	S	S	m	m	ţ
EM – ground penetrating radar	12	Permitivity; conductivity	!	!	m	Р	Р	Р	S	Р	Р	Р
Magneto-telluric	11	Resistivity	s	Ρ	Р	m	m	!	<u>!</u>	!	!	!

Table 1.1 Geophysical methods and their main applications

P = primary method; s = secondary method; m = may be used but not necessarily the best approach, or has not been developed for this application; (!) = unsuitable

Applications

- 1 Hydrocarbon exploration (coal, gas, oil)
- 2 Regional geological studies (over areas of 100s of km²)
- 3 Exploration/development of mineral deposits
- 4 Engineering site investigations
- 5 Hydrogeological investigations
- 6 Detection of sub-surface cavities
- 7 Mapping of leachate and contaminant plumes
- 8 Location and definition of buried metallic objects
- 9 Archaeogeophysics
- 10 Forensic geophysics

Be aware of a biased interpretation!

A physical theory calculates observables given appropriate model parameters and theory \rightarrow forward modelling The inverse problem is often non-unique!

Several geophysical methods should be used together

Interpretation requires geological knowledge

Seismic methods Mainly measure travel times and amplitudes which depend on density and elastic moduli

Seismic methods Mainly measure travel times and amplitudes which depend on density and elastic moduli

Table 4.1 Derived information and applications of exploration seismology.

Gross geological features:
Depth to bedrock
Measurement of glacier thickness
Location of faults and fracture zones
Fault displacement
Location and character of buried valleys
Lithological determinations
Stratigraphy
Location of basic igneous dykes
Petrophysical information:
Elastic moduli
Density
Attenuation
Porosity
Elastic wave velocities
Anisotropy Rippability
Rippability
Applications:
Engineering site investigations
Rock competence
Sand and gravel resources Detection of cavities
Seabed integrity (for siting drilling rigs)
Degassing or dewatering of submarine sediments
Preconstruction site suitability for:
new landfill sites
major buildings
marinas and piers
sewage outfall pipes
tunnel construction, etc.
Hydrogeology and groundwater exploration
Ground particle velocities
Forensic applications:
location of crashed aircraft on land
design of aircraft superstructures
monitoring Nuclear Test Ban Treaty location of large bore military weapons
Location of trapped miners
Seismic hazard zonation

Table 4.2 Examples of P-wave velocities.

Material	V _P (m/s)
Air	330
Water	1450-1530
Petroleum	1300-1400
Loess	300-600
Soil	100-500
Snow	350-3000
Solid glacier ice*	3000-4000
Sand (loose)	200-2000
Sand (dry, loose)	200-1000
Sand (water saturated, loose)	1500-2000
Glacial moraine	1500-2700
Sand and gravel (near surface)	400-2300
Sand and gravel (at 2 km depth)	3000-3500
Clay	1000-2500
Estuarine muds/clay	300-1800
Floodplain alluvium	1800-2200
Pemafrost (Quaternary sediments)	1500-4900
Sandstone	1400-4500
Limestone (soft)	1700-4200
Limestone (hard)	2800-7000
Dolomites	2500-6500
Anhydrite	3500-5500
Rock salt	4000-5500
Gypsum	2000-3500
Shales	2000-4100
Granites	4600-6200
Basalts	5500-6500
Gabbro	6400-7000
Peridotite	7800-8400
Serpentinite	5500-6500
Gneiss	3500-7600
Marbles	3780-7000
Sulphide ores	3950-6700
Pulverised fuel ash	600-1000
Made ground (rubble, etc)	160-600
Landfill refuse	400-750
Concrete	3000-3500
Disturbed soil	180-335
Clay landfill cap (compacted)	355-380

* Strongly temperature-dependent for polar ice (Kohnen, 1974).

Potential Field methods

Gravity measures spatial variations of the gravitational field due to lateral variations in density.

Table 2.2 Densities of common geological materials (modified from Telford *et al.*, 1990).

Table 2.1 Applications of gravity surveying.

Hydrocarbon exploration

Hydrocarbon reservoir monitoring

Monitoring of CO₂ containment underground

Regional geological studies

Isostatic compensation determination

Exploration for, and mass determination of, mineral deposits

Detection of subsurface cavities (micro-gravity), e.g. mine workings, caves, solution features, tunnels

Location of buried rock valleys

Determination of glacier thickness

Tidal oscillations

Archaeogeophysics (micro-gravity), e.g. location of tombs, crypts

Shape of the earth (geodesy)

Military (especially for missile trajectories)

Satellite positioning

Monitoring volcanoes

Hydrological changes in the geoid

Material type	Density range (Mg/m ³)	Approximate averag density (Mg/m ³)
Sedimentary rocks		
Alluvium	1.96-2.00	1.98
Clay	1.63-2.60	2.21
Gravel	1.70-2.40	2.00
Loess	1.40-1.93	1.64
Silt	1.80-2.20	1.93
Soil	1.20-2.40	1.92
Sand	1.70-2.30	2.00
Sandstone	1.61-2.76	2.35
Shale	1.77-3.20	2.40
Limestone	1.93-2.90	2.55
Dolomite	2.28-2.90	2.70
Chalk	1.53-2.60	2.01
Halite	2.10-2.60	2.22
Glacier ice	0.88-0.92	0.90
Igneous rocks		
Rhyolite	2.35-2.70	2.52
Granite	2.50-2.81	2.64
Andesite	2.40-2.80	2.61
Syenite	2.60-2.95	2.77
Basalt	2.70-3.30	2.99
Gabbro	2.70-3.50	3.03
Metamorphic rocks Schist	2.39-2.90	2.64
Gneiss	2.59-3.00	2.80
Phyllite	2.68-2.80	2.74
Slate	2.70-2.90	2.79
Granulite	2.52-2.73	2.65
Amphibolite	2.90-3.04	2.96
Eclogite	3.20-3.54	3.37
Longite	0.20 0.04	0.01

Potential Field methods

Geomagnetics measures spatial variations of the intensity of the magnetic field due to lateral variations in magnetic susceptibility.

Table 3.2 Susceptibilities of rocks and minerals (rationalised SI units).

Table 3.1 Applications of geomagnetic surveys.

Locating

- Pipes, cables and ferrous metallic objects
- Buried military ordnance (shells, bombs, etc.)
- Buried metal drums (of contaminated or toxic waste, etc.)
- Concealed mine shafts and adits

Mapping

- Archaeological remains
- Concealed basic igneous dykes
- Metalliferous mineral lodes
- Geological boundaries between magnetically contrasting lithologies, including faults
- Large-scale geological structures

Mineral or rock type	Susceptibility*
Sedimentary	
Dolomite (pure)	-12.5 to +44
Dolomite (impure)	20,000
Limestone	10 to 25,000
Sandstone	0 to 21,000
Shales	60 to 18,600
Average for various	0 to 360
Metamorphic	
Schist	315 to 3000
Slate	0 to 38,000
Gneiss	125 to 25,000
Serpentinite	3100 to 75,000
Average for various	0 to 73,000
Igneous	
Granite	10 to 65
Granite (m)	20 to 50,000
Rhyolite	250 to 37,700
Pegmatite	3000 to 75,000
Gabbro	800 to 76,000
Basalts	500 to 182,000
Oceanic basalts	300 to 36,000
Peridotite	95,500 to 196,000
Average for acid igneous	40 to 82,000
Average for basic igneous	550 to 122,000
Minerals	
Ice (d)	-9
Rocksalt (d)	-10
Gypsum (d)	-13
Quartz (d)	-15
Graphite (d)	-80 to -200
Chalcopyrite	400
Pyrite (o)	50 to 5000
Hematite (o)	420 to 38,000
Pyrrhotite (o)	1250 to 6.3 × 10 ⁶
Illmenite (o)	314000 to 3.8 \times 10 ⁶
Magnetite (o)	70,000 to 2×10^7

(d) = diamagnetic material; (o) = ore; (m) = with magnetic minerals. $^{*}\kappa \times 10^{6}$ rationalised SI units; to convert to the unrationalised c.g.s units, divide by 4π .

Data from Parasnis (1986), Sharma (1986) and Telford et al. (1990)

Electro magnetics

Table 10.1 The range of applications for EM surveying.*

Mineral exploration Mineral resource evaluation Hydrocarbon exploration Monitoring hydrocarbon reservoirs Groundwater surveys Mapping contaminant plumes Geothermal resource investigations Contaminated land mapping Landfill surveys Detection of natural and artificial cavities Location of geological faults Geological mapping Permafrost mapping **Brownfield site mapping** UneXploded Ordnance (UXO) Sea-ice thickness mapping Archaeological investigations

*Independent of instrument type.

Ground penetrating radar

measures travel times of reflected radar waves

velocity is controlled by the dielectric constant Table 13.1 Range of applications of ground-penetrating radar.

Geological:

Detection of natural cavities and fissures Subsidence mapping Mapping sand body geometry Mapping of superficial deposits Soil stratigraphy mapping Glacial geological investigations Mineral exploration and resource evaluation Peat thickness mapping and resource evaluation Permafrost investigations Location of ice wedges Fracture mapping in rock salt Location of faults, (mineralised) dykes, coal seams, etc. Lake and riverbed sediment mapping

Environmental:

Contaminant plume mapping and monitoring remediation Mapping and monitoring pollutants within groundwater Landfill investigations including capping effectiveness Location of buried fuel tanks and oil drums Mapping animal burrows and tree roots Groundwater investigations Detection of UXO

Glaciological:

Ice thickness mapping Determination of internal glacier structures Ice movement studies Detection of concealed surface and basal glacier crevasses Mapping water conduits within glaciers Determination of thickness and type of sea and lake ice Subglacial mass balance determination Snow stratigraphy mapping Subglacial landform mapping Glacial hazard assessment

Engineering and construction: Road pavement analysis Railway trackbed testing Void detection Location of reinforcement (rebars) in concrete Location of public utilities (pipes, cables, etc.) Testing integrity of building materials Concrete testing Locking-ahead/sideways during horizontal directional drilling

Archaeology:

Location of buried structures, graves, post-holes, etc. Detection and mapping of Roman roads, foundations, etc. Pre-excavation mapping Detection of voids (crypts, undercrofts, burial mounds, etc.) Investigation of ancient monuments, statues, building façades

Forensic science:

Location of buried targets (e.g. bodies and bullion, etc.)