PARATHYROID GLAND-1

DR. SHEETAL JAIN

Parathyroid gland

The parathyroid glands are small endocrine glands.
 They are responsible for the production of parathyroid hormone.
 Which acts to control calcium levels in the body.

ANATOMY

Anatomy of parathyroid

Shape:

 They are flattened and oval in shape, situated external to the gland itself, but within its sheath.

Anatomical location:

 They are located on the posterior, medial aspect of each lobe of the thyroid gland.

Anatomy

Size and weight:

- Size of a grain of rice.
- 30 milligrams weighs approximately.
- 3-4 millimeters in diameter.
- The majority of people have four parathyroid gland

HISTOLOGY

Histology of parathyroid

Chief cells

- They are small cell.
- More abundant.
- They secrete parathyroid hormone.

Oxyphil cells-

- They are much larger.
- Less abundant than chief cells.
- Purpose is unknown.
- The number of oxyphil cells increases with age.

HISTOLOGY

Parathyroids (two types of cells)

- Rare chief cells
- Abundant oxyphil cells (unknown function)
- Chief cells produce PTH
 - Parathyroid hormone, or parathormone
 - A small protein hormone

PHYSIOLOGY

Physiology

- "Parathormone" is produced by chief cells tends to increase the serum calcium level.
- PTH is a peptide hormone, is secreted in response to low blood calcium level.
- Its secretion is controlled by negative feedback system.

Functions of PTH

- Suppression of calcium loss in urine.
- Stimulate loss of phosphate ions in urine
- Mobilization of calcium from bone.
- Enhancing absorption of calcium from the small intestine.
- Activation of Vitamin D

FUNCTIONS

Function of PTH

(parathyroid hormone or "parathormone")

- Increases blood Ca++ (calcium) concentration when it gets too low
- Mechanism of raising blood calcium
 - 1. Stimulates osteoclasts to release more Ca++ from bone
 - 2. Decreases secretion of Ca++ by kidney
 - Activates Vitamin D, which stimulates the uptake of Ca++ from the intestine
- Unwitting removal during thyroidectomy was lethal
- Has opposite effect on calcium as calcitonin (which lowers Ca++ levels)

Control of PTH release
Falling blood Ca2+ levels = trigger release
Hypercalcemia = inhibits release

ROLE OF CALCIUM

Calcium levels in the blood stream are maintained for
Muscle contraction
Nerve impulse transmission
Blood clotting

□ Enzyme activity (acting as cofactors)

Parathyroid hormone (PTH)

Effects of PTH on kidneys

- PTH stimulates the kidney tubules to recover waste calcium from the urine.
- PTH also stimulates the tubular cells to release calcitrol.

Effects of calcitrol on intestine

- PTH indirectly increases calcium absorption from intestine via its effects on vitamin D synthesis.
- Calcitriol (vitamin D) then stimulates increased absorption of dietary calcium by the intestines.

Effects of PTH on bones

- Inhibits osteoblasts.
- Stimulates osteoclast.
- Bone is broken down releasing calcium ions into the blood stream.

Some calcium is taken out of the bones

Calcium

tions:

- and bones.
- clotting.
- and muscle
- regulation.
- natic activity
- se of
- transmitters

Normal calcium level in blood 8.5-10.5 mg/dl

Normal phosphorous level in blood. 2.5-4.5 mg/dl

Normal PTH level in blood. 20-60 mg/dl CONT.