Enzymology of Nitrogen Fixation

Dr. Kuldeep Sharma Department of Botany M.L.S. University, Udaipur Rajasthan, India The incredibly strong (triple) bond in N_2 makes this reaction very difficult to carry out efficiently. In fact, nitrogenase consumes ~16 moles of ATP for every molecule of N_2 it reduces to NH_3 , which makes it one of the most energy-expensive processes known in Nature.

Plant genomes lack any genes encoding this enzyme. which occurs only in prokaryotes (bacteria).

Only occurs in certain prokaryotes (Bacteria)

Even within the bacteria, only certain free-living bacteria (Klebsiella, Azospirillum, Azotobacter), blue-green bacteria (Anabaena) and a few symbiotic Rhizobial species are known nitrogen-fixers.

Another nitrogen-fixing association exists between an Actinomycete (Frankia spp.) and alder (Alnus spp.)

The enzyme **nitrogenase** catalyses the conversion of atmospheric, gaseous dinitrogen (N_2) and dihydrogen (H_2) to ammonia (NH_3), as shown in the chemical equation below:

 $N_2 + 3 H_2 \Rightarrow 2 NH_3$

Biological nitrogen fixation is the reduction of atmospheric nitrogen gas (N_2) to ammonium ions (NH_4^+) by the oxygen-sensitive enzyme, **nitrogenase**. Reducing power is provided by NAPH/ferredoxin, via an Fe/Mo centre.

The reaction seems simple enough and the atmosphere is 78% N_2 , so why is this enzyme so important?

Table 16.3 Substrates and products of	of nitrogenase
---------------------------------------	----------------

ouvouate	Common name	Product(s)
N_2	Dinitrogen	NH ₃ (ammonia)
H^+	Hydrogen ion	H ₂ (hydrogen gas)
N_2O	Nitrous oxide	N ₂ , H ₂ O
CN^-	Cyanide	NH ₃ , CH ₄ (methane)
CH_3NC	Methyl isocyanide	CH ₃ NH ₂ (methylamine), CH ₄
N_3^-	Azide	N ₂ , NH ₃
C_2H_2	Acetylene	C ₂ H ₄ (ethylene), C ₂ H ₆ (ethane)
H_2NCN	Cyanamide	NH ₃ , CH ₃ NH ₂
C_3H_4	Cyclopropene	C ₃ H ₆ (cyclopropane)
CH_2N_2	Dazirine	NH ₃ , CH ₃ NH ₂

Nitrogenase Complex- Two protein components:

Nitrogenase reductase

Nitrogenase

Nitrogenase Complex

Nitrogenase reductase

- Nitrogenase reductase is a 60 kD homodimer with a single 4Fe-4S cluster
- Very oxygen-sensitive
- Binds MgATP
- 4ATP required per pair of electrons transferred
- Reduction of N₂ to 2NH₃ + H₂ requires 4 pairs of electrons, so 16 ATP are consumed per N₂

Why should nitrogenase need ATP???

- N₂ reduction to ammonia is thermodynamically favorable
- However, the activation barrier for breaking the N-N triple bond is enormous
- **16 ATP** provide the needed activation energy

A 220 kD heterotetramer

- Each molecule of enzyme contains 2 Mo, 32 Fe, 30 equivalents of acid-labile sulfide (FeS clusters, etc)
- Four 4Fe-4S clusters plus two FeMoCo, an ironmolybdenum cofactor
- Nitrogenase is slow 12 e⁻ pairs per second, i.e., only three molecules of N₂ per second

Figure 16.6

(A) Schematic diagram of the nitrogenase complex, showing the flow of reducing power and substrates in enzymatic nitrogen fixation. The Fe-protein, encoded by nifH, accepts electrons from a carrier, e.g., ferredoxin, flavodoxin, or another redox-active species of similar potential. The identity of the carrier varies, depending on the biological system involved. The Fe-protein transfers single electrons at very low potential to the MoFe-protein, accompanied by net hydrolysis of ATP. The MoFe-protein, an $\alpha_2\beta_2$ heterotetramer of

subunits encoded by nifD and nifK, accepts electrons and binds H⁺ ions and N₂ gas in a stepwise cycle, ultimately leading to the production of H₂ and ammonia. (B) Docking of the nitrogenase FE protein dimer (yellow) with half of the nitrogenase MoFe protein (red, nifD; purple, nifH). A 4Fe:4S cluster is associated with the Fe protein. The P cluster is near the nifD/nifH interface. FeMoCo (green)

