Basics to Bioinformatics

Dr. Kuldeep Sharma Assistant Professor Department of Botany MLS University, Udaipur Rajasthan, India

Bioinformatics - play with sequences & structures

GAATTCTCTTTGGTATCCAATGAAGAAATCGAATCCATACCCATAG TTCAGGAGAAAATAAGACCGAAGCTGCTCAATTAGGCGCAATTGAT GTGAAACTTGCCAGCTTACTTCGGCATGTCCTGGTCATTTTGGAAA. CAACCATTATTAAAGTCGCATTTAAAAAACTTGTTGAAAAATATTT TTCTTTCTGTGGTGCTTTACAAAATCTTGAACTTCTGGAATTGATC. AACGAAATACTGGAATAACAGTTAAAGATCGTGCTGCTTTTAAAAA. ACCAAACAAAGCAAATTCAAGTGTATTGCACCTAATTGCCAAAAAC. ACAATATTCGAAAAATAATAACTTTATATATAATTCGGGTACTACA. TGGATAACAGGCATGTGTTTAATATCTTACAAAATCTTCCACAAAC TTAACCCCTTCGAATGCTCATCAAATCGTATCTCCCCGAAAATGTCT' TATCTTACTTCCACCACATAATCTACGAACTATCAATGTTTATGAT! GTTTGTTAACAAGTGATTTGAATCTGATAATGCGAAGAGTTGCTAA' GCAAAAATACAAAAAATCTTGGATTCTATCGATAACAGCCGAGGTG TACAAATAAAAAGCTTACTTTGGATACTTTGACAGGTGGACACTCA. TGCGAAGTTATATTAATGGCAAACGTATTCCTGAGACTGCCAGAGC TCTATGAATAAAACTGGCTTTATTGAAGTACCATCTTACATTTTAA. TGTTGTCTTTTATAATCACGTTACGAAAGATAACATACTCAAAAGT AAGCTTTTCTAACATATATCAAAAGTGATCATAATTCTGAAAATCC' GATTTAGCACAGAAGAATGGATATTTAACCTTGGCTCCTAATTTCG AAAAAGGAAAGAGGAAGGTGGTTTTGTAACTATTTGCAGACATCCA

Organization of Life

Bioinformatics

Paulien Hogeweg & Ben Hesper coined the term 'Bioinformatics' in 1970.

WHAT IS BIOINFORMATICS?

Computational Biology/Bioinformatics is the application of computer sciences and allied technologies to answer the questions of Biologists, about the mysteries of life. It has evolved to serve as the bridge between:

- \Box Observations (data) in diverse biologically-related disciplines and
- \Box The derivations of understanding (information)

APPLICATIONS OF BIOINFORMATICS:

- \Box Computer Aided Drug Design
- □ Microarray Bioinformatics
- □ Proteomics
- □ Genomics
- □ Biological Databases
- □ Phylogenetics
- □ Systems Biology

What is Bio- sequence

DNA, RNA or protein information represented as a series of bases (or amino acids) that appear in bio-molecules. The method by which a biosequence is obtained is called Bio-sequencing.

What is Sequence Alignment

Arranging DNA/protein sequences side by side to study the extent of their similarity

Data Generation & Data Explosion

BIOLOGICAL DATABASES

Biological Databases:

A collection of biological data and biological informations in electronic form and organized manner, which is accessible in various way, structures, searchable, updated periodically and cross referenced.

Purpose of biological databases:

- Availability and of biological data.
- Computation and systematization of biological information and data.
- Efficient manipulation of large data sets
- Structural and functional analysis of different biological data sets (Analysis of Nucleic acids & Protein Sequences. Sequence alignment and molecular modeling)

BIOLOGICAL DATABASES

Core Databases

Primary Data

S. No.	DATABASE	WEB- LINK
1	NCBI- National Centre for Biotechnology Information	www.ncbi.nlm.nih.gov
2	EMBL- European Molecular Biology Laboratory	www.ebi.ac.uk/embl
3	DDBJ- DNA Data Bank of Japan	www.ddbj.nig.ac.
4	NDB- Nucleotide Data Bank	www.ndbserver.rutgers.edu
5	PIR- Protein Information Resource	www.pir.georgetown.edu
6	PDB- Protein Data Bank	www.rcsb.org/pdb
7	UniProt- Universal Protein Resource	

Primary Databases:

Contain bio-molecular data in its original form.

□ First-hand information of experimental data from scientists and researchers

Data not edited or validated

□ Raw and original submission of data

□ Experimental results are submitted directly into the database by researcher,

- $\hfill\square$ the data are archival in nature
- □ Made available to public for annotation

□ Once given a database accession number the data in primary database are never changed

Secondary Databases

- Contains data derived from the results on analysing primary data
- □ Manually created or automatically generated.
- □ Contains more relevant and useful information structured to specific requirement.

Data of highest quality as it is double checked.

Secondary Databases

S. No.	DATABASE	WEB- LINK
1	PROSITE (Protein domains, families, functional sites)	www.expasy.org/prosite
2	Pfam (Protein families)	www.sanger.ac.uk/pfam
3	SCOP (Structural Classification Of Proteins)	www.scop.mrc-lmb.cam.ac.uk/scop
4	CATH (Class, Architecture, Topology, Homologous Super Family of Proteins)	www.cathdb.info
5	OMIM (Online Mendelian Inheritance in Man)	www.ncbi.nlm.nih/omim
6	KEGG (Kyoto Encyclopedia of Genes and Genome)	www.genome.jp/kegg/pathway.html
7	MetaCyc (Enzyme Metabolic Pathways)	www.metacyc.org
8	ExPASY	http://web.expasy.org
9	SWISS-Prot	www.ebi.ac.uk/swissprot/access.html
10	Enzyme structure	<u>http://www.ebi.ac.uk/thornton-</u> <u>srv/databases/enzymes</u>
	Interpro	

Significance of Biological Databases:

- Structural and functional analysis of different biological data sets (Analysis of Nucleic acids & Protein Sequences. Sequence alignment and molecular modeling)
 - DNA and Protein Sequence Assembly: A process through which short DNA sequence fragments (called reads or samples) are merged into longer DNA sequence to reconstruct the original DNA sequences.
 - Sequence searches
 - Sequence alignments
 - Motif discovery
 - Gene and promoter prediction

Significance of Biological Databases:

- Genome Annotation: It is the process of identifying the location of genes and all of the coding regions in a genome and determining what those genes do.
 - It consists of 3 main steps:
 - \checkmark Identifying portion of the genome that do not code for proteins
 - \checkmark Identifying elements on the genome.
 - \checkmark Attaching biological information to these elements.
- Inferences of Protein and RNA structure:
 - Prediction of three dimensional structure of a protein from its amino acid sequence
 - Comparison of protein structures
 - Protein structure classification
 - Prediction of 3- D structure of different RNA molecules from ribonucleotide sequences.
- * Reduce the time consuming experimental procedures.

Applications of Bioinformatics

Structure Analysis

- Prediction of RNA Structures
- Prediction of Protein
 Structures
- Protein Structure
 comparison &
 Classification

Functional Analysis

- Prediction of Protein-Protein interaction
- Prediction of Protein-DNA interaction
- Prediction of Protein
- subcellular
- localization
- Gene ExpressionProfiling

Sequence Analysis & Molecular Modeling

- Sequence Search
- Sequence Alignment
- Prediction of Gene (s)
 & Promoters
- Genome Comparison
- Metabolic pathway modelling
- Phylogeny

Thank You