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m.in chemical kinetics is to determine how rates depend on th,
' important to know how rates are

An important proble
bstances, which-may be catalys

concentrations of reacting substances. It is also

affected by the products of reaction or by added su
or inhibitors (Section 1.9). Another problem is to analyze the effect of temperatyre

on reaction rates. The present chapter is concerned with these aspects of chemicy)

kinetics. ' e vy
As far as reactant concentrations are ccﬁf'c'e‘iined, there are two main procedures:
the differential method and the method of integration. In the differential method, rates

are meas_ur.ed directly, by determining the slopes of concentration-time curves, and
an analysis is made of the way in which the slope depends on the reactant concentra:ti

The method of integration involves first making“a tentative decision as to wh e
_order of the reaction might be, The differential equation ‘corresponding tootl:;t e(l)tr(tit:

dc
8 V=~ o
dt kC
(2.1)
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| DIFFERENTIAL METHOD 19

A double-logarithmic plot of In v versus In ¢ gives a straight line of slope 7. the intercept
when In ¢ = 0 is then In 4. If a straight-line plot is not obtained, the rate cannot be
represented by Eq. (2.1); that is, the reaction does not have an order with respect to
that particular reactant.

The procedure may be applied in two differeni ways. In one of them, shown
g:l_u;matically in Fig. 2.1a, runs are carried out at different initial concentrations, and
n_mlal rates are determined by measunng initial slopes. A double-logarithmic plot then
gives the order of reaction (Fig. 2.1b). This procedure, dealing with initial rates, avoids
possible complications due to interference by products. Because of this, Letort® referred
to the order determined in this way as the order with respect to concentration, or the
true order. The symbol . is used to denote this order.

The second procedure involves considering a single run and measuring slopes
at various times, corresponding to a number of values of the reactant concentration.
This method is illustrated schematically in Fig. 2.2a, and again the logarithms of the
rates are plotted against the logarithms of the corresponding reactant concentrations
(Fig. 2.2b). The slope is the order; since time is now varying, Letort referred to this
order as the order with respect to time n,.

Figure 2.3 shows schematic plots in which the two procedures have been com-
bined. The points at the extremities of the #, plots correspond to initial conditions
and give nise to the n. plot.

The two orders are not always the same for a given reaction. In the thermal
decomposition of acetaldehyde, for example, as discussed further in Section 8.5.4,
Letort found that the order with respect to concentration (the true order) is 3/2, and
that the order with respect to time is 2. The fact that the order with respect to time is
greater than the order with respect to concentration means that as the reaction proceeds

In¥

Reactant concentration ¢

o

Time Inc

ra) ' (b)

Figure 24 . (a) Plot of reactant concentrations versus time for various initial concen-
trations. (b) A plot of In v; versus In ¢;.
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Slope = n,

Reactant concentration ¢
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(b)

Time
(a) -
i { 1 various
Figure 2.2 (a) A single concentration—-time curve, with slopes measured at

reactant concentrations. (b) A plot of In v versus In c.
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"ﬂpond to rates
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2.2 METHOD OF INTEGRATION 21

the rate falls off more rapidly than if the true order applied to the time course of the
reaction. This abnormally large falling off can only mean that some substance produced
in the reaction is acting as an inhibitor. Converscly, il #, is less than n,, the rate 1s
falling off less rapidly with time than expected on the basis of the true order. Therefore,
some activation by the products of reaction exists, and the reaction is said to be
autocatalytic.

2.2 METHOD OF INTEGRATION

The method of integration was first used in 1850 by Wilhelmy and some 15 years
later was extended by Harcourt and Esson. In this section we discuss only the principles
of the method, as applied to a few systems. Table 2.1 gives solutions for some of the
simpler cases; many more cases have been treated by Capellos and Bielski.? Care must
be taken with regard to the stoichiometry of the reaction and to the relationships
between the different rate constants, as discussed in Section 1.7. The procedure adopted
here, which is helpful in avoiding errors, is to focus attention on the consumption of
a particular reactant, denoted as A.

2.2.1 First-Order Reactions

A reaction that is first-order with respect to a reactant A and is zero-order with respect
to any other reactants may correspond to various stoichiometries, such as

A—Z A—2Z 2A—Z
A+B—Z 2A+B—Z

A procedure that covers all these possibilities is as follows. Suppose that at the beginning
of the reaction (¢ = 0), with no product present, the concentration of A is g and
that at time ¢ the amount of A that has been consumed per unit volume is x:
the concentration of A is then ay— x, and the rate of consumption of A 1s
—d(ag — x)/dt = dx/dt. Thus, we can write

% = ka(@o — x) (2.2)
where k, is the first-order rate constant that relates to the consumption of A. This 1s
converted into the rate constant k, which relates to rate of reaction, by use of the
stoichiometric coefficients as discussed in Section 1.7. If there is a second reactant B,
the rate constant kp can be related in a similar way.

Separation of the variables x and ¢ in Eq. (2.2) gives

dx
ay — X

= ka dt (2.3)

and integration gives
—In(ag — x) = kat — 1 (2.4)
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2.2 METHOD OF INTEGRATION 23

where I is the constant of integration. This constant may be evaluated using the
boundary condition that x = 0 when ¢ = 0; hence,

—In ab =] (2.5)
and insertion of this into Eq. (2.4) leads to
ln( %o ) = kat (2.6)
Ay — X .
This equation can also be written as
x = ay(1 — e (2.7
and as
dg — X ~= aoe',k,\f (28)

This last equation shows that the concentration of reactant, @ — X, decreases expo-
nentially with time, from an initial value of g, to a final value of zero.

The first-order equations can be tested and the constant evaluated using a graph-
ical procedure. It follows from Eq. (2.6) that a plot of In [ao/(ap — X)] versus ! will
give a straight line if the reaction is first order; this is shown schematically in Fig. 2.4a.
The rate constant is the slope of this plot. We may also plot In (@, — x) versus /, as
shown in Fig. 2.4b.

2.2.2 Second-Order Reactions

There are two possibilities for second-order reactions: the rate may be proportional
to the product of two equal concentrations or to the product of two different ones.
The first must occur when a single reactant is involved, as in the process

)

a9
aﬂ -X

t

!

(@) (b)

Figure 2.4 Method of integration and analysis of results for a first-order reaction:
(a) plot of In [ap/(ao — x)] versus 1 and (b) plot of In (ag — X) versus ¢
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lwis also found In second-0
A+B— Z
f A and B are the same.§
may be expressed as
dx ,
==k —X) |
dt A(aﬂ uc‘l

if the initial concentrations 0

In such situations the raté

eacted in unit volume at time /, and g j i
)
H‘

where x is the amount of A that has r
f the variables leads to

initial concentration of A. Separation O
dx
= ka dl
(ag — x) a (2.1,

which integrates to
' 1
= kAf + 7/ (2 I
)

A — X

where / is the constant of integration. The boundary condition is that x = () wh
N

/

t = 0; therefore,

;=1
o (2.12)
Hence, X
aolay = x) - ! (2.13)

T iati . ‘
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2.2 METHOD OF INTEGRATION 25

a,'a, - vl

Slope = &,

Slope = aoka

!

(a (h)
Figure 2.5 Method of integration and analysis of results for a second-order reaction
involving a sirgle reactant or two reactants of equal initial concentrations reacting

according to the stoichiometry A + B — Z: (a) plot of x/ag(ao — X) versus ¢ and (b)
plot of x/(a, — x) versus . ‘

The result of the integration, with the boundary condition r = 0 at x = 0. is

I bo(ap — X)]
— k Bl 5
ap — by In [ao(bo - X) o e 12)

This equation can be tested by plotting the left-hand side versus ¢; if a straight line is
obtained its slope is ka.

2.2.3 Reactions of the nth Order

Suppose that a reaction is of the nth order and involves a single reactant of concentration

aq, or reactants of equal concentrations and with stoichiometrv A+ B+ - - . — Z.
If the concentration of A remaining after time ¢ is @, — x, the rate of consumption of
A is
dx
VA= kalay — x)" (2.16)

This must be integrated subject to the boundary condition that x = O when 1 = 0.
If n is other than unity, the solution is

ky = — [ L . ‘] ,
A. n—1 (do—_l‘)"_l aﬂl (2.17)

If n1s unity the solution is given by Eq. (2.6).
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2.4 HALF-LIFE

For a given reaction the half-life t,,, of a particular reactant is defined as the time
required for its concentration to reach a value that is half-way between its initial and
final values. The value of the half-life is always inversely proportional to the rate
constant and in general depends on reactant concentrations. For a first-order reaction
the rate equation is Eq. (2.6). and the half-life is obtained by putting x equal to a,/2;

do
In ( ) = Kaly)2
) = ks (219
and therefore
. In 2
"= (2.19
The half-life is independent of the init: 1
¢ imitial concentration, Sinc
Pl : e there is tant,
the ha;l-hlc ol that reactant may be called the half-|jfe of the reavcti(?:ly e
0 - ¢ 1 1 .
mitial r a‘tum'm.i order rcacuo‘n Involving a single feactant, or two reactants of equal
oncentrations and reacting according 1o the sloichi(;m t .
Ciry
X A+B—7z7
the rate equation g Eq. (2
(2013, Ing \ =
Q- (2.13) Setting x = a0/2 leads to
1
[I/j _ T
2 - 2.20
The half-life s n e - |

me, OCECding 102

Scanned by CamScanner



» 4 HALF-UIFE

27

So far, the emphasis has been on the half-life of a reactant. Sometimes it is
legitimate 10 speak of the hall=life of a reaction, but care must be taken. No difhculties
arise if there is a single reacting substance: the half-life of that substance can be called
the halt-life of the reaction. The same 18 true il the stoichiometry is of the type
A4 B+ -+ — products and the initial reactant concentrations are all the same.

If the stoichiometry is of the type A + B — products but the initial
concentrations are different, the hall-lives are diflerent for the diflerent reactants, and
one should not speak of the half=life ol the reaction. In this case, if one of the reactants
has more than twice the concentration ol another, half of it still will not have been
consumed after infinite time.

Other stoichiometries lead to further complications. For example. a reaction
may be of stoichiometry A + 2B — Z but be tirst order in both A and B. The rate
equations are included in Table 2.1, and if the reactants are present in their stoichio-
metric ratios (i.c., if by = 2a). the equations reduce Lo

!‘.
2 = ka\(”ll = .\’)(2“(] - 2\)
dt

= Mk aldy — N = knlag — x) (2.21)
Thus. the halt-life of A is given by
| ]
[ - L m——m— D ———— (2.2:)
A Ky K aby

and this is also the half-life of B. Note that this half-life is inversely proportional to
the reactant concentrations.

This argument can be generalized to show that the concept of the half-life of a
reaction is legitimate provided that the reactants are in their stoichiometric ratios. The
above example. however, shows that care must be taken in relating the half-life to the

TABLE 2.2 EXPRESSIONS FOR REACTION HALF-LIVES b

Order Half-life typ QOrder Half-life t, 2
Single reacting substance A Reactants in their stoichiometric ratios;
A+ - —Z
‘ ay dn
—_— 0 —_—
0 TS 2
In2 In2
—_— 1 (ra = AalAD
| k‘_ ( A AI ] . k,\
b] l ) (U = k [A]{B]) _l_ - _‘_
“ kago A A knao  Kabo
3 > 3 kAlA]BIC &
- S 3(va = Kk
2’\,\0{‘) A A‘ ][ J[ ]) Zk,\hn(ln
27—
" katn - g !
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re not in their stoichiometric ragg
ng; again, the reactant half |y,
for reaction ha]f-livc;

stants. If the reactants a
no meanl

concentrations and rate con
Some expressions

alf-life of the reaction has

the concept of h ‘
tions of all reactants.

depend on the concentra

arc given in Table 2.2.
_ Since the half-lives of first-order reactions are independent of concentratig,
This is often done, for example, WilE

they may be quoted in place of rate constants.
radioactive decay. When the rate constant is used for a radionuclide, 1t 1s known
the decay constant. Unlike the rate constants for chemical processes. such-decay CO"L

stants are independent of temperature.

_Even for reagtions of different orders, half-lives provide a convenient way f
cr;;kmg an approximate comparison of rates. For example, if two reactions ary 0[
Ovai:(r)eur;t olzgkahrs, their rate constants have different units. and it 1s not immedi i(l)

which reaction will have the higher rate under the expernm .
ental conditions
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