History of Genetic Engineering

Genetic Engineering

- Manipulating an organism's genome to
 - alter microbes, plants, and animals for our benefit
 - correct genetic defects in humans

Genetically modified plants

Use of recombinant plasmids in agriculture

- plants with genetically desirable traits
 - herbicide or pesticide
 - resistant corn & soybean
 - Decreases chemical insecticide use
 - Increases production
 - Cold and salinity tolerance
 - Instect resistance brinjal

The luciferase gene from a firefly is transformed into tobacco plant using the Ti plasmid. Watering the plant with a solution of luciferin (the substrate for firefly luciferase) results in the generation of light by all plant tissues.

• Insulin

- Hormone required to properly process sugars and fats
- Treat diabetes
- Now easily produced by bacteria

- Growth hormone deficiency
 - Faulty pituitary and regulation
 - Had to rely on cadaver source
 - Now easily produced by bacteria

Farm Animals and "Pharm" Animals

- Trangenic plants and animals have genes from other organisms.
- These transgenic sheep carry a gene for a human blood protein
 - This protein may help in the treatment of cystic fibrosis

Transgenic animals

History of genetic engineering

1917 Karl Ereky coined the term 'Biotechnology'

1940 A Jost coins the term "Genetic Engineering"

1970 First restriction endonuclease isolated

Werner Arber

Hamilton O Smith

Daniel Nathans

The Nobel Prize in Medicine 1978 was jointly awarded to Werner Arber, Daniel Nathans and Hamilton O Smith for the discovery of restriction enzymes and their application to problems of molecular genetics in 1970

Stanley N. Cohen, who received the Nobel Prize in Medicine in 1986 for his work on discoveries of growth factors.

Herbert Boyer , who constructed the first recombinant DNA using bacterial DNA and plasmids.

in 1973

1978 Genentech produced Human insulin in

E.coli

1980 US Supreme court declared genetically

modified micro-organisms can be

patented (Anand Chakrabarty)

1982 First commercial automated DNA

synthesized and sold (Kangas et. al.)

 Prof. Ananda Mohan Chakraborty et al. (1980) developed and patented a "superbug" that degraded petroleum (camphor, octane, xylene, and naphthalene) by plasmid transfers.

superbug

1988 Kary B Mullis publishes Amplification of DNA by Polymerase Chain Reaction (PCR)

Nobel Prize Winner in 1993 (chemistry)

1996 S. cerevisiae genome sequenced

2000 Arabidopsis genome sequenced

2000 Vitamin A rich golden rice developed

Transgenic Rice

- Genetically modify plants to produce beta-carotene
- Beta Carotene is converted to vitamin A in humans
- Vitamin A deficiency leads to poor vision and high susceptibility to disease
 - ~70% of children <5 years old in SE Asia suffer from vit. A deficiency

Profs Ingo Potrykus & Peter Beyer

Required to make vitamin A

Ingo Potrykus

alpha-carotene

beta-carotene

psy (phytoene synthase) from daffodil (*Narcissus pseudonarcissus*) *crtl* (carotene desaturase) from the soil bacterium *Erwinia uredovora*

2001 Human genome sequenced

2002 Complete human gene microarrays commercially

available

Medicine

The Nobel Prize in Physiology or Medicine 2006

"for their discovery of RNA interference - gene silencing by double-stranded RNA"

Andrew Z. Fire

1/2 of the prize

Craig C. Mello

1/2 of the prize

RNA Interference (RNAi)

Step 1 the trigger RNA (either dsRNA or miRNA primary transcript) is processed into an short, interfering RNA (siRNA) by the RNase II enzymes Dicer and Drosha.

Step 2 The siRNA is unwound during **RISC (RNA-induced silencing complex)** assembly and the single-stranded RNA hybridizes with mRNA target. Gene silencing is a result of nucleolytic degradation of the targeted mRNA by the RNase enzyme <u>Argonaute</u> (Slicer).

Applications of RNAi

Cotton seeds are rich in dietary protein

but naturally contain the toxic terpenoid product gossypol

RNAi has reduced levels of delta-cadinene synthase, a key enzyme in gossypol production,

Gossypol is itself important in preventing damage from plant pests

Nicotine free tobacco, decaffeinated coffee, nutrient fortified and hypoallergenic crops

Gossypol free cotton seeds