BLOOD-2 (RBC Continue--)

Dr. SUNITA PANCHWAT

Assistant Professor
Department of Pharmaceutical Sciences
MLSU, Udaipur

Functions

- The main function is the transportation of oxygen throughout the body and the ability of the blood to carry out carbon dioxide which is called carbamino – hemoglobin.
- Maintaining the balance of blood is important.
- The balance can be measured by the acid and base levels in the blood.
- This is called pH.
- Normal pH of blood ranges between 7.35-7.45; this normal blood is called Alkaline (less acidic then water).
- A drop in pH is called Acidic.
- This condition is also called Acidosis.
- · A jump in pH higher than 7.45 is called "Alkalosis".
- To maintain the homeostasis (or balance,) the blood has tiny molecules within the RBC that help prevent drops or increases from happening.

Destruction

- Red blood cells are broken down and hemoglobin is released.
- The globin part of the hemoglobin is broken down into amino acid components, which in turn are recycled by the body.
- The iron is recovered and returned to the bone marrow to be reused.
- The heme portion of the molecule experiences a chemical change and then gets excreted as bile pigment (bilirubin) by the liver.
- Heme portion after being broken down contributes to the color of feces and your skin color changing after being bruised.

White Blood Cells

♦ Shape

- White blood cells are different from red cells in the fact that they are usually larger in size 10-14 micrometers in diameter.
- White blood cells do not contain hemoglobin which in turn makes them translucent.
- Many times in diagrams or pictures white blood cells are represented in a blue color, mainly because blue is the color of the stain used to see the cells.
- White blood cells also have nucleii, that are somewhat segmented and are surrounded by electrons inside the membrane.

Formation of WBC's

- White blood cells (leukocytes) are also known as "WBC's".
- White blood cells are made in the bone marrow but they also divide in the blood and lymphatic systems.
- They are commonly amoeboid (cells that move or feed by means of temporary projections, called pseudopods (false feet), and escape the circulatory system through the capillary beds.
- They live for about 13-20 days.

- Classified according to the presence or absence of granules and the staining characteristics of their cytoplasm.
- Leucocytes appear brightly colored in stained preparations, they have a nuclei and are generally larger in size than RBC's.

♣ Granular leukocytes

- Neutrophils, eosinophils, basophils

◆Agranular leukocytes

Lymphocytes and monocytes

♠ Frequency of WBCs in Human Blood

WBC	%	number/mm3
 neutrophil 	54-69	2700-6900
 lymphocyte 	25-33	1250-3300
 monocyte 	3-7	150-700
 eosinophil 	1-3	50-300
 basophil 	0-0.75	0-75

♣ Granuloctyes

Neutrophils

- Stain light purple with neutral dyes.
- Granules are small and numerous—course appearance
- Several lobes in nucleus.
- 65% of WBC count.
- Highly mobile/very active
- Diapedesis—Can leave blood vessels and enter tissue space.
- Phagocytosis (eater), contain several lysosomes (janitor)

Eosinophils or Acidophils:

- · Large, numerous granules
- Nuclei with two lobes
- 2-5% of WBC count
- Found in lining of respiratory and digestive tracts
- Important functions involve protections against infections caused by parasitic worms and involvement in allergic reactions
- Secrete anti-inflammatory substances in allergic reactions
- Eosinophils leave capillaries and enter tissue fluid
- Release histaminase, phagocytize antigenantibody complexes and effective against certain parasitic worms

(c) Neutrophil

(a) Eosinophil

Basophils

- Least numerous-0.5-1%
- Diapedesis—Can leave blood vessels and enter tissue space
- Contain histamine, serotonin, heparin inflammatory chemical
- Basophils leave capillaries and release granules containing heparin, histamine and serotonin, at sites of inflammation
- · Intensify inflammatory reaction
- Involved in hypersensitivity reactions (allergies)

(b) Basophil

♣ Agranulocytes

Lymphocytes

- Smallest WBC
- Large nuclei/small amount of cytoplasm
- Account for 25% of WBC count
- Two types:
- T lymphocytes-attack an infect or cancerous cell,
- B lymphocytes—produce antibodies against specific antigens (foreign body)
- Lymphocytes are the major soldiers of the immune system
 - T cells attack viruses, fungi, transplanted cells, cancer cells and some bacteria, it develop in the thymus.

(d) Lymphocyte

- Natural Killer (NK) cells attack a wide variety of infectious microbes and certain tumor cells.
- Lymphocytes originate in the bone marrow, but can proliferate in the spleen, thymus and other lymphoid tissues.
- Often, large lymphocytes seen in the blood have been activated somewhere in the body, and are traveling to sites of action.

◆ Monocytes

- Largest of WBCs
- Dark kidney bean shaped nuclei
- Highly phagocytic
- Monocytes take longer to arrive but arrive in larger numbers and destroy more microbes
- Enlarge and differentiate into macrophages

■ Leukemia

- Leukemia is a cancer of the blood or bone marrow characterized by an abnormal proliferation of blood cells, usually white blood cells (leukocytes).
- It is part of the broad group of diseases called hematological neoplasms.
- Damage to the bone marrow, by way of displacing the normal marrow cells with increasing numbers of malignant cells, results in a lack of blood platelets, which are important in the blood clotting process.
- This means people with leukemia may become bruised, bleed excessively, or develop pin-prick bleeds (petechiae).
- White blood cells, which are involved in fighting pathogens, may be suppressed or dysfunctional, putting the patient at the risk of developing infections.
- The red blood cell deficiency leads to anaemia, which may cause dyspnea.
- All symptoms may also be attributable to other diseases; for diagnosis, blood tests and a bone marrow biopsy are required.

Platelets

- Platelets (thrombocytes) are minute discs 1-4 mm.
- Produced in the bone marrow by fragmentation of the cytoplasm of megakaryocytes.

- Normal count: 150,000-400,000/μL (250,000)
- Life span 7-10 days.
- Removed from circulation by tissue macrophage system mainly in spleen.
- Thrombopoietin: major regulator of platelet production (produced by liver and kidney).
- It increases no. & rate of maturation of megakaryocytes.
- Platelets do not have nuclei and cannot reproduce.

♦ Hemostasis (coagulation or clotting)

 Hemostasis is the natural process of stopping blood flow or loss of blood following an injury.

(hemo = blood; stasis = standing).

♠ Hemostasis is achieved by several mechanisms:

- 1. Vascular constriction,
- 2. Formation of a platelet plug,
- 3. Formation of a blood clot as a result of blood coagulation, and
- Growth of fibrous tissue into the blood clot to close the hole in the vessel permanently.

■ Mechanism Of Blood Coagulation

♣ Basic Theory:

- More than 50 important substances that cause or affect blood coagulation have been found in the blood and in the tissues
 - Some that promote coagulation, called <u>procoagulants</u>,
 - and others that inhibit coagulation, called <u>anticoagulants</u>.

- Whether blood will coagulate depends on the balance between these two groups of substances.
- In the blood stream, the anticoagulants normally predominate, so that the blood does not coagulate while it is circulating in the blood vessels.
- But when a vessel is ruptured, procoagulants from the area of tissue damage become "activated" and override the anticoagulants, and then a clot does develop.

■ Basic Mechanism Of Clotting

Clotting Factors in Blood and Their Synonyms

Clotting Factor	Synonyms	
Fibrinogen	Factor I	
Prothrombin	Factor II	
Tissue factor	Factor III; tissue thromboplastin	
Calcium	Factor IV	
Factor V	Proaccelerin; labile factor; Ac-globulin (Ac-G)	
Factor VII	Serum prothrombin conversion accelerator (SPCA); proconvertin; stable factor	
Factor VIII	Antihemophilic factor (AHF); antihemophilic globulin (AHG); antihemophilic factor A	
Factor IX	Plasma thromboplastin component (PTC); Christmas factor; antihemophilic factor B	
Factor X	Stuart factor; Stuart-Prower factor	
Factor XI	Plasma thromboplastin antecedent (PTA); antihemophilic factor C	
Factor XII	Hageman factor	
Factor XIII	Fibrin-stabilizing factor	
Prekallikrein	Fletcher factor	
High-molecular-weight	Fitzgerald factor; HMWK	
kininogen Platelets	(high-molecular-weight) kininogen	

THANK WOU