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Six types of interactions possible

e Six types of interactions are sufficient to account for most
Instances of interspecific competition:
e (1) consumption
e (2) preemption
e (3) overgrowth
e (4) chemical interaction
e (5) territorial
e (6) encounter




Environment limit Population Growth
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Figure 11.1 Rates of birth () and death (d), represented

as a linear function of population size N. The values by and dj
represent the ideal birth and death rates (respectively) under
conditions where the population size is near zero and resources
are not limiting. The values a and ¢ represent the slopes of the
lines describing changes in birth and death rates as a function of N
(respectively). The population density where & = d and population
growth is zero is defined as K, the carrying capacity. For values

of N above K, b is less than d and the population growth rate is
negative. For values of N below K, b is greater than d, and the
population growth rate is positive.




 Exponential model
dN

e Unlimited resources — = (b —d)N
e Constant environment

e Logistic model: No population continues to grow
indefinitely
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The constant K is the carrying capacity—the maximum
sustainable population size for the prevailing environment (see
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This is the equation for the logistic model of population
growth.
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Figure 11.3 Predictions of the exponential and logistic

population growth models for the gray squirrel population from
Tables 9.1 and 9.6: r = 0.18, K = 200, and N(0) = 30.




Four Possible Outcomes of
Interspecific Competition
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o IS the competition coefficient that quantifies the per
capita effect of species 2 on species 1




Measures interspecific competition relative to intraspecific
competition (i.e. how many individuals of species 2 are equivalent
to one individual of species 1 in terms of their use of the resource)

For example, in terms of common resource use:
- one chipmunk is the equivalent of 1/4 of a squirrel
- use the coefficient o = 0.25
- multiply that by the number of chipmunks to get the overall

chipmunk effect (squirrel equivalents) on the squirrels
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Zero growth isoclines:
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Lotka-Volterra Model of Competition
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The Lotka—Volterra model of competition between two species. (a, b) The zero isocline for
each species is defi ned as the combinations of (N 1 ,N 2 ) for which d N /d t O (zero population
growth). In the shaded area (combined values of (N 1 ,N 2)) below the line, population growth is

positive and the population increases (as indicated by the arrows); for combined values of (N 1,
N 2 ) above the ling, the population decreases.
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The Lotka—Volterra equations describe four possible outcomes
of interspecific competition.

e Species 1 may succeed over species 2,

e species 2 may succeed over species 1.

(Both of these outcomes represent competitive exclusion.)
(The other two outcomes involve coexistence.)

e One is unstable equilibrium, in which the species that was
most abundant at the outset usually succeeds.

e A final possible outcome Is stable equilibrium, in which two
species coexist but at a lower population level than if each
existed without the other.
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Laboratory Experiments Support the

Lotka—Volterra Equations
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Figure 14.2 Competition experiments with
two ciliated protozoans, Paramecium aurelia
and P caudatum, grown separately and in a
mixed culture. In a mixed culture, P aurelia
outcompetes F. candatum, and the result is
competitive exclusion.

{Adapted from Gause 1934.)




Competitive Exclusion Principle

e “Complete competitors” cannot coexist

e Assumptions

e First, this principle assumes that the competitors have exactly
the same resource requirements.

e Second, It assumes that environmental conditions remain
constant
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Spatial Variations
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Figure 14.4 Patterns of seed germination of five annual plant
species along a gradient of temperature. These species dominate the
early stages of secondary succession in field communities of the
midwestern United States.

(Adapted from Bazzaz 1996.)
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Competitive abilities changes along
environmental gradient
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Figure 14.10 Zonation of the
dominant perennial plant species in a
MNew England salt-marsh community.
Upper borders of species distribution are
a function of competition, whereas lower
borders are a function of the species’
ability to tolerate the physical stress
associated with salinity, waterlogging,
and low oxygen concentrations in the
sediments.

{ Adapted from Emery et al. 2001.)
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Figure 14.9 Patterns of response ratio (mixture
biomass/monoculture biomass) for two grass species (Themeda
triandra and Aristida junciformis) grown along a gradient of soil
phosphorus. Plants were grown both in monoculture and mixtures
(both species present) along the gradient, and the response ratio
reflects the relative competitive abilities of the two species at the

varying levels of soil phosphorus.
(Fynn et al. 2005).




Temporal Variation: Rainfall variation influence Competitive
Interactions
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Figure 14.5 (a) Shift in the dominant grass species in a
savanna community in southwest Zimbabwe during the period
1971-81. The shift is in response to changing patterns of
precipitation during the same period (b). Urochloa mosambicensis
was able to compete successfully under the drier conditions during
the 1971-72 and 1972-73 rainy seasons. With the increase in
rainfall beginning in the 1973-74 season, Heteropogon contortus
came to dominate the site.

(Adapted from Dye and Spear 1982.)
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Competition Occurs for Multiple Resources

Shoots of the two species

are separated by a divider;

root systems are allowed Individuals of the two species
to access the same share both above- and below-
soll volume in the pot. ground resources.

Individuals of the two species are
grown in separate pots, eliminating
interspecific root competition, while
the shoots share access to the same
aboveground space and resources.

Shoot Root and shoot

competition competition competition

35% 53% 69% reduction
in Skeleton weed

Figure 14.6 Experimental design used to examine aboveground and belowground competition
between subterranean clover and skeleton weed.

(Adapted from Groves and Williams 1975.)
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Figure 14.12 Response of Stipa neomexicana plants in three different habitats (ridge crest,
midslope, and lower slope). Results of both treatment (neighboring plants removed) and control
(neighbors not removed) plants are shown for (a) seedling survival, (b) mean growth rate, and
(c) flowers produced per plant. Under natural conditions, distribution of Stipa is restricted to the
ridge-crest habitats due to competition from other grass species.

(Adapted from Gurevitch 1986.)
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Niche differentiation for co-existence
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Figure 14.14 Vertical pantitioning of the prairie soil resource L ' L L
at different levels by three species of annual planis, one year after 4 3 6 7 8 9
disturbance. Diameter of canine testh (mm)

Figure 14.15 Size (diameter) of canine teeth for small cat species that co-occur in Israel.
Note the regular pattern of differences in size between species. Size is correlated with the size of
prey selected by the different species.

{ Adapted from Dayan et al. 1990.)




e Competition is a complex interaction that seldom involves
the iInteraction between two species for a single limiting
resource. Competition involves a variety of environmental
factors that directly influence survival, growth, and
reproduction—factors that vary in both time and space

e Competition is only one of many interactions occurring
between species—interactions that ultimately influence
population dynamics and community structure
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