Nuclear Magnetic Resonance (NMR) Spectroscopy

Definition of NMR Spectroscopy

Nuclear magnetic resonance spectroscopy: commonly referred to as NMR, is a technique which exploits the magnetic properties of certain nuclei to study physical, chemical, and biological properties of matter

Compared to mass spectrometry, larger amounts of sample are needed, but non-destructive

NMR History

- 1937 Rabi's prediction and observation of nuclear magnetic resonance
- 1945 First NMR of solution (Bloch et al for H2O) and solids (Purcell et al for parafin)!
- 1953 **Overhauser** NOE (nuclear Overhauser effect)
- 1966 Ernst, Anderson Fourier transform NMR
- 1975 Jeener, Ernst 2D NMR
- 1980 NMR protein structure by Wuthrich
- 1990 3D and 1H/15N/13C Triple resonance
- 1997 Ultra high field (~800 MHz) & TROSY(MW 100K)

Continuation of NMR History

Nobel prizes

1944 Physics Rabi (Columbia)

"for his resonance method for recording the magnetic properties of atomic nuclei"

1991 Chemistry Ernst (ETH)

"for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy"

1952 *Physics* Bloch (Stanford), Purcell (Harvard)

"for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"

Continuation of NMR History

2002 Chemistry Wüthrich (ETH)

"for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution"

2003 *Medicine* Lauterbur (University of Illinois in Urbana), Mansfield (University of Nottingham)

"for their discoveries concerning magnetic resonance imaging"

Spin of Nuclei

Fermions : Odd mass nuclei with an odd number of nucleons have fractional spins.

I = 1/2 (¹H, ¹³C, ¹⁹F, ³¹P), I = 3/2 (¹¹B, ³³S) & I = 5/2 (¹⁷O).

Bosons : Even mass nuclei with odd numbers of protons and neutrons have integral spins.

 $I = 1 (^{2}H, ^{14}N)$

Even mass nuclei composed of even numbers of protons and neutrons have zero spin

I = 0 (¹²C, and ¹⁶O, ³²S)

Nuclear Magnetic Resonance (nmr)

- -the nuclei of some atoms spin: ¹H, ¹³C, ¹⁹F, ...
- -the nuclei of many atoms do not spin: ²H, ¹²C, ¹⁶O, ...
- -moving charged particles generate a magnetic field (\neg)
- -when placed between the poles of a powerful magnet, spinning nuclei will align with or against the applied field creating an energy difference. Using a fixed radio frequency, the magnetic field is changed until the $\Delta E = E_{EM}$. When the energies match, the nuclei can change spin states (resonate) and give off a magnetic signal.

How NMR Works

Nuclear spins random

Nuclear spins will aligned or oppose the field

Oppose with B_O (a- spin state)

Aligned the B_O (β -spin state)

magnetic field = 14,092 gauss for ¹H v = 60,000,000 Hz (60 MHz)

nmr spectrum

magnetic field \rightarrow

¹H nuclei are **shielded** by the magnetic field produced by the surrounding electrons. The higher the electron density around the nucleus, the higher the magnetic field required to cause resonance.

CH₃Cl lower electron density resonate at lower applied field versus

CH₄ higher electron density resonate at higher applied field

CHCCl₃ ??

Information from ¹H-nmr spectra:

- 1. Number of signals: How many different types of hydrogens in the molecule.
- 2. Position of signals (chemical shift): What types of hydrogens.
- 3. Relative areas under signals (integration): How many hydrogens of each type.
- 4. Splitting pattern: How many neighboring hydrogens.

1. Number of signals: How many different types of hydrogens in the molecule.

Magnetically equivalent hydrogens resonate at the same applied field.

Magnetically equivalent hydrogens are also chemically equivalent.

of signals? CH_4 CH_3CH_3

number of signals?

one

one

CH₃ CH₃

one

one

two

CH₃CH₂CH₂-Br

CH₃CHCH₃ CI

three

two

CH₃CHCH₂CH₃ Br

CI-CH₂CH₂CH₂-CI

four

two

three

2. Position of signals (chemical shift): what types of hydrogens.

primary	0.9 ppn	ו		
secondary	1.3			
tertiary	1.5			
aromatic	6-8.5			Note: combinations may
allyl 1.7				greatly influence chemical shifts. For example, the
benzyl	2.2-3			benzyl hydrogens in benzyl chloride are shifted
chlorides	3-4	H-C-CI		to lower field by the chlorine and resonate at
bromides	2.5-4	H-C-Br		4.5 ppm.
iodides	2-4	H-C-I		
alcohols	3.4-4	H-C-O		
alcohols	1-5.5	H-O-	(variable)	

reference compound = tetramethylsilane $(CH_3)_4Si \otimes 0.0$ ppm

remember:

magnetic field →← chemical shift

convention: let most upfield signal = a, next most upfield = b, etc. ... c b a tms

chemical shifts

а

a b CH₃CH₂-Br

a b c $CH_3CH_2CH_2$ -Br

a b a CH₃CHCH₃ CI

b a b $CI-CH_2CH_2CH_2-CI$

Chemically Non Equivalent Protons

Diastereotropic protons

- Replacement by some arbitrary test group generates Diastereoisomers
- ✓ Diastereotropic protons can have different chemical shifts

Enantiotropic protons

✓ Are in mirror-image environments

- Replacement by some arbitrary test group generates enantiomers
- Enantiotropic protons have the same chemical shift

3. Integration (relative areas under each signal): how many hydrogens of each type.

a b c

$$CH_{3}CH_{2}CH_{2}Br$$
 a 3H a:b:c=3:
b 2H
c 2H
a b a
 $CH_{3}CHCH_{3}$ a 6H a:b=6:1
CI b 1H

integration

A 12 H

a 12 H

a 6 H

a 6H b 4H

b а CH₃CH₂-Br a 3H b 2 H a b a CH₃CHCH₃

> a 6H b 1H

Integration: measure the height of each "step" in the integration and then calculate the lowest whole number ratio: a:b:c = 24 mm : 16 mm : 32 mm = $1.5 : 1.0 : 2.0 \rightarrow 3H : 2H : 4H$

If the formula is known (C_8H_9OF), add up all of the "steps" and divide by the number of hydrogens = (24 + 16 + 32 mm) / 9H = 8.0 mm / Hydrogen. a = 24 mm / 8.0 mm/H \rightarrow 3 H; b = 16 mm/8.0 mm/ H \rightarrow 2H; c = 32 mm/8.0 mm/H \rightarrow 4H.

4. Splitting pattern: how many neighboring hydrogens.

In general, n-equivalent neighboring hydrogens will split a ¹H signal into an (n + 1) Pascal pattern.

"neighboring" – no more than three bonds away

n	n + 1	Pascal pattern:			
0	1	1	singlet		
1	2	1 1	doublet		
2	3	1 2 1	triplet		
3	4	1 3 3 1	quartet		
4	5	1 4 6 4	1 quintet		

note: n must be equivalent neighboring hydrogens to give rise to a Pascal splitting pattern. If the neighbors are not equivalent, then you will see a complex pattern (aka complex multiplet).

note: the alcohol hydrogen –OH usually does not split neighboring hydrogen signals nor is it split. Normally a singlet of integration 1 between 1 - 5.5 ppm (variable).

splitting pattern?

a 6 H singlet

$\begin{array}{c} & & & & & \\ & & CH_3 \\ H_3C-C-CH_3 \\ a & Br & a \\ & Br & a \\ & a & 9 H \text{ singlet} \\ & a & b & c \\ & CH_3CH_2CH_2-Br \end{array}$

a 3 H tripletb 2 H complexc 2 H triplet

- a b CH₃CH₂-Br
 - a 3 H triplet b 2 H quartet

a b a CH₃CHCH₃ CI a 6 H doublet b 1 H septet

a 3 H singlet

2 H singlet

4 H ~singlet

CH₂CI

b

b

С

С

a b c CH₃CH₂-OH

> a 3 H triplet b 2 H quartet c 1 H singlet
Information from ¹H-nmr spectra:

- 1. Number of signals: How many different types of hydrogens in the molecule.
- 2. Position of signals (chemical shift): What types of hydrogens.
- 3. Relative areas under signals (integration): How many hydrogens of each type.
- 4. Splitting pattern: How many neighboring hydrogens.

 $C_{11}H_{16}$

 $C_4H_8Br_2$

 C_7H_8O

 C_4H_9Br

- a doublet 1.04 ppm 6H
- b complex 1.95 ppm 1H
- c doublet 3.33 ppm 2H

a = two equivalent CH_3 's with one neighboring H (b?)

 $c = CH_2$ with one neighbor H (also b)

a 6H doublet b 1H complex c 2H doublet $C_{10}H_{13}CI$

- a singlet 1.57 ppm 6H
- b singlet 3.07 ppm 2H
- c singlet 7.27 ppm 5H

- a = two-equilalent CH_3 's with no neighbors
- c = monosubstituted benzene ring

 $b = CH_2$

- a singlet 6H b singlet 2H c singlet 5H

¹³C – nmr ¹³C ~ 1.1% of carbons

- 1) number of signals: how many different types of carbons
- 2) splitting: number of hydrogens on the carbon
- 3) chemical shift: hybridization of carbon sp, sp², sp³
- 4) chemical shift: evironment

¹³C-nmr

CHEMICAL SHIFT

- The number and position of signals in NMR spectrum signifies the number and nature of protons in the molecule.
- Each of these protons will have different electronic environments and thus they absorb at different applied field strengths.
- When a molecule is placed in a magnetic field, its electrons are caused to circulate and thus they produce secondary magnetic field i.e., induced magnetic field.
- The induced magnetic field can either oppose or reinforce the applied field.

- If the induced magnetic field opposes the applied field, then the nuclei in a molecule exert an external force, which shields the nucleus from the influence of the applied field and the proton is said to be *shielded*.
- If the induced field reinforces the applied field the proton feels a higher field strength and thus such a proton is said to be *deshielded*.

Shielding effect

Deshielding effect

- To overcome the shielding effect and to bring the protons to resonance, greater external field is required i.e., shielding shifts the absorption upfield and deshielding shifts the absorption downfield.
- Such shifts (compared with a standard reference) in the position of NMR absorption which arises due to the shielding or deshielding of protons in a molecule by the electrons are called *chemical shift*.

Measurement of Chemical Shift

- For the measurement or study of chemical shift *Tetramethyl silane(TMS)* is taken as a reference.
- Due to the low electronegativity of silicon the shielding in TMS is greater than most of the organic compounds and the chemical shift for different kinds of protons are measured relative to it.
- δ and τ scales are commonly used to measure chemical shift.

Δ δ scale

- The value of $\boldsymbol{\delta}$ is expressed in ppm.
- It can be obtained by using the following equations,

$$\delta = \left(\frac{\mathbf{H}_{\mathbf{S}} - \mathbf{H}_{\mathbf{R}}}{\mathbf{H}_{\mathbf{R}}}\right) \times 10^{6}$$

$$\delta_{sample} = \left(\frac{v_{sample} - v_{reference}}{v_{reference}}\right) \times 10^{6}$$

where,

 u_s and H_s = the resonance frequency of the sample u_R and H_R = resonance frequency of the reference.

🛛 т scale

• The value of **T** is expressed as 10 ppm.

i.e., **τ = 10- δ**

- Shielding and deshielding effects δ value, i.e., greater the deshielding, larger will be the value of δ and viceversa.
- The shielding parameter α can be determined by using the equation,

$$H = H_0 (1 - \alpha)$$

Where,

H = field felt by the proton,

 H_0 = applied field strength.

Most of the chemical shift have δ value between 0 and 10.

Factors Influencing Chemical Shift

A.Intra-molecular factors

- 1. Inductive effect.
- 2. Vander Waal's deshielding.
- 3. Anisotropic effects

B.Intermolecular factors

- 1. Hydrogen bonding.
- 2. Temperature.
- 3. Solvents.

Intra-molecular Factors

1. Inductive effect

- The presence of electronegative atoms or groups in a molecule makes the proton deshielded.
- Higher the electronegativity, greater will be the deshielding and thus the $\pmb{\delta}$ value will also be more.
 - i.e., F > CI > Br > I

• E.g.
$$CH_3$$
-F CH_3 -Cl CH_3 -Br CH_3 -I
 $\delta = 4.26$ $\delta = 3.0$ $\delta = 2.82$ $\delta = 2.16$

2. Vander Waal's deshielding

 The presence of bulky groups in a molecule can cause deshielding due to the week Vander Waal's force and give slightly higher value of δ than expected.

3. Anisotropic effect (space effect)

- Anisotropic effect arises due to the orientation of nuclei with respect to the applied magnetic field.
- Chemical bonds can set up magnetic field, the effect of this field on the chemical shift is depend upon the spacial arrangements.
- π bonds effects the chemical shift and cause downfield shift with higher δ value.
- E.g. $CH_{3}H$ $\delta_{H} = 0.23$ $\delta_{C} = 2.3$ $CH_{2} = CH_{2}$ — $\delta_{H} = 5.25$ $\delta_{C} = 123.3$

Intermolecular factors

1. Hydrogen bonding

- Intra-molecular hydrogen bonding does not show any change in absorption due to change in concentration.
- While hydrogen atom involved in the intermolecular Hbonding shares its electrons with two electronegative elements and as a result it itself deshielded and get higher δ value.
- E.g. Carboxylic acid dimer and β-diketones.

 $\boldsymbol{\delta}$ = 15.4 No change
2. Temperature

- The resonance position of most signals is little affected by temperature.
- OH, —NH—, and —SH protons show upfield shift at higher temperature

3. Solvents

- The solvents used in NMR spectroscopy should be chemically inert, magnetically isotropic, devoid of hydrogen atom and should dissolve the sample to a reasonable extent.
- E.g. CCl₄, CS₂, CDCl₃ etc.

Chemical Shift Reagent

- These are the agents used to cause shift in the NMR spectra.
- The amount of shift depends on,
 - Distance between the shift reagent and proton,
 - Concentration of shift reagent.
- The advantages of using shift reagents are,
 - Gives spectra which are much easier to interpret,
 - No chemical manipulation of sample is required,
 - More easily obtained.
- Paramagnetic materials can cause chemical shift, e.g., Lanthanides.
- Complexes of Europium, Erbium, Thallium and Ytterbium shift resonance to lower field.
- Complexes of Cerium, Neodymium and Terbium shift resonance to higher field.

- Europium is probably the most commonly used metal to cause shift in the NMR spectra.
- Two of its widely used complexes are,

REFERENCE STANDARD

1. Tetramethyl Silane (TMS) CH₃ H₃C-Si-CH₃ CH₃

tetramethylsilane (TMS)

- TMS is the most convenient reference generally employed in NMR for measuring the position of H¹, C¹³ and Si²⁹.
- The chemical shift of TMS is considered as zero and all the other chemical shifts are determined relative to it.

• It has the following characteristics,

- It is chemically inert and miscible with large range of organic solvents.
- It is highly volatile and can be easily removed to get back the sample.
- It does not take part in intermolecular association with the sample.
- Its resonance position is far away from absorption due to protons in the molecule.
- Its 12 protons are all magnetically equivalent.

2. 3-(trimethyl silyl) propane sulphonate (sodium salts)

- It is used as internal standard for scanning NMR spectra of water soluble substances in deuterium oxide solvent.
- It has more water solubility than TMS and is commonly used for protein experiments in water.
- The low electro negativity of the silicon shields the nine identical methyl protons and show almost lower chemical shift than naturally occurring organic molecule.

SPLITTING OF THE SIGNALS

- Each signals in NMR spectrum represents one kind or one set of protons in the molecule.
- In certain molecules, instead of a single peak a group of peaks are observed.
- This phenomena of splitting of proton signals into two or more sub-peaks are referred as splitting.
- The splitting pattern of a given nucleus can be predicted by the *n+1* rule, where *n* is the number of protons on the neighboring carbon.
- The simplest multiplicities are singlet (n = 0), doublets (n = 1 or coupling to just one proton), triplets (n = 2), quartets (n = 3), quintets (n = 4), sextets (n = 5) and septets (n = 6).

 The theoretical intensity of the individual lines can be derived from Pascal's triangle.

Pascal's Triangle

SPIN-SPIN COUPLING

- The source of signal splitting in NMR spectra is a phenomenon called **spin-spin coupling**.
- The interactions between the spins of neighboring magnetic nuclei in a molecule is known as spin-spin coupling.
- The coupling occurs through bonds by means of slight impairing of bonding electrons.
- The complexity of the multiplet depends upon the nature and number of the nearby atoms.
- Chemically equivalent protons do not show spin-spin coupling due to interaction among themselves. i.e., only the nonequivalent protons show the property of coupling.

- E.g., 1,1,2-trichloroethane
- Here the H_a and H_b protons are spincoupled to each other and therefore it has been observed that for each kind of protons we do not get singlet, but a groups of peaks are observed.

- Coupling may either oppose or reinforce the field felt by the other molecule.
- E.g., Ethyl bromide (CH₃-CH₂Br)

Reinforcing

- In this molecule the spin of two protons $(-CH_2-)$ can couple with the adjacent methyl group $(-CH_3)$ in three different ways,

Not effecting

Opposing

COUPLING CONSTANT

- The spacing of adjacent lines in the multiplet is a direct measure of the spin-spin coupling and is known as *coupling constant (J)*.
- It is the distance between two adjacent sub-peaks in a split signal.
- J value is expressed in Hertz(Hz) or in cycles per second(cps).

- For nonequivalent hydrogens on the same sp2 carbon, the **J** value is usually very small and are unable to observe.
- But, for nonequivalent hydrogens bonded to adjacent sp2 carbons, the **J** is usually large enough to be observed.
- The leading superscript ([×]J) indicates the number of bonds between the coupled nuclei.

- J value is independent of the external field and it decreases with distance.
- Coupling constants, **J** vary widely in size, but the vicinal couplings in acyclic molecules are usually 7 Hz.
- J provides important information in coupling across double bonds, where trans couplings are always substantially larger than cis couplings.

SPIN DECOUPLING

- Coupling causes splitting of signals in NMR spectra.
- Decoupling is a special technique used in NMR spectroscopy to avoid the splitting of the signals by eliminating partially or fully the observed coupling.
- Which involves the irradiation of a proton with sufficiently intense radiofrequency energy, so that it prevents the coupling with the neighboring proton and gives spectral line as a singlet.
- Decoupling can help determine structures of chemical compounds.

- There are two types of decoupling:
 - Homonuclear decoupling the nuclei being irradiated are the same isotope as the nuclei being observed in the spectrum.
 - Heteronuclear decoupling the nuclei being irradiated are of a different isotope than the nuclei being observed in the spectrum.
- E.g., 3-amino-acroleine

 Selective irradiation of M reduces the AMX spin system to AX : two dublets, A-X coupling constant can be determined

Effects of Coupling and Decoupling in NMR spectra

- The identification of coupled protons in spectra are too complex because they show so many signals.
- Decoupling is used to simplify a complex NMR spectrum.
- It is possible to irradiate (decouple) each coupled protons in the molecule to produce the spectrum with less complexity.
- Decoupling causes the multiplet to collapse to a doublet or singlet and give spectra which are easy to interpret.
- In this way the full coupling relationship can be established and much information can be collected about the connection between alkanes, alkenes and alkynes.

• E.g., Furfural

- It is a complex compound because $H_{a,}$ H_{b} and H_{c} appear as four lines in the spectrum due to coupling effects.

• The effects of strong decoupling eliminates the coupling of H_a with H_b and H_c as a result each multiplet collapse into doublet.

ISOTOPIC NUCLEI

- An isotope can be defined as the atoms with the same number of protons but have a different number of neutrons or the elements with the same atomic number but different mass number.
- Any nucleus with an odd atomic number or odd mass number will have a nuclear magnetic resonance.
- In addition to hydrogen, there are several other nuclei which have magnetic movements and can be studied by NMR spectroscopy.
- E.g., ¹H, ¹³C, ¹⁹F, ¹⁵N, ¹¹B, ³¹P, etc.

• CARBON-13

- ¹³C was difficult to study because it gives rise to extremely weak signals in NMR spectra.
- It can be studied by using Fourier Transform method.
- Principle behind ¹³C NMR are exactly similar to those of Proton NMR, but the scale of observed chemical shift and coupling is greater for ¹³C NMR.
- ¹³C shift range varies from 0-250 ppm.

• FLUORINE-19

- Fluorine with an atomic number of 9 has a magnetic momentum of 2.6285,can be studied by NMR spectroscopy by the same technique as PMR.
- This technique is commonly used for study of fluorinated aliphatic and aromatic compounds.
- The range of chemical shift for aromatic fluorine atoms are five times greater than the total range of proton shift in PMR.
- The fluorine absorption is sensitive to the environment

- It shows magnetic property similar to hydrogen and fluorine isotopes.
- It exhibits sharp NMR peaks with chemical shifts extending over range of 700ppm.
- A quantitative analysis of these isotopes are studied out by Colson and Marr, they found out that ³¹P resonance shift are very large.

• BORON -11

- The ¹¹B spectra has been extensively used to analyse the complex boron hydrides
- The chemical shift ranges very large
- It has 2 naturally occuring isotopes (¹¹B and ¹⁰B).
- ¹¹B is used mainly in studies of NMR.

• NITROGEN -15

- ¹⁵N yields sharp lines in NMR spectra but is very insensitive.
- ¹⁵N experiments gives narrow lines and has a larger chemical shift range.
- IUPAC recommends CHNO as the chemical shift standard for nitrogen isotope nucleides.

Angular Momentum

A spinning charge generates a magnetic field, the resulting spin-magnet has a magnetic moment (μ) proportional to the spin I

magnetic moment $\mu = \gamma p$ where γ is the gyromagnetic ratio, and it is a constant for a given nucleus

$$\mu = \gamma p = \gamma \sqrt{I(I+1)}h/2\pi$$
 When I=0, μ =0

** There is no spin for nuclei with I=0

"Right Hand Rule"

determines the direction of the magnetic field around a current-carrying wire and viceversa

Energy Differentiation

In the presence of an external magnetic field (B_0) , two spin states exist, +1/2 and -1/2 (For I=1/2).

The magnetic moment of the lower energy +1/2 state is aligned with the external field, and that of the higher energy -1/2 spin state is opposed to the external field.

Energy Differentiation

Difference in energy between the two states is given by:

 $\Delta E = \gamma h B_o / 2\pi$

where:

 B_o – external magnetic field h – Planck's constant γ – gyromagnetic ratio

When the energy of the photon matches the energy difference between the two spin states , an absorption of energy occurs. We call that phenomenon *Resonance*

 $\Delta E = h\upsilon = \gamma hB_o / 2\pi$ So, $\upsilon = \gamma B_o / 2\pi$

Larmor Precession

Spinning particle precesses about the external field axis with an angular frequency known as the Larmor frequency

 $ω_L = γ B_o$

When radio frequency energy matching the Larmor frequency is introduced at a right angle to the external field, it would cause a transition between the two energy levels of the spin. In other world, the precessing nucleus will absorb energy and the magnetic moment will flip to its I =-1/2 state

Date_070607 © Brooks/Cole, Cengage Learning

γ- Values for some nuclei

Isotope	Net Spin	γ / MHz T-1	Abundance / %
¹ H	1/2	42.58	99.98
² H	1	6.54	0.015
³ H	1/2	45.41	0.0
³¹ P	1/2	17.25	100.0
²³ Na	3/2	11.27	100.0
^{14}N	1	3.08	99.63
¹⁵ N	1/2	4.31	0.37
¹³ C	1/2	10.71	1.108
¹⁹ F	1/2	40.08	100.0

Schematic NMR Spectrometer

Fourier transformation and the NMR spectrum

The NMR spectrum

Chemical Shift- δ

When an atom is placed in a magnetic field, its electrons circulate about the direction of the applied magnetic field. This circulation causes a small magnetic field at the nucleus which opposes the externally applied field

The magnetic field at the nucleus (the effective field) is therefore generally less than the applied field by a fraction :

B = B0 (1-σ), So $v = \gamma B_0 (1-σ) / 2π$

Chemical Shift-δ

The electron density around each nucleus in a molecule varies according to the types of nuclei and bonds in the molecule. The opposing field and therefore the effective field at each nucleus will vary. This is called the chemical shift phenomenon.

As we can tell from $v = \gamma B_0 (1-\sigma) / 2\pi$, the greater the value of B_0 , the greater the frequency difference.

This relationship could make it difficult to compare NMR spectra taken on spectrometers operating at different field strengths.

The term chemical shift was developed to avoid this problem. The chemical shift of a nucleus is the difference between the resonance frequency of the nucleus and a standard, relative to the standard. This quantity is reported in ppm and given the symbol delta.

$$\delta = (\mathbf{v} - \mathbf{v}_{ref}) \times 10^6 / \mathbf{v}_{ref}$$

Standard for Chemical Shift

In NMR spectroscopy, the standard is often tetramethylsilane, $Si(CH_3)_4$, abbreviated TMS.

Tetramethyl silane (TMS) is used as reference because it is soluble in most organic solvents, is inert, volatile, and has 12 equivalent 1H and 4 equivalent 13C. TMS signal is set to 0

Shielding and Deshielding

A nucleus is said to be **shielded** when electrons around the nucleus circulates in a magnetic field and create a secondary induced magnetic field which opposes the applied field .

Trends in chemical shift are explained based on the degree of shielding or deshielding , e.g. of deshielding effect

Chemical Shift-δ

Chemical shift depends on :

- Electronegativity of nearby atoms
- Hybridization of adjacent atoms
- diamagnetic effects
- paramagnetic effects
- solvent effect

Spin-Spin Coupling

Spin-spin coupling:

The coupling of the intrinsic angular momentum of different particles. Such coupling between pairs of nuclear spins is an important feature of nuclear magnetic resonance (NMR) spectroscopy as it can provide detailed information about the structure and conformation of molecules. Spin-spin coupling between nuclear spin and electronic spin is responsible for hyperfine structure in atomic spectra.

J-Coupling

J-coupling:

also called *indirect spin-spin coupling*, is the coupling between two nuclear spins due to the influence of bonding electrons on the magnetic field running between the two nuclei. J-coupling provides information about dihedral angles, which can be estimated using the Karplus equation. It is an important observable effect in 1D NMR spectroscopy.

The coupling constant, J (usually in frequency units, Hz) is a measure of the interaction between a pair of nuclei

¹H-NMR

• $\frac{1}{H}$ experiencing the same chemical environment or chemical shift are called equivalent hydrogens.

• ^{1}H experiencing different environment or having different chemical shifts are nonequivalent hydrogens.

@ Brooks/Cole, Cengage Learning

Chemical Shift - ¹H-NMR

@ Brooks/Cole, Cengage Learning

¹H Chemical shifts

Type of	Chemical	Type of	Chemi cal
Hydrogen	Shift (δ)	Hydrogen	Shift (δ)
$(CH_3)_4$ Si	0 (by definition)	0	
RCH ₃	0.8-1.0	RCOCH 3	3.7-3.9
RCH ₂ R	1.2-1.4	Q J	
R ₃ CH	1.4-1.7	RCOCH ₂ R	4.1-4.7
$R_2 C = CRCHR_2$	1.6-2.6	RCH ₂ I	3.1-3.3
RC≡CH	2.0-3.0	RCH ₂ Br	3.4-3.6
ArCH ₃	2.2-2.5	RCH ₂ Cl	3.6-3.8
ArCH ₂ R	2.3-2.8	RCH ₂ F	4.4-4.5
ROH	0.5-6.0	ArOH	4.5-4.7
RCH ₂ OH	3.4-4.0	$R_2C=CH_2$	4.6-5.0
RCH ₂ OR	3.3-4.0	$R_2 C = CHR$	5.0-5.7
R ₂ NH	0.5-5.0	ArH	6.5-8.5
Q		Q	
RCCH3	2.1-2.3	RĊH	9.5-10.1
Q		Q	
RCCH2R	2.2-2.6	RĊOH	10-13

Factors to Affect ¹H Chemical Shift

Chemical shift : (1) electronegativity of nearby atoms, (2) hybridization of adjacent atoms, and (3) diamagnetic effects

Electronegativity

CH ₃ -X	Electroneg- ativity of X	Chemical Shift (δ)
CH ₃ F	4.0	4.26
CH ₃ OH	3.5	3.47
CH ₃ Cl	3.1	3.05
CH ₃ Br	2.8	2.68
CH ₃ I	2.5	2.16
(CH ₃) ₄ C	2.1	0.86
(CH ₃) ₄ Si	1.8	0.00

Hybridization of adjacent atoms

Type of Hydrogen (R = alkyl)	Name of Hydrogen	Chemical Shift (δ)
RCH_3 , R_2CH_2 , R_3CH	Alkyl	0.8 - 1.7
$R_2C=C(R)CHR_2$	Allylic	1.6 - 2.6
RC≡CH	Acetylenic	2.0 - 3.0
$R_2C=CHR, R_2C=CH_2$	Vinylic	4.6 - 5.7
RCHO	Aldehydic	9.5-10.1

Carbon-Carbon Triple Bond Effect

A carbon-carbon triple bond <u>shields</u> an acetylenic hydrogen and shifts its signal to lower frequency (to the right) to a smaller value

Type of H	Name	Chemical Shift (δ)
RCH₃	Alkyl	0.8- 1.0
RC≡C <mark>H</mark>	Acetylenic	2.0 - 3.0
$R_2C=CH_2$	Vinylic	4.6 - 5.7

Induced flow of electrons in the π system of an alkyne,

Induced local magnetic field of the π electrons is against the applied field at the hydrogen atoms; it requires lower frequency radiation to bring an acetylenic hydrogen nucleus into resonance.

Applied field, B_0

Carbon-Carbon Double Bond Effect

Magnetic induction in the p bond of a carbon-carbon double bond <u>deshields</u> vinylic hydrogens and shifts their signal higher frequency

Induced circulation of π electrons in an alkene

Induced local magnetic field of the π electrons reinforces the applied field at the hydrogen atoms; it requires higher frequency radiation to bring a vinylic hydrogen nucleus into resonance.

© Brooks/Cole, Cengage Learning

Aromatic Effect

The magnetic field induced by circulation of p electrons in an aromatic ring <u>deshields</u> the hydrogens on the ring and shifts their signal to higher frequency

Applied field

© Brooks/Cole, Cengage Learning

Signal Splitting for ¹H

Peak:

The units into which an NMR signal is split; doublet, triplet, quartet, multiplet, etc.

Signal splitting:

Splitting of an NMR signal into a set of peaks by the influence of neighboring nonequivalent hydrogens.

(n + 1) rule:

If a hydrogen has *n* hydrogens nonequivalent to it but equivalent among themselves on the same or adjacent atom(s), its ¹H-NMR signal is split into (n + 1) peaks.

Pascal's triangle

The relative peak intensities for multiplet peaks arising from *J*coupling of a ${}^{1}H$ to N equivalent ${}^{1}H$ can be determined using Pascal's triangle:

n = 0						1					
n = 1					1		1				
<i>n</i> = 2				1		2		1			
n = 3			1		3		3		1		
n = 4		1		4		6		4		1	

@ Brooks/Cole, Cengage Learning

Coupling constant

Observed splitting in signal of H_a

C Brooks/Cole, Cengage Learning

multiplet.

¹³C-NMR Spectroscopy

Organic compounds contain carbon. Unfortunately, the C-12 nucleus does not have a nuclear spin, but the C-13 nucleus does due to the presence of an unpaired neucarbon-1tron. C-13 nuclei make up approximately 1% of the carbon nuclei on earth. Therefore, ¹³C NMR will be much less sensitive than ¹HNMR NMR

Brooks/Cole, Cengage Learning

¹³C-NMR Spectroscopy

The presence of spin-spin coupling between a ${}^{13}C$ nucleus and the nuclei of ${}^{1}H$ atoms bonded to the ${}^{13}C$, splits the carbon-13 peaks and causes an even poorer signal-to-noise ratio

Each nonequivalent ¹³C gives a different signal

A ¹³C signal is split by the ¹H bonded to it according to the (n + 1) rule.

Coupling constants of 100-250 Hz are common, which means that there is often significant overlap between signals, and splitting patterns can be very difficult to determine.

The most common mode of operation of a ¹³C-NMR spectrometer is a proton-decoupled mode.

Decoupling

proton-decoupled mode,

- a sample is irradiated with two different radiofrequencies. One to excite all ¹³C nuclei, a second to cause all protons in the molecule to undergo rapid transitions between their nuclear spin states.
- On the time scale of a ¹³C-NMR spectrum, each proton is in an average or effectively constant nuclear spin state, with the result that ¹H-¹³C spin-spin interactions are not observed and they are decoupled.

Chemical Shift - ¹³C-NMR

Characteristic Carbon NMR Chemical Shifts (ppm)									
($(CH_3)_4Si = TMS = 0.00 \text{ ppm (singlet)}$ $CDCl_3 (solvent) = 77.0 \text{ ppm (triplet)}$								
RCH ₃	0-40	RCH ₂ CI	35 – 80	benzene ring	110 – 160				
RCH ₂ R	15 – 55	R₃COH	40 - 80	C=O ester	160 – 180				
R₃CH	20 – 60	R₃COR	40 - 80	C=O amide	165 – 180				
RCH₂I	0-40	RC≡CR	65 – 85	C=O carboxylic acid	175 – 185				
RCH₂Br	25 - 65	$R_2C=CR_2$	100 - 150	C=O aldehyde, ketone	180 – 210				

Trends

 $\bullet \mathrm{RCH}_3 < \mathrm{R}_2 \mathrm{CH}_2 < \mathrm{R}_3 \mathrm{CH}$

•Electronegative atoms cause downfield shift

•Pi bonds cause downfield shift

•C=O 160-210 ppm

¹³C-NMR: Integration

¹H-NMR: Integration reveals relative number of hydrogens per signal

¹³C-NMR: Integration reveals relative number of carbons per signal
Rarely useful due to slow relaxation time for ¹³C
time for nucleus to relax from excited spin state to ground state

Alkanes

¹H-NMR signals appear in the range of <u>0.8-1.7</u>. ¹³C-NMR signals appear in the considerably wider range of <u>10-60</u>.

Alkenes

¹H-NMR signals appear in the range <u>4.6-5.7</u>. ¹H-NMR coupling constants are generally larger for *trans*-vinylic hydrogens (<u>J= 11-18 Hz</u>) compared with *cis*-vinylic hydrogens (<u>J= 5-10 Hz</u>). ¹³C-NMR signals for *sp*² hybridized carbons appear in the range <u>100-160</u>, which is to higher frequency from the signals of *sp*³ hybridized carbons.

Alcohols

¹H-NMR O-H chemical shift often appears in the range 3.0-4.0, but may be as low as 0.5.

¹H-NMR chemical shifts of hydrogens on the carbon bearing the -OH group are <u>deshielded</u> by the electron-withdrawing inductive effect of the oxygen and appear in the range 3.0-4.0.

Ethers

A distinctive feature in the ¹H-NMR spectra of ethers is the chemical shift, 3.3-4.0, of hydrogens on the carbons bonded to the ether oxygen.

Aldehydes and ketones

¹H-NMR: aldehyde hydrogens appear at <u>9.5-10.1</u>. ¹H-NMR: a-hydrogens of aldehydes and ketones appear at <u>2.2-2.6</u>. ¹³C-NMR: carbonyl carbons appear at <u>180-215</u>.

Amines

¹H-NMR: amine hydrogens appear at 0.5-5.0 depending on conditions.

¹H NMR Methyl ethyl ketone

Carboxylic acids

¹H-NMR: carboxyl hydrogens appear at <u>10-13</u> ppm, higher than most other types of hydrogens.

¹³C-NMR: carboxyl carbons in acids and esters appear at <u>160-180</u> ppm.

NMR = <u>N</u>uclear <u>M</u>agnetic <u>R</u>esonance

Physical Principles:

Some (but not all) nuclei, such as ¹H, ¹³C, ¹⁹F, ³¹P have nuclear spin. A spinning charge creates a magnetic moment, so these nuclei can be thought of as tiny magnets.

If we place these nuclei in a magnetic field, they can line up with or against the field by spinning clockwise or counter clockwise.

α- spin state, favorable, lower energy

β- spin state, unfavorable, higher energy

A spinning nucleus with it's magnetic field aligned **with** the magnetic field of a magnet A spinning nucleus with it's magnetic field aligned **against** the magnetic field of a magnet

Alignment with the magnetic field (called α) is lower energy than against the magnetic field (called β). How much lower it is depends on the strength of the magnetic field

Note that for nuclei that don't have spin, such as ¹²C, there is no difference in energy between alignments in a magnetic field since they are not magnets. As such, we can't do NMR spectroscopy on ¹²C. NMR: Basic Experimental Principles

Imagine placing a molecule, for example, CH_4 , in a magnetic field. We can probe the energy difference of the α - and β - state of the protons by irradiating them with EM radiation of just the right energy.

In a magnet of 7.05 Tesla, it takes EM radiation of about 300 MHz (radio waves).

So, if we bombard the molecule with 300 MHz radio waves, the protons will absorb that energy and we can measure that absorbance.

In a magnet of 11.75 Tesla, it takes EM radiation of about 500 MHz (stronger magnet means greater energy difference between the α - and β - state of the protons) there is no difference between the α - and β - state of the here is no difference between the α - and β - state of the here is no difference between the α - and β - state of the here is no difference between the α - and β - state of the here is no difference between the α - and β - state of the here is no difference between the α - and β - state of the here is no difference between the taken between taken between the taken between taken be

Graphical relationship between magnetic field (B_{0}) and frequency (v) \in for ¹H NMR absorptions

But there's a problem. If two researchers want to compare their data using magnets of different strengths, they have to adjust for that difference. That's a pain, so, data is instead reported using the "chemical shift" scale as

The Chemical Shift (Also Called δ) Scale

Here's how it works. We decide on a sample we'll use to standardize our instruments. We take an NMR of that standard and measure its absorbance frequency. We then measure the frequency of our sample and subtract its frequency from that of the standard. We then then divide by the frequency of the standard. This gives a number called the "chemical shift," also called δ , which does not depend on the magnetic field strength. Why not? Let's look at two examples.

Imagine that we have a magnet where our standard absorbs at 300,000,000 Hz (300 megahertz), and our sample absorbs at 300,000,300 Hz. The difference is 300 Hz, so we take 300/300,000,000 = 1/1,000,000 and call that 1 part per million (or 1 PPM). Now lets examine the same sample in a stronger magnetic field where the reference comes at 500,000,000 Hz, or 500 megahertz. The frequency of our sample will increase proportionally, and will come at 500,000,500 Hz. The difference is now 500 Hz, but we divide by 500,000,000 (500/500,000,000 = 1/1,000,000, = 1 PPM). It's brilliant.

Of course, we don't do any of this, it's all done automatically by the NMR machine.

Even more brilliant.

NMR Spectrometer Used by the Undergraduate Organic Labs

Sample is lowered into the magnetic field here (there's a hole in the center of the magnet).

Big superconducting magnet, cooled in ⁻ liquid helium. Source of the magnetic field (B_o).

Wooden chair, no magnetic metals allowed near the magnet!

Spectrum observed on computer monitor here.

Radio transmiter and receiver tuned to 300 MHz

The Chemical Shift of Different Protons

NMR would not be very valuable if all protons absorbed at the same frequency. You'd see a signal that indicates the presence of hydrogens in your sample, but any fool knows there's hydrogen in organic molecules. What makes it useful is that different protons usually appear at different chemical shifts (δ). So, we can distinguish one kind of proton from another. Why do different protons appear at different δ ? There are several reasons, one of which is shielding. The electrons in a bond shield the nuclei from the magnetic field. So, if there is more electron density around a proton, it sees a slightly lower magnetic field, less electron density means it sees a higher magnetic field:

This represents the electron density of a C-H bond. How much electron density is on the proton depends on what else is attached to the carbon. If Z is an electronegative atom, the carbon becomes electron deficient and pulls some of the electron density away from the H. if Z is an electron donating group, more electron density ends up on the H.

How do the electrons shield the magnetic field? By moving. A moving charge creates a magnetic field, and the field created by the moving electrons opposes the magnetic field of our NMR machine. It's not a huge effect, but it's enough to enable us to distinguish between different protons in our sample.

The Hard Part - Interpreting Spectra

Learning how an NMR machine works is straightforward. What is less straightforward is learning how to use the data we get from an NMR machine (the spectrum of ethyl acetate is shown below). That's because each NMR spectrum is a puzzle, and there's no single fact that you simply have to memorize to solve these spectra. You have to consider lots of pieces of data and come up with a structure that fits all the data. What kinds of data do we get from NMR spectra? For ¹H NMR, there are three kinds each of which we will consider each of these spearately: what kinds of protons we have.

- 2) Integrals tells us the ratio of each kind of proton in our sample.
- 3) ¹H ¹H coupling tells us about protons that are near other protons.

Chemical Shift Data

As previously mentioned, different kinds of protons typically come at different chemical shifts. Shown below is a chart of where some common kinds of protons appear in the δ scale. Note that most protons appear between 0 and 10 ppm. The reference, tetramethylsilane (TMS) appears at 0 ppm, and aldehydes appear near 10 ppm. There is a page in your lab handout with more precise values for this chart.

Note that these are typical values and that there are lots of exceptions!

Integrals

Integrals tell us the ratio of each kind of proton. They are lines, the heights of which are proportional to the intensity of the signal. Consider ethyl acetate. There are three kinds of protons in this molecule, the CH_3 next to the carbonyl, the CH_2 next to the O and the CH_3 next to the CH_2 . The ratio of the signals arising from each of these kinds of protons should be 3 to 2 to 3, respectively. So, if we look at the height of the integrals they should be 3 to 2 to 3. With this information, we can know which is the CH_2 signal (it's the smallest one), but to distinguish the other two, we have to be able to predict their chemical shifts. The chart on the previous page allows us to make that assignment (the CH_3 next to the C=O should appear at ~ 2 PPM, while the other CH_2 should be at ~ 1 DPM).

¹H - ¹H Coupling

You'll notice in the spectra that we've seen that the signals don't appear as single lines, sometimes they appear as multiple lines. This is due to $^{1}H - {}^{1}H$ coupling (also called spin-spin splitting or J-coupling). Here's how it works: Imagine we have a molecule which contains a proton (let's call it H_{Δ}) attached to a carbon, and that this carbon is attached to another carbon which also contains a proton (let's call it H_B). It turns out that H_A feels the presence of $H_{\rm B}$. Recall that these protons are tiny little magnets, that can be oriented either with or against the magnetic field of the NMR machine. When the field created by H_B reinforces the magnetic field of the NMR machine (B_0) H_A feels a slightly stronger field, but when the field created by H_B opposes B_0 , H_A feels a slightly weaker field. So, we see two signals for H_A depending on the alignment of $H_{\rm B}$. The same is true for $H_{\rm B}$, it can feel either a slightly stronger or weaker field due to H_A 's presence. So, rather than see a single line for each of these protons, we see two lines for each.

More ¹H - ¹H Coupling

What happens when there is more than one proton splitting a neighboring proton? We get more lines. Consider the molecule below where we have two protons on one carbon and one proton on another.

feel the magnetic field of H_B.

Why are There Three Lines for H_B ?

 H_B feels the splitting of both H_A and $H_{A'}$. So, let's imagine starting with H_B as a single line, then let's "turn on" the coupling from H_A and $H_{A'}$ one at a time:

Because the two lines in the middle overlap, that line is twice as big as the lines on the outside. More neighboring protons leads to more lines as shown on the next slide.

Splitting Patterns with Multiple Neighboring

Protons If a proton has n neighboring protons *that are equivalent,* that proton will be split into n+1 lines. So, if we have four equivalent neighbors, we will have five lines, six equivalent neighbors... well, you can do the math. The lines will not be of equal intensity, rather their intensity will be given by Pascal's

We keep emphasizing that this pattern only holds for when the neighboring protons are equivalent. Why is that? The answer is two slides away.

More About Coupling

Earlier we said that protons couple to each other because they feel the magnetic field of the neighboring protons. While this is true, the mechanism by which they feel this field is complicated and is beyond the scope of this class (they don't just feel it through space, it's transmitted through the electrons in the bonds). It turns out that when two protons appear at the same chemical shift, they do not split each other. So, in EtBr, we have a CH_3 next to a CH_2 , and each proton of the CH_3 group is *only* coupled to the protons of the CH_2 group, not the other CH_3 protons because all the CH_3 protons come at the same chemical shift.

Not all Couplings are Equal

When protons couple to each other, they do so with a certain intensity. This is called the "coupling constant." Coupling constants can vary from 0 Hz (which means that the protons are not coupled, even though they are neighbors) to 16 Hz. Typically, they are around 7 Hz, but many molecules contain coupling constants that vary significantly from that. So, what happens when a molecule contains a proton which is coupled to two different protons with different coupling constants? We get a different pattern as described in the diagram below.

So, if the protons are not equivalent, they can have different coupling constants and the resulting pattern will not be a triplet, but a "doublet of doublets." Sometimes, nonequivalent protons can be on the same carbon

Coupling Constants in Alkenes

Coupling constants in alkenes can also differ depending on whether the protons are cis or trans to each other. Note that in a terminal alkene (i.e., an alkene at the end of a carbon chain), the cis and trans protons are NOT equivalent. One is on the same side as the substituent, the other is on the opposite side. The coupling of *trans* protons to each other is typically very large, around 16 Hz, while the coupling of *cis* protons, while still large, is a little smaller, around 12 Hz. This leads to the pattern shown below, and an example of a molecule with this splitting pattern is shown on the next slide.

There are other times when protons on the same carbon are nonequivalent, which we'll see later.

3. Nuclear Magnetic Resonance

- NMR results from resonant absorption of electromagnetic energy by a nucleus (mostly protons) changing its spin orientation

- The resonance frequency depends on the chemical environment of the nucleus giving a specific finger print of particular groups (NMR *spectroscopy*)

- NMR is nondestructive and contact free
- Modern variants of NMR provide 3D structural resolution of (not too large) proteins in solution

- NMR tomography (Magnetic resonance imaging, MRI) is the most advanced and powerful imaging togal

Some history of NMR

1946 Principle of solid state NMR (Bloch, Purcell)

1950 Resonance frequency depends on chemical environment (Proctor, Yu)

1953 Overhauser effect

1956 First NMR spectra of protein (Ribonuclease)

1965 Fourier Transform spectroscopy (Ernst)

1973 Imaging tomography (Mansfield)

1985 First protein structure (bovine pancreatic trypsin inhibitor) in solution

(Wüthrich)

Figure 27. NMR structure of BPTI represented by a bundle of 20 conformers superimposed for best fit of the polypeptide backbone. The polypeptide backbone is green, core side-chains are blue, and solvent-accessible surface sidechains are red.

By now: More than 150 protein structures (M < 60 000)

Figure 28. Molecular model of hydrated BPTI in H_2O solution. The drawing shows an all-heavyatom-presentation of one of the conformers in Figure 27 (yellow) covered with a layer of hydration water molecules (dotted blue spheres).

BPTI

Bound water

Protein dynamics

3.1 Principle of Nuclear Magnetic Resonance

Many (but not all) nuclei have a spin (I). Quantum mechanically I can have 21+1 orientations in an external magnetic field **B**.

$$|\mathbf{I}| = \hbar \sqrt{I(I+1)} \qquad I_z = m_I \hbar$$
$$-I \le m_I \le I \qquad \Delta m_I = 1$$

$$\Delta m_I = 1$$

This spin is associated with a magnetic moment

$$\mu = \gamma \hbar \sqrt{I(I+1)}$$
$$\mu_z = \gamma \hbar m_I$$

$$\gamma = g_I \mu_k / \hbar$$

 g_i : nuclear g-factor

$$\mu_k \approx \frac{e\hbar}{2m_p} \qquad \mu_k = 5.05082 \ 10^{-27} J/T$$

 $\mu_B = 9.274015 \ 10^{-24} J/T$

Table I	Magnetic	Properties	of Some	Nuclei
----------------	----------	------------	---------	--------

ſ		Natural abundance	Resonance frequency at 70.46 kG
Nucleus	Spin	(%)	(MHz)
¹ H	1/2	99.99	300.00
² H	1	0.015	46.05
¹³ C	1/2	1.1	75.43
^{14}N	1	99.63	21.67
^{15}N	1/2	0.37	30.40
¹⁷ O	5/2	0.037	40.67
¹⁹ F	1/2	1.00	282.23
²³ Na	3/2	100	79.35
²⁵ Mg	5/2	10.13	18.36
³¹ P	1/2	100	121.44
35C1	3/2	75.53	29.40
37Cl	3/2	24.47	24.47
³⁹ K	3/2	93.1	14.00
⁴¹ K	3/2	6.9	7.68
⁴³ Ca	7/2	0.15	20.18
¹¹¹ Cd	1/2	12.75	63.62
¹¹³ Cd	1/2	12.26	66.55
¹⁹⁵ Pt	1/2	33.8	64.50
¹⁹⁹ Hg	1/2	16.84	53.48
²⁰⁵ Tl	1/2	70.5	173.12

Since biomatter is made of H,C,N and O, these are the most relevant nuclei for biological NMR

Kern- isotop	Spin I	Nat. Häu- figkeit in %	γ (10 ⁷ rad T ⁻¹ s ⁻¹)	Sensitivität rel.2	Sensitivität abs. ³
1H	1/2	99,98	26,7	1,00	1,00
2H	1	0,016	4,1	9,65.10-6	1,45 10-6
12C	0	98,9	-	-	-
13C	1/2	1,108	6,7	1,59.10 ⁻²	1,76 10-4
14 _N	1	99,63	1,9	1,01 10-3	1.01 10-3
15 _N	1/2	0,37	-2,7	1,04 10-3	3,85.10-6
16O	0	99,96	-	-	-
17 ₀	5/2	0,037	-3,6	2,91.10-2	1,08 10 ⁻⁵
31P	1/2	100	10,8	6,63.10-2	6,62.10-2

Nach: Friebolin H., Ein- und Zweidimensionale NMR-Spektroskopie, VCH-Verlagsgesellschaft, Weinheim, 1988.

 γ-Werte aus Harns R. K. Nuelear Magnetic Resonance Spectroscopy. A Physicochemical View. Pitman, London, 1983.

2) Bei konstantem Magnetfeld und gleicher Anzahl an Kernen

3) Produkt aus relativer Sensitivität und natürlicher Häufigkeit

Mechanical (classical) model

Spinning top with magnetic moment μ_L and angular momentum I precesses with frequency ω_L under torque **D**

$$\omega_L = \frac{|\mathbf{D}|}{|\mathbf{I}| \cdot \sin\alpha}$$

rotates at ω_{l} :

Torque on magnetic moment μ_{L} in B_{0} $D = \mu \times B_{0} \longrightarrow \omega_{L} = \frac{\mu B_{o} sin\alpha}{I sin\alpha} = \frac{\mu}{I} B_{0} = \gamma B_{0}$

The precession frequency is independent of α and equals the Larmor frequency Application of a horizontal magnetic field **B**₁ which $B_{1x} = B_{10} \sin(\omega_L t)$

$$B_{1y} = B_{10} \, \cos(\omega_L t)$$

In the frame rotating with μ_L the orientation of $\,\boldsymbol{B}_1$ relative to μ_L is constant

Additional precession of μ_L around ${f B}_1$ at frequency $2\pi\dotlpha=\omega_1=\gamma B_{10}$ 161

Quantum mechanical description

The magnetic moment orients in a magnetic field B_0 Different orientations correspond to different energies

162

Bulk magnetization

A sample contains many nuclei (typically N ~ 10^{17} or higher). In zero field all spin orientations are equivalent. The bulk magnetization (I.e. is the sum of all m's) is very small and fluctuates around M=0.

At finite fields B_0 (and finite temperature) the occupation of states at different energies E obeys Boltzmann statistics exp(-E/k_BT) – thermal equilibrium is assumed. For I=1/2 the spin state "parallel" to B_0 has lower energy E_1 than the " antiparallel" state with energy E_2 .

Therefore there is a net magnetization along the z-axis. However since $\Delta E = E_2 - E_1$ is much smaller than $k_B T$ the magnetization is far from saturation. The number of spins in state 1,2 is

$$N_{1,2} = N e^{-E_{1,2}/k_B T}$$

Thus the population imbalance is

$$N_2 - N_1 \approx N \frac{(E_1 - E_2)}{k_B T}$$

Which yields a bulk magnetization

$$M_z \approx N \mu \cdot rac{\mu B_0}{3k_B T}$$
 with $\mu = \gamma \hbar \sqrt{I(I+1)}$

164

The average magnetization in x,y vanishes because the precessions of individual spins are uncorrelated.

The application of a pulse of duration t changes the average angle of the magnetization by a certain angle (c.f. the mechanical model or a change in population densities), given by: $t(\vartheta) = \frac{\vartheta}{\gamma B_1}$

Thus a pulse of duration $\tau = 2\pi/4 \omega_1$ gives a change in angle of $\pi/2$ – pulse I.e. the magnetization is flipped into the xy plane. M_x and M_y now oscillate with $\omega_{L.}$

If *M* is flipped out of equilibrium (out of the z-direction) by a B_1 - pulse, it will relax back to M_z into thermal equilibrium. This occurs because of magnetic interaction of μ with the environment (atoms, eventually in crystalline lattice) and is characterized by the so-called longitudinal (or spin-lattice) relaxation time T_1 . This relaxation is described by a set of rate equations for the transitions between the states

Which yields a simple exponential relaxation of the magnetization in the z-direction

$$dM_z/dt = -T_1^{-1}(M_z - M_{z0})$$

The amplitudes of M_x and M_y decay with another relaxation time T_2 called spin-spin relaxation time. This relaxation originates from inhomogeneity of B_0 . It is described by another phenomenological equation

To be complete, the precession in the static field has to be taken into account as well, which is described by the Bloch equations

$$\begin{split} dM_z/dt &= -(M_z - M_z^0)/T_1 + \gamma (\mathbf{M} \times \mathbf{H})_z, \\ dM_x/dt &= -M_x/T_2 + \gamma (\mathbf{M} \times \mathbf{H})_x, \\ dM_y/dt &= -M_y/T_2 + \gamma (\mathbf{M} \times \mathbf{H})_y. \end{split}$$

One can detect the transverse magnetization M_x or M_y by a pick up coil where a current I(t) is induced by the oscillating transverse magnetization. The width of the FT of I(t) provides a measurement of T_2 (Method of free induction decay)

3.2 Classical NMR experiments

Abb. 20.18. Schema einer einfachen Kernspin-Resonanz-Apparatur. Die Probe befindet sich im Reagenzglas zwischen den Polschuhen eines homogenen Magneten. Das hochfrequente B_1 -Feld wird über eine Brücke und eine Induktionsspule eingestrahlt. Zum besseren Nachweis der Resonanz kann das B_0 -Feld durch eine Zusatzspule moduliert werden

Absorption signal

600 MHz Proton NMR Spectrometer

High frequency NMR spectrometers require very strong magnetic fields, which are produced using super-cooled coils (T = 4.2K, liquid He). The superconducting coils are surrounded by a giant vessel containing liquid N_2 .

3.3 Chemical shift

The external field B_0 is changed (reduced in amplitude) due to local field $-\sigma B_0$ generated by the diamagnetic currents induced by B_0 in the electron system near the nucleus. s is the shielding constant (diamagnetic susceptibility)

$$B_{loc} = B_0 - \sigma B_0$$
$$\omega_L = \gamma B_0 (1 - \sigma)$$

The shielding depends on the orientation of B_0 with respect to the molecules (e.g. benzene ring) near the nucleus. σ is a tensor. If the rotational motion of the molecules is fast compared to $1/\omega_L$ the precessing spin I sees an effective (time averaged) field B_{loc} . If the rotation is free (like in most simple liquids) the anisotropy of the shielding is averaged out, σ becomes a number. The NMR lines are very narrow.

NB. In solids or large proteins in viscous environment where motions are strongly hindered or slowed down, the NMR lines are significantly broader.

Fig. 9. Differing response of the π electrons in a benzene molecule at two orientations of the molecule relative to H_0 : when the external field is (a) perpendicular to the molecular plane and (b) parallel to the molecular field.

Figure 12.3 The field induced in some electron clouds for specific orientations in the magnetic field. (a) Local positive shielding for the proton in its electron cloud. (b) Interatomic shielding from a bond depends on whether the proton is on axis or off axis. (c) Interatomic shielding from a ring current depends on the position of the proton relative to the ring. This specific orientation gives the same effect as the net effect from averaging over all orientations.

Usual measure: Frequency shift of sample (1) relative to some reference sample (2); unit: ppm

$$(\sigma_1 - \sigma_2)\gamma B_0/\gamma B_0$$

Origin of chemical shift: = shielding of B_0

2

¹H-NMR of ethyl alcohol, CH₃CH₂OH Three types of protons

Fig. 2. Nuclear resonance frequencies of several magnetic nuclei at 70.46 kG and the chemical shift range ¹³C and ¹H nuclei.

Typical chemical shifts

Reference Tetramethylsilane Si (CH₃)₄

Chemical shifts are frequently used in chemistry and biology to determine amount of specific groups in sample (quantitative spectroscopy)

Residue	NH	$C_{\alpha}H$	C _β H	Others	
Gly	8.39	3.97			
Ala	8.25	4.35	1.39	C II	0.07.0.04
Val	8.44	4.18	2.13	$C_{\gamma}H_3$	0.97, 0.94
Ile	8.19	4.23	1.90	$C_{\gamma}H_2$	1.48, 1.19
				$C_{\gamma}H_3$	0.95
				$C_{\delta}H_3$	0.89
Leu	8.42	4.38	1.65, 1.65	$C_{\gamma}H$	1.64
				$C_{\delta}H_3$	0.94, 0.90
Pro(trans)		4.44	2.28, 2.02	$C_{\gamma}H_2$	2.03, 2.03
				$C_{\delta}H_2$	3.68, 3.65
Ser	8.38	4.50	3.88, 3.88		1.00
Thr	8.24	4.35	4.22	$C_{\gamma}H_3$	1.23
Met	8.42	4.52	2.15, 2.01	$C_{\gamma}H_2$	2.64, 2.64
1110t				$C_{\varepsilon}H_3$	2.13
Cvs	8.31	4.69	3.28, 2.96		
Asn	8.41	4.76	2.84, 2.75		
Asn	8.75	4.75	2.83, 2.75	$N_{\gamma}H_2$	7.59, 6.91
Glu	8.37	4.29	2.09, 1.97	$C_{\gamma}H_2$	2.31, 2.28
Gln	8.41	4.37	2.13, 2.01	$C_{\gamma}H_2$	2.38, 2.38
Om				$N_{\delta}H_2$	6.87, 7.59
Lvs	8.41	4.36	1.85, 1.76	$C_{\gamma}H_2$	1.45, 1.45
Lys				$C_{\delta}H_2$	1.70, 1.70
				$C_{\varepsilon}H_2$	3.02, 3.02
				$N_{\varepsilon}H_3$	7.52
Ara	8.27	4.38	1.89, 1.79	$C_{\gamma}H_2$	1.70, 1.70
Alg				$C_{\delta}H_2$	3.32, 3.32
				$N_{\delta}H$	7.17, 6.62
His	8.41	4.63	3.26, 3.20	C_2H	8.12
1115	0111			C_4H	7.14
Phe	8.23	4.66	3.22, 2.99	C_2H, C_6H	7.30
	0.20			C_3H, C_5H	7.39
				C_4H	7.34
Tur	8 18	4.60	3.13, 2.92	C_2H, C_6H	7.15
iyr	0.10		,	C_3H, C_5H	6.86
Trp	8.09	4.70	3.32, 3.19	C_2H	7.24
	0.07			C_4H	7.65
				C ₅ H	7.17
				C ₆ H	7.24
				C ₇ H	7.50
				NH	10.22

 Table 12.3
 ¹H Chemical Shifts for the 20 Common Amino Acids (in ppm)