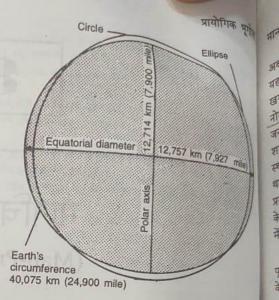


मानचित्र-प्रक्षेप की आवश्यकता (Necessity of Map-Projection)


पृथ्वी की आकृति एक लध्वक्ष परिक्रमण दीर्घवृत्तज (oblate ellipsoid of revolution) या चपटे गोलाभ (oblate spheroid) के समान है। ध्रुवीय भागों के थोड़ा चपटा होने के कारण, पृथ्वी का ध्रुवीय अर्द्धव्यास इसके विषुवतीय अर्द्धव्यास से लगभग 21.5 किमी छोटा है (चित्र 8.1)। किन्तु पृथ्वी के विशाल आकार के समक्ष यह अन्तर इतना कम है कि सामान्य उद्देश्यों की पूर्ति के लिये पृथ्वी के चपटे गोलाभ रूप को करीब-करीब गोलाकार मान लिया जाता है। पृथ्वी की इस आकृति का यथार्थ चित्रण केवल ग्लोब के द्वारा ही सम्भव है। परन्तु मानचित्रों की अपेक्षा ग्लोब का प्रयोग कम होता है, जिसके निम्न कारण हैं:

- (1) ग्लोब के समस्त भाग को एक दृष्टि में नहीं देखा जा सकता अर्थात् ग्लोब के धरातल का एक समय में आधे से भी कम भाग दिखलाई देता है।
- (2) आकार बड़ा होने के कारण ग्लोब को एक स्थान से दूसरे स्थान पर ले जाने में कठिनाई होती हैं तथा इसे कागज़ आदि पर बने मानचित्र की भाँति मोड़कर रखना सम्भव नहीं है।
- (3) ग्लोब पर दो स्थानों के बीच की दूरी मापना कठिन होता है।
- (4) पृथ्वी के किसी छोटे भाग को बृहत् मापनी पर दिखलाने के लिये ग्लोब के आकार में इतनी वृद्धि करनी पड़ेगी कि ग्लोब का प्रयोग ही असम्भव हो जायेगा।
- (5) मानचित्रों की तुलना में ग्लोब की रचना में अधिक धन व्यय होता है।

उपर्युक्त कठिनाइयों के कारण ग्लोब की तुलना में समतल सतह पर बने मानचित्र अधिक उपयोगी होते हैं। समतल सतह पर मानचित्र बनाने के लिये किसी प्रक्षेप की आवश्यकता होती है। प्रत्येक प्रक्षेप में अक्षांश वृत्तों तथा याम्योत्तरों का जाल बनाया जाता है तथा इस रेखाजाल के खानों में, ग्लोब पर अक्षांश वृत्तों तथा याम्योत्तरों से निर्मित रेखाजाल के विवरण स्थानान्तरित कर देते हैं।

इंस सम्बन्ध में यह उल्लेखनीय है कि समतल सतह पर बनाया गया कोई भी मानचित्र पृथ्वी की आकृति का यथार्थ चित्रण नहीं करता। जिस प्रकार नारंगी के छिलके को जगह-जगह काटे बिना समतल सतह पर सही-सही सपाट नहीं फैलाया जा सकता ठीक इसी तरह गोलाकार पृथ्वी का समतल सतह पर विकृति रहित चित्रण सम्भव नहीं है। इस प्रकार कोई मानचित्र

चित्र 8.1 – पृथ्वी का आकार व आकृति।

जितने अधिक बड़े भू-भाग को प्रदर्शित करेगा उतनी है उसे विकृति अधिक होगी। यद्यपि कोई भी मानचित्र-प्रक्षेप सर्वज़ सम्पन्न नहीं होता परन्तु समक्षेत्र, यथाकृतिक अथवा शुद्ध दिव के गुणों में किसी भी एक गुण के प्रक्षेप को बनाना सम्प्रक है। अतः मानचित्र बनाने के उद्देश्य को ध्यान में खकर उपमुक्त प्रक्षेप का चयन किया जाता है। बहुत छोटे-छोटे क्षेत्र जैसे प्रम्या नगर आदि के मानचित्रों के बल्ये किसी प्रकार के प्रक्षेप बे आवश्यकता नहीं होती क्योंकि ऐसे मानचित्रों में प्रदर्शित क्षेत्रफत आदि पर पृथ्वी की गोलाकार आकृति का प्रभाव न के बगब होता है।

मानचित्र-प्रक्षेप का संक्षिप्त इतिहास (Brief History of Map-Projection)

मानचित्र-प्रक्षेपों के सर्वप्रथम आविष्कार का श्रेय प्राचीय यूनानी विद्वानों को दिया जाता है। ईसा से कई शताब्दी पूर्व यूनानी विद्वानों को पृथ्वी की गोलाकार आकृति का ज्ञान हो गया अतः समतल सतह पर पृथ्वी का मानचित्र बनाने के लिये प्रक्षेप की आवश्यकता अनुभव की जाने लगी थी। इरेटॉस्थेनीई (276-196 ईसा पूर्व) नामक यूनानी विद्वान ने पृथ्वी की पार्थि को मापा तथा तत्कालीन ज्ञात संसार का एक मानचित्र बनायी जिसमें सात अक्षांश रेखाएँ तथा सात देशान्तर रेखाएँ प्रदर्शित की गई थीं। इटिपारकस (150 ईसा पूर्व) ने इरेटॉस्थेनीज़ के अनियमित रेखाजाल में संशोधन एवं परिवर्धन करके अपने संसार मानचित्र में समान दूरी के अन्तर पर ग्यारह अक्षांश रेखाएँ खींची थी। इस प्रकार सर्वप्रथम बनाये गये मानचित्र-प्रक्षेप

2021/4/14 10:25

मानचित्र-प्रक्षेप

ाकार व आकृति।

प्रदर्शित करेगा उतनी ही उसमें होई भी मानचित्र-प्रक्षेप सर्वगृष्व, यथाकृतिक अथवा शुद्ध दिशा के प्रक्षेप को बनाना सम्भव है। को ध्यान में रखकर उपयुक्त । बहुत छोटे-छोटे क्षेत्र जैसे ग्राम इलिये किसी प्रकार के प्रक्षेप की ऐसे मानचित्रों में प्रदर्शित क्षेत्रफल आकृति का प्रभाव न के बराबर आकृति का प्रभाव न के बराबर

का संक्षिप्त इतिहास of Map-Projection)

प्रथम आविष्कार का श्रेय प्रावीन ता है। ईसा से कई शताब्दी पूर्व गोलाकार आकृति का ज्ञान हो गण पृथ्वी का मानचित्र बनाने के तिये व की जाने लगी थी। इंटॉस्थ्रेनी व की जाने लगी थी। इंटॉस्थ्रेनी यूनानी विद्वान ने पृथ्वी की प्राधि यूनानी विद्वान ने पृथ्वी की प्राधि तथा सात देशान्तर खाएँ प्रदर्शि संशोधन एवं परिवर्धन करके आर्थ संशोधन एवं परिवर्धन अक्षांश्राधि री के अन्तर पर ग्यारह अक्षांश्राधि सर्वप्रथम बनाये ग्रंथ मानविक्रमधि

अधांश-देशान्तर रेखाओं से निर्मित आयतों के रूप में थे। अब बह लगभग निश्चित हो गया है कि इस काल से पूर्व छाल-मानचित्रों के लिये खेल्स (600 ईसा पूर्व) द्वारा निर्मित त्रेमानिक प्रक्षेप का प्रयोग होता था जिसे उस काल में इमकुण्डली (horoscope) कहा जाता था। ईसा पश्चात दूसरी हालदी में मैरीन्स (Marinus) ने पहली बार एक प्रक्षेप में स्वानों को उनके अक्षांश व देशान्तरों के अनुसार प्रदर्शित किया द्वार का था। इस प्रक्षेप में अक्षांश व देशान्तर सरल रेखाओं इसर का था। इस प्रक्षेप में अक्षांश व देशान्तर सरल रेखाओं इसर क्षेप में समकोण पर काटती हुई बनाई गयी थीं तथा मानचित्र में उत्तर तथा दक्षिण की ओर विकृति अधिक थी।

मानचित्रकला के विकास के यूनानी काल की समाप्ति तक वर्षी के सम्बन्ध में पर्याप्त ज्ञान प्राप्त हो गया था तथा प्रक्षेपों के महत्व को भली-भाँति समझा जाने लगा था। इस तथ्य की मस्ता क्लॉडियस टॉलेमी (90-168 ईसा पश्चात) के महान ग्रंथ ब्योगाफिया' (Geographia) से सिद्ध हो जाती है। इस पुस्तक के प्रथम खण्ड में ग्लोब की रचना तथा मानचित्र-प्रक्षेप बनाने ही विधियों का उल्लेख है। टॉलेमी ने दो संशोधित शंक्वाकार प्रोपों के वर्णन किये थे। उसने धुवीय क्षेत्रों के मानचित्रों के लिये त्रिविम प्रक्षेप (stereographic projection) का प्रयोग क्या था तथा अपने संसार मानचित्र को संशोधित शंक्वाकार प्रोप पर बनाया था जिसमें 5° के अन्तराल पर अक्षांश-देशान्तर खिओं के मान दिये थे। शंक्वाकार प्रक्षेपों में संशोधन करने के अतिरिक्त टॉलेमी ने कुछ नवीन प्रक्षेपों की रचना-विधि भी म्म्झाई थी। उदाहरणार्थ, उसकी 'एनालेमा' (Analemma) गक पुस्तक में लम्बकोणीय प्रक्षेप (orthogonal projection) के तीन भेद बतलाये गये हैं। टॉलेमी के व्यंगिषियां में 27 मानचित्र थे, जिनसे संसार की पहली गर्नियावली का निर्माण हुआ था।

रालेमों के पश्चात् पश्चिम के ईसाई धर्मावलम्बी देशों में मिल अन्यविश्वास बढ़ने लगा तथा ईसाई धर्म-पुस्तकों में भो के सम्बन्ध में लिखी बातों को पूर्णतया सत्य माना जाने जिसके फलस्वरूप न केवल मानचित्रकला के विकास में भिक्ट उत्पन हुई अपितु प्राचीन यूनानी ज्ञान पर भी अज्ञान भे जावण छाने लगा। इन देशों में पृथ्वी की आकृति तश्तरी भाग वृत्ताकार मान लेने के फलस्वरूप मानचित्रों की रचना के महत्व को पूर्णतः भुला दिया गया था। परन्तु इस अरब भूगोलवेत्ताओं ने मानचित्रकला के क्षेत्र में भाग अरब भूगोलवेत्ताओं ने मानचित्रकला के क्षेत्र में भाग विकास के ज्योमाफियां का अध्ययन किया था; नवीन के लिये आवश्यक गणनाएँ की थीं; तथा समुद्री मानचित्रों

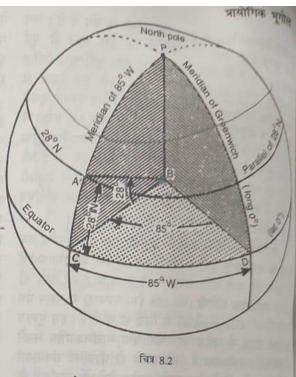
के लिये बेलनाकार प्रक्षेप का प्रयोग किया था। अरब मानचित्रकला का सबसे महत्वपूर्ण कार्य इदरीसी (Edrisi) का संसार-मानचित्र माना जाता है। इस मानचित्र को इदरीसी ने 1154 में एक आयताकार प्रक्षेप पर बनाया था।

मानचित्रकला के इतिहास का 14वीं से 17वीं शताब्दी के अन्त तक का समय पुनर्जागरण काल (Renaissance Age) कहलाता है। इस काल में खोज यात्राओं तथा नवीन यन्त्रों के आविष्कार से मानचित्रकला के क्षेत्र में पुनः प्रगति प्रारम्भ हुई तथा नवीन प्रक्षेप बनाने के कार्य में रुचि ली जाने लगी। मार्टिन वाल्डसीमुलर (Martin Waldseemuller) ने 1507 में बोन प्रक्षेप से मिलते-जुलते एक प्रक्षेप की रचना की। 1559 में गिरारडस मर्केटर (Gerardus Mercator) ने अपना प्रसिद्ध यथाकृतिक बेलनाकार प्रक्षेप बनाया, जिसका संसार का मानचित्र बनाने के लिये आज भी बहुत प्रयोग होता है। निकोलस सैन्सन (Nicolas Sanson) ने 1650 में एक प्रक्षेप बनाया जिसे लगभग 50 वर्ष पश्चात जॉन फ्लैम्स्टीड (John Flamsteed) ने प्रयोग किया। इन विद्वानों के नाम पर इस प्रक्षेप का नाम 'सैन्सन-फ्लैम्स्टीड सिनुसॉयडल प्रक्षेप' पड़ गया। जोहन हेनरिच लैम्बर्ट (Johann Heinrich Lambert) ने समक्षेत्र वेलनाकार, समक्षेत्र खमध्य प्रक्षेप, दो मानक अक्षांश वाला शंक्वाकार यथाकृतिक प्रक्षेप, एक मानक अक्षांश वाला समक्षेत्र शांकव प्रक्षेप तथा तिर्यक् यथाकृतिक व समक्षेत्र बेलनाकार प्रक्षेपों की रचना की थी।

आधुनिक काल के मानचित्र-प्रक्षेप निर्माताओं में जी. टी. शिमड (G. T. Schmidt), कार्ल बेंडन मॉलवीड (Karl Branden Mollweide), रिगोबर्ट बोन (Rigobert Bonne), फर्डनिग्ड हैसलर (Ferdinand Hassler), जेम्स गॉल (James Gall) तथा जे. डी. कास्सिनी (J. D. Cassini) के नाम विशेष उल्लेखनीय हैं।

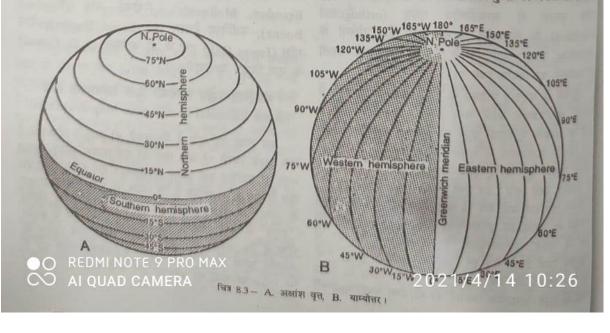
मानचित्र-प्रक्षेप सम्बन्धी कुछ आवश्यक तथ्य (Some Essential Facts about Map-Projection)

हम ऊपर पढ़ चुके हैं कि पृथ्वी की आकृति गोलाकार तथा उसके किसी भी बड़े भाग को पूर्ण शुद्धता सहित समत सतह पर प्रदर्शित नहीं किया जा सकता। इस कठिनाई को इ बात से समझा जा सकता है कि ग्लोब पर भूमध्यरेखा तथा 9 के अन्तर पर स्थित किन्हीं दो देशान्तर रेखाओं से नि "त्रिभुज" के तीनों अन्तर्गत कोणों का योग 3 समकोण के बर होता है कि जबकि समतल सतह पर बनाये गये त्रिभुज अन्तर्गत कोणों का योग 180° होता है। इसका कारण या अन्तर्गत कोणों का योग 180° होता है। इसका कारण या अन्तर्गत कोणों का योग 180° होता है। इसका कारण या अन्तर्गत कोणों का योग 180° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कारण या अन्तर्गत कोणों का योग 80° होता है। इसका कारण या अन्तर्गत कारण स्था 80° होता है। इसका कारण स्था 80° होता 80° होता



2021/4/14 10:25

तथा देशान्तर रेखाएँ एक दूसरे को समकोण पर काटती हैं।
पृथ्वी का समतल सतह पर मानचित्र बनाने के लिये
अक्षांश-देशान्तर रेखाओं का जाल बनाया जाता है अतः प्रक्षेपों
की रचना-विधि पढ़ने से पूर्व ग्लोब तथा उस पर अंकित
अक्षांश-देशान्तर रेखाजाल के निम्नांकित घटकों को भली प्रकार
समझ लेना आवश्यक है:


[I] अक्षांश (Latitude)

ग्लोब पर किसी स्थान तथा भूमध्यरेखा के मध्य याम्योत्तर या धुववृत्त (meridian) के चाप की अंशों में मापी गई कोणीय दूरी (angular distance) को उस स्थान का अक्षांश कहते हैं। चित्र 8.2 में A बिन्दु तथा भूमध्यरेखा के मध्य 85° पश्चिमी धुववृत्त के AC चाप की कोणीय दूरी 28° है। चूँकि A बिन्दु भूमध्यरेखा के उत्तर में स्थित है अतः इसके अक्षांश का मान 28° उठ हुआ। भूमध्यरेखा का अक्षांश 0°, उत्तरी धुव का अक्षांश 90° उत्तर तथा दक्षिणी धुव का अक्षांश 90° दिक्षण होता है। एक अंश में 60 मिनट (') तथा एक मिनट में 60 सेकण्ड ('') होते हैं। इस प्रकार यदि किसी स्थान का अक्षांश 40° 25' 30'' उत्तर लिखा है तो उस स्थान के अक्षांश को 40 अंश, 25 मिनट, 30 सेकण्ड उत्तर पढ़ा जायेगा। पृथ्वी के चपटे होने के कारण 1° अक्षांश की किलोमीटर में लम्बाई भूमध्यरेखा से धुवों की ओर को थोड़ी सी बढ़ती जाती है। भूमध्यरेखा पर 1° अक्षांश की दूरी 110.569 किमी तथा धुवों पर 111.700 किमी होती है।

[II] अक्षांश वृत्त (Parallel of latitude)

ग्लोब पर समस्त याम्योतरों या ध्रुववृत्तों (meridians) के भूमध्यरेखा से समदूरस्थ (equidistant) बिन्दुओं को मिलाने वाली रेखा को अक्षांश रेखा या अक्षांश वृत्त कहते हैं। दूसरे गर्बों में, ग्लोब पर समान अक्षांश वाले बिन्दुओं को प्रकट करने वाले

Disclaimer: This study material has been taken from the books and created for the academic benefits of the students alone and I do not seek any personal advantage out of it.

वृतों को अक्षांश वृत कहा जाता है। भूमध्यरेखा के उत्तर या कृता का जापाश वृत्त के मध्य किसी भी मान का अक्षांश वृत्त क्राया जा सकता है किन्तु सरलता के विचार से ग्लोब पर समस्त मार्भावित अक्षांश वृत्तों को नहीं बनाया जाता अपितु अवश्यकतानुसार किसी ऐसी संख्या के अन्तराल पर अक्षांश वृत्त बनाये जाते हैं जो 90° को पूरा-पूरा विभाजित कर दे, जैसे 5, 10 तथा 15 आदि। भूमध्यरेखा के उत्तर में स्थित अक्षांश वृत्तों को उत्तरी अक्षांश वृत्त तथा दक्षिण में स्थित अक्षांश वृत्तों को दक्षिणी अक्षांश वृत्त कहते हैं। इस प्रकार अक्षांश वृत्त ग्लोब पर किसी बिदु की भूमध्यरेखा के उत्तर या दक्षिण में स्थिति बतलाते हैं। अक्षांश वृत्तों के निम्नलिखित प्रमुख लक्षण होते हैं :

- (1) समस्त अक्षांश वृत्त एक दूसरे के समान्तर तथा परस्पर समान दूरी पर बने होते हैं।
- (2) घुवों को छोड़कर ग्लोब के शेष सभी स्थानों पर अक्षांश वृत्त धुववृत्तों या याम्योत्तरों को समकोण पर काटते हैं।
- (3) अक्षांश वृत्त सदैव यथार्थ पूर्व-पश्चिम रेखाओं के रूप में
- (4) भूमध्यरेखा पूर्ण बृहत् वृत्त (great circle) होती है तथा शेष सभी अक्षांश वृत्त लघु वृत्त (small circle) होते हैं
- (5) अक्षांश वृत्तों की किलोमीटरों में वास्तविक लम्बाई भूमध्यरेखा से धुवों की ओर कम होने लगती है।
- (6) धुवों के 'अक्षांश वृत्त' बिन्दुओं के रूप में होते हैं।
- (7) धुवों के अतिरिक्त ग्लोब का प्रत्येक बिन्दु किसी न किसी अक्षांश वृत्त पर स्थित होता है।
- (8) भूमध्यरेखा, जो एक अक्षांश वृत्त है, दोनों धुवों से समान दूरी पर स्थित होती है। भूमध्यरेखा तथा उत्तरी धुव के मध्य ग्लोब का ऊपरी आधा भाग उत्तरी गोलार्घ (northern hemisphere) तथा भूमध्यरेखा के दक्षिण में स्थित ग्लोब का दूसरा आधा भाग दक्षिणी गोलार्थ (southern hemisphere) कहलाता है (चित्र 8.3A)।

[111] देशान्तर

(Longitude)

ग्लोब पर प्रमुख याम्योत्तर (prime meridian) तथा किसी दिये गये स्थान के मध्य स्थित अक्षांश वृत्त के छोटे चाप की अंशों में मापी गई दूरी को उस स्थान का देशान्तर कहते हैं। 1884 में हुई एक अन्तर्राष्ट्रीय गोष्ठी के अनुसार संसार के लगभग सभी रें ने लिन्डां वि समीप स्थित प्रिनिच रॉयल प्रेक्षणशाला Genthico UND GAM चरायोत्तर मान लिया है। इस

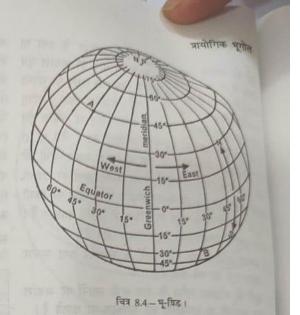
याम्योत्तर का मान 0° देशान्तर मानते हुए अन्य याम्योत्तरों की पूर्व तथा पश्चिम की ओर को गणना की जाती है। देशान्तरों के मान प्रमुख याम्योत्तर (ग्रिनिच याम्योत्तर) के पूर्व अथवा पश्चिम की ओर 0° से 180° के मध्य होते हैं। चित्र 8.2 में A बिन्दु की PC याम्योत्तर तथा प्रिनिच याम्योत्तर के मध्य में स्थित अक्षांश वृत्त (भूमध्यरेखा) पर CD एक छोटा चाप है जिसकी प्रमुख याम्योनर से अंशों में दूरी 85° पश्चिम है। अतः A बिन्दु का देशान्तर 85° पश्चिम हुआ। अक्षांश की तरह किसी स्थान के देशान्तर को अंश, मिनट व सेकण्ड में व्यक्त किया जाता है जैसे 30° 18' 15" प॰ देशान्तर अथवा 40° 25' 20" पू॰ देशान्तर आदि।

1° देशान्तर की पृथ्वी पर वास्तविक दूरी

अक्षांश वृत्त	दूरी (किमी)	अक्षांश वृत्त	दूरी (किमी)
0°	111.32	50°	71.70
5°	110.90	55°	64.00
10°	109.64	60°	55.80
15°	107.55	65°	47.18
20°	104.65	70°	38.19
25°	100.95	75°	28.90
1000	96.49	80°	19.39
30°	91.29	85°	9.73
35°	85.40	90°	0.00
40° 45°	78.85		

सारणी 8.1 से स्पष्ट है कि 1° देशान्तर की दूरी भूमध्यरेखा पर लगभग 111.32 किमी, 60° अक्षांश वृत्त पर इसके लगभग आधी तथा धुवों पर शून्य होती है। इस तथ्य से हम इस निष्कर्ष पर पहुँचते हैं कि 1° देशान्तर की किलोमीटर में दूरी इस बात पर निर्भर करती है कि वह अंश किस मान वाले अक्षांश वृत्त पर मापा गया है। भूमध्यरेखा पर 1° देशान्तर की दूरी को पृथ्वी की परिधि में 360 का भाग देकर ज्ञात किया जा सकता है, अर्थात्-

भूमध्यरेखा पर 1° देशान्तर की दूरी पृथ्वी की परिधि 360 $=\frac{40,075}{360}=111.32$ किमी


[IV] याम्योत्तर (Meridian)

ग्लोब पर समान देशान्तर वाले स्थानों को मिलाने वाली, कल्पित रेखाएँ ध्रुववृत्त देशान्तर रेखाएँ या यायोत्तर कहलाती हैं। 2021/4/14 10:26

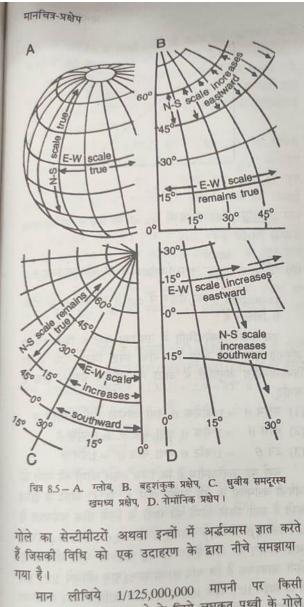
प्रत्येक याम्योत्तर एक बृहत् वृत्त (great circle) होता है, जिसका आधा भाग पूर्वी देशान्तर रेखा तथा शेष आधा भाग पश्चिमी देशान्तर रेखा कहलाता है। इन देशान्तर रेखाओं के सिरं उत्तरी व दक्षिणी धूवों पर मिलते हैं। इस प्रकार विपरीत ओर की आमने-सामने स्थित कोई दो देशान्तर रेखाएँ परस्पर मिलकर एक पूर्ण बृहत् वृत्त बनाती हैं। चूँिक वृत्त में 360° होते हैं अतः 1° देशान्तर के अंतराल पर देशान्तर रेखाओं की कुल संख्या 360 होती है। इनमें से 180 देशान्तर रेखाएँ प्रमुख याम्योत्तर के पूर्व में तथा 180 देशान्तर रेखाएँ प्रमुख याम्योत्तर के पश्चिम में होती हैं। पूर्व की ओर स्थित देशान्तर रेखाओं को पूर्वी देशान्तर तथा पश्चिम की ओर की देशान्तर रेखाओं को पश्चिमी देशान्तर कहते हैं। 180° पूर्व तथा 180° पश्चिम एक ही देशान्तर रेखा होती है। प्रमुख याम्योत्तर तथा 180° पू० देशान्तर के मध्य का भाग पूर्वी गोलार्ध (eastern hemisphere) तथा प्रमुख याम्योत्तर तथा 180° प० देशान्तर के बीच का भाग पश्चिमी गोलार्ध (western hemisphere) कहलाता है (चित्र 8.3 B)। जैसा कि ऊपर लिखा गया है, ग्लोब पर किन्हीं दो परस्पर विपरीत देशान्तर रेखाओं के मिलने पर एक पूर्ण बहुत वृत्त बन जाता है जो ग्लोब को दो समान भागों में विभाजित कर देता है। इस प्रकार प्रत्येक देशान्तर रेखा किसी बहत् वृत्त का आधा भाग होती है अर्थात् यह बहत् वृत्त के 180° के चाप के रूप में होती है। देशान्तर रेखाओं के कुछ अन्य लक्षण निम्नलिखित हैं :

- सभी देशान्तर रेखाएँ यथार्थ उत्तर-दक्षिण दिशा में होती हैं तथा इनकी लम्बाइयाँ समान होती हैं।
- (2) भूमध्यरेखा पर दो देशान्तर रेखाओं के बीच की दूरी सबसे अधिक होती है जो धूवों पर घटकर शून्य हो जाती है।
- (3) ग्लोब पर अनेक देशान्तर रेखाएँ खींची जा सकती हैं किन्तु सरलता के लिये किसी ऐसी संख्या (अंश) के अन्तराल पर देशान्तर रेखाएँ खींचते हैं, जो 180° को पूरा-पूरा विभाजित कर दे।
- (4) देशान्तर रेखा के द्वारा किसी स्थान की प्रमुख याम्योत्तर से पूर्व अथवा पश्चिम में स्थिति का बोध होता है।
- (5) धुवों को छोड़कर ग्लोब पर स्थित प्रत्येक बिन्दु की कोई न कोई देशान्तर रेखा अवश्य होती है।
- [V] भू-ग्रिड (The earth grid)

चित्र 8.4 में अक्षांश वृत्तों तथा याम्योत्तरों का जाल, अर्थात् भन्य है। इस रिड की प्रहायता से धरातल के जिसी स्थान की दिशा तथा अवस्थिति निर्धारित की जाती है। उदाहरणार्थ, उपराक्त रखाचित्र में A बिन्दु 45° उत्तरी

अक्षांश वृत्त तथा 45° पश्चिमी देशान्तर पर स्थित है अतः उसकी ज्यामितीय अवस्थिति 45° उ० अक्षांश व 45° प० देशाना हुई। इसी प्रकार B बिन्दु की ज्यामितीय अवस्थित 30° दे अक्षांश व 30° पूर्वी देशान्तर है। मानचित्र-प्रक्षेप में भिन्निम्निविधयों के द्वारा इस भू-प्रिड को समतल सतह पर बनाया जात है। स्मरण रहे, भू-ग्रिड के समस्त अक्षांश वृत्त तथा यायोकों धरातल पर कल्पित रेखाओं के रूप में होते हैं।

[VI] गोर तथा कटिबन्ध


(Gore and zone)

ग्लोब पर दो संलग्न देशान्तर रेखाओं के बीच स्थित भाग को गोर कहते हैं जबिक किन्हीं दो संलग्न अक्षांश वृत्तों के बीच का क्षेत्र कटिबन्ध कहलाता है। उत्तरोत्तर (successive) देशाना रेखाओं के बीच बनने वाले सभी गोर ग्लोब पर समान क्षेत्रफत वाले होते हैं। इसके विपरीत भूमध्यरेखा से धुवों की ओर के कटिबन्धों का ग्लोब पर क्षेत्रफल निरन्तर घटता जाता है।

[VII] मापनी

(Scale)

प्रत्येक मानचित्र-प्रक्षेप की रचना किसी दी हुई मापनी अनुसार की जाती है। चित्र 8.1 से स्पष्ट है कि पृथ्वी का और अर्द्धव्यास 6367.75 किमी (अर्थात् 636,775,000 सेमी) अर्थ 3956.75 मील (अर्थात् 250,699,680 इन्च) है, परन्तु गण्कार्य की सरलता के विचार से पृथ्वी के अर्द्धव्यास की लम्ब को 635,000,0002 रेजिंट वण्ड मे 751,400,700 र कि मानचित्र-प्रक्षेप के लिये लघुकृत पृथ्वी (reduced earth)

मानचित्र-प्रक्षेप की रचना करने के लिये लघुकृत पृथ्वी के गोले का अर्द्धव्यास ज्ञात करना है, अब

125,000,000 सेमी प्रकट होते हैं = 1 सेमी से

: 635,000,000 सेमी (पृथ्वी का अर्द्धव्यास) प्रकट होंगे

 $=1 \times \frac{635,000,000}{125,000,000} = 5.08$ सेमी

यदि इन्वों में गणना करनी है तो उपरोक्त मापनी पर REDMINOTE O DE = 250,300,ADQU75,000,000 = 2 इ.स्-^A होगा। इस प्रकार

उपरोक्त उदाहरण से स्पष्ट है कि मानचित्र-प्रक्षेप के लिये लघुकृत पृथ्वी के गोले का अर्द्धव्यास ज्ञात करने के लिये दी गई मापनी की निरूपक भिन्न (R.F.) के हर (denominator) से पृथ्वी के वास्तविक अर्द्धव्यास (250,000,000 इन्व अथवा 635,000,000 सेमी) में भाग दिया जाता है।

हम पहले पढ़ चुके हैं कि केवल ग्लोब ही पृथ्वी का एक मात्र शुद्ध-मापनी मॉडल है (चित्र 8.5 A)। अब तक भिन्न-भिन्न प्रकार के लगभग 200 मानचित्र-प्रक्षेपों की रचना की जा चुकी है किन्तु ऐसा मानचित्र-प्रक्षेप बनाया जाना अभी शेष है जिसमें ग्लोब का एक-समान मापनी गुण सर्वत्र विद्यमान हो। उदाहरणार्थ, कुछ मानचित्र-प्रक्षेपों (जैसे बहुशंकुक प्रक्षेप) में समस्त अक्षांश वृत्तों पर पूर्व-पश्चिम दिशा में मापनी शुद्ध रहती है किन्तु केन्द्रीय मध्याह्न रेखा (central meridian) से पूर्व अथवा पश्चिम की ओर दूरी बढ़ने के साथ-साथ देशान्तर रेखाओं पर उत्तर-दक्षिण मापनी में वृद्धि होने लगती है (चित्र 8.5 B) । दूसरे प्रकार के प्रक्षेपों (जैसे धुवीय समदूरस्य खमध्य प्रक्षेप) में मापनी देशान्तर रेखाओं पर तो शुद्ध होती है परन्तु अक्षांश वृत्तों पर अशुद्ध हो जाती है (चित्र 8.5C)। तीसरे प्रकार के प्रक्षेपों (जैसे नोमॉनिक प्रक्षेप) में अक्षांश वृत्तों तथा याम्योत्तरों दोनों की मापनियाँ परिवर्तनशील होती हैं (चित्र 8.5D)। जिस प्रकार किसी दिये हुए क्षेत्रफल को प्रकट करने वाले भिन्न-भिन्न लम्बाई-चौडाई के अनेक आयत बनाये जा सकते हैं उसी प्रकार अक्षांश वृत्तों तथा देशान्तर रेखाओं की मापनियों में आवश्यक परिवर्तन करके भिन्न-भिन्न गुण वाले प्रक्षेप बनाये जा सकते हैं (चित्र 8.13 देखिये)।

प्रक्षेप खींचने की गणितीय विधि (Mathematical Method of Drawing a Projection)

जैसा कि हम अगले अध्याय में पढ़ेंगे, मानचित्र-प्रक्षेपों के रेखाजाल (graticule) बनाने की दो विधियाँ होती हैं—(i) आलेखी विधि तथा (ii) गणितीय विधि। आलेखी विधि में ज्यामिति (geometry) के नियमानुसार रचना करके प्रक्षेप के लिये आवश्यक मापें, जैसे अक्षांश-देशान्तर की लम्बाई एवं उनके प्रतिच्छेदन बिन्दु आदि, प्राप्त की जाती हैं। इसके विपरीत गणितीय विधि में उपरोक्त मापों को ज्ञात करने के लिये त्रिकोणमिति (trigonometry) के सूत्रों का प्रयोग किया जाता है। यद्यपि आलेखी विधि कुछ सरल अवश्य होती है परनु इसकी तुलना में त्रिकोणिमतीय सूत्रों द्वारा गणना करके बनाये गये प्रक्षेप अधिक शुद्ध होते हैं। इन सूत्रों को समझने के लिये प्राथमिक त्रिकोणमिति एवं त्रिकोणमितीय अनुपातों का ज्ञान होना आवश्यक है।

2021/4/14 10:26

156]

उपरोक्त विवरण से स्पष्ट है कि लघुकृत पृथ्वी के गोले पर किसी भी अक्षांश वृत्त की लम्बाई ज्ञात करने के लिये निम्नलिखित दो सूत्रों में से किसी एक सूत्र का प्रयोग किया जा सकता है:

- (1) 2πR कॉस θ
- (2) 2πR साईन कोटिपूरक कोण

इसी प्रकार लघुकृत पृथ्वी के गोले पर, किसी अक्षांश वृत्त पर दो देशान्तर रेखाओं के बीच की दूरी ज्ञात करने के लिये 2π R कॉस θ × देशान्तर रेखाओं के मान का अन्तर अर्थात् अन्तराल/360° अथवा 2π R साईन कोटिपूरक कोण × अन्तराल/360° सूत्र का प्रयोग करते हैं।

मानचित्र-प्रक्षेपों का वर्गीकरण (Classification of Map-Projections)

मानचित्र-प्रक्षेपों को तीन आधारों के अनुसार विभाजित किया जाता है—(i) प्रकाश के प्रयोग के अनुसार, (ii) रचना-विधि के अनुसार तथा (हांक्रे) गुरूर के अनुसार।