SEMICONDUCTOR PHYCICS AND DEVICES Paper-IV (M.Sc. Physics III SEM)

Syllabus.....

Unit-l

- Semiconductor Concepts and Energy Bands
- Carrier Transport Phenomena
- Graded impurity distribution

Unit-II

- Non-equilibrium excess carriers in semiconductors
- Shockley-Read-Hall theory of recombination
- Surface effect
- PN Junction Principles
- Metal-semiconductor junctions
- Semiconductor- semiconductor junctions

Unit-III

- Bipolar Transistors
- Field Effect Transistors: JFET
- > MOSFET
- Light-Emitting Diodes

Syllabus (Cont....)

• Unit-VI

- Principle of the Laser diode
- Quantum well devices
- Photodetectors
- Ramo's theorem
- Quantum efficiency and responsivity
- Photodiode
- Phototransistors
- Photoconductive detectors and Photoconductive gain

• Unit-V

- Solar energy spectrum,
- Photovoltaic Devices
- Effect on p-n junction characteristics
- > Depletion approximation
- Calculation of carrier and carrier densities
- General solution for J (V) and p-n junction in dark and under illumination

Reference books:

- Donald A. Neamen and Dhrubes Biswas; Semiconductor Physics and Devices, 4th edition, McGraw Hill, 2003.
- S. O. Kasap; Optoelectronics and Photonics: Principles and Practices, Pearson 2009
- Jenny Nelson; The Physics of Solar Cells, 1st edition, Imperial College press, 2003.
- S.M. Sze; Semiconductor Device, Physics and Technology, John Wiley and Sons, 2002.
- Ben. G. Streetman and Sanjay K. Banerjee, Solid Sate Electronics Devices, 7th edition, PHI, 2014.
- T. Markvart and L. Castaner; Solar Cells: Materials, Manufacture and Operations, Elsevier, 2005.

Why semiconductors?

SEMICONDUCTORS: They are here, there, and everywhere

- Computers, palm pilots, laptops, anything "intelligent"
 Silicon (Si) MOSFETs, ICs, CMOS
- Cell phones, pagers
- CD players
- TV remotes, mobile terminals
- Satellite dishes
- Fiber networks
- Traffic signals, car taillights
- Air bags

- , Si ICs, GaAs FETs, BJTs AlGaAs and InGaP laser diodes, Si photodiodes Light emitting diodes (LEDs) InGaAs MMICs (Monolithic Microwave ICs) InGaAsP laser diodes, pin photodiodes GaN LEDs (green, blue)
 - InGaAsP LEDs (red, amber)
- Si MEMs, Si ICs
- and, they are important, especially to Electronics, Engineering & Computer Sciences

History of Semiconductor

۱ [IA H			P	eri	.00	dic	:]	la	bl	е		IIA	-	VA	VIA	VILA	0 2 He
	Li	4 Be		of	f tl	he	E	le	m	en	ts		5 B	°c	N	8	9 F	10 Ne
	na Na	12 Mg	IIB	IVB	٧B	YIB	YIB		- vii -		IB	IIB	13 Al	14 Si	P	16 S	17 CI	18 År
	19 K	20 Ca	21 Sc	22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	3' Ga	32 Ge	aa As	34 Se	35 Br	36 Kr
10.00	RD	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	es Pd	47 Ag	48 Cd	49 34	50 Sn		52 Te	53 	54 Xe
102 - C. C.	55 Cs	56 Ba	57 *La	72 Hľ	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	92 Pb	Bi	84 70	85 At	86 Rn
	³⁷ Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 HS	109 Mt	119 110	111 111	112 112	113 113				Semi	conduc
a e	ntha ries	anide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 TD	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
ici iei	tinid ries	e	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	7	

Semiconductor Materials

		III	IV	V	
		Boron (B)	Carbon (C)		
•••	•	Aluminum (Al)	Silicon (Si)	Phosphorus (P)	•••
		Gallium (Ga)	Germanium (Ge)	Arsenic (As)	
			•		

٠

.

Semiconductor Materials.....

- Elemental semiconductors Si and Ge (column IV of periodic table) compose of single species of atoms
- Compound semiconductors combinations of atoms of column III and column V and some atoms from column II and VI. (combination of two atoms results in binary compounds)
- There are also three-element (ternary) compounds (GaAsP) and fourelements (quaternary) compounds such as InGaAsP.

(a)	П	IП	IV	v	VI
		В	С		
		Al	Si	P	S
	Zn	Ga	Ge	As	Se
	Cd	In		Sb	Te

(b)	Elemental	IV compounds	Binary III-V	Binary II-VI
			compounds	compounds
	Si	SiC	AlP	ZnS
	Ge	SiGe	AlAs	ZnSe
			AlSb	ZnTe
			GaP	CdS
			GaAs	CdSe
			GaSb	CdTe
			InP	
			InAS	
			InSb	

Semiconductor Materials.....

- The wide variety of electronic and optical properties of these semiconductors provides the device engineer with great flexibility in the design of electronic and opto-electronic functions.
- Ge was widely used in the early days of semiconductor development for transistors and diodes.
- Si is now used for the majority of rectifiers, transistors and integrated circuits.
- **Compounds** are widely used in high-speed devices and devices requiring the emission or absorption of light.
- The electronic and optical properties of semiconductors are strongly affected by impurities, which may be added in precisely controlled amounts (e.g. an impurity concentration of one part per million can change a sample of Si from a poor conductor to a good conductor of electric current). This process called doping.

What is a Semiconductor?

- Low resistivity => "conductor"
- High resistivity => "insulator"
- Intermediate resistivity => "semiconductor"
 - conductivity lies between that of conductors and insulators
 - generally crystalline in structure for IC devices
 - In recent years, however, non-crystalline semiconductors have become commercially very important

polycrystalline amorphous crystalline