
Unit-I

Semiconductor Concepts and 
Energy Bands
Carrier Transport Phenomena
Graded impurity distribution
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Solid state structures
Cubic lattices:

Simple cubic (sc) Body-centered cubic (bcc) Face-centered cubic (fcc)

Unit cells for types of cubic lattice structure.

Diamond lattice unit cell, showing the four nearest neighbour structure

The basic lattice structure for many important 
semiconductors is the diamond lattice, which is 
characteristic of Si and Ge. In many compound 
semiconductors, atoms are arranged in a basic 
diamond structure but are different on alternating 
sites. This is called a zincblende lattice and is 
typical of the III-V compounds.  The diamond 
lattice can be thought of as an fcc structure with 
an extra atom placed at a/4+b/4+c/4 from each of 
the fcc atoms.
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The Silicon Atomic Structure

Silicon: our primary example and focus
Atomic no. 14

14 electrons in three shells: 2 ) 8 ) 4
i.e., 4 electrons in the outer "bonding" shell
Silicon forms strong covalent bonds with 4 

neighbors

Solid            state of matter
Matter             a collection of atoms
Atoms comprise of a central 
positively charged nucleus, and 
negatively charged electrons. 

The motion of the constituents of an atom are 
described by the laws of quantum mechanics. 

The motion of constituents are described by 
the Schrödinger equation. 

Schrödinger equation is defined by 

H ψ=E ψ , 
where H is called the Hamiltonian.
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Energy Band Diagrams
• Quantization of the atom
• Lone atoms act like infinite potential  

wells in which bound electrons oscillate  
within allowed states at particular well  
defined energies

• The Schrödinger equation is used to  
define these allowed energy states

2∂ Ψ
+ [E −V (x)]Ψ = 02me

∂x 2


E = energy,  V = potential energy
• Solutions are in the form of waves  

oscillating at quantized energies and  
related propagation constants defined  
by the differential equation
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Quantum Mechanics and Molecular Binding
• All atoms have specific bound states
• Molecular binding requires filling of these allowed states in  

such a way as to reduce the amount of energy required to fill  
various states
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Effect of Periodicity in Solid Systems

• The compression of quantum states  
into periodic structures results overlap  
of available quantum states

• Pauli exclusion principle states that:
– electrons must fill available  

quantum states from lowest to  
highest potential

– allowed states are defined by  
orbital solutions obtained from  
quantum mechanics

• As atoms come closer together, orbitals  
become shared allowing electrons to fill  
exchange orbitals between the  
materials

• As the number of atoms brought into  
proximity increases degeneracies occur  
resulting in allowable energy bands

• These bands can be modeled using the  
Kronig Penning model with solutions  
that give an electron Density of States
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Quantized States in Solid Li

Allowable Quantum States in Li Overlapping Orbitals in 1 mol of Li
1 mol = 1023 atoms
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Metal Energy Bands
• Overlapping energy degeneracies in metals
• Lead to continuous energy bands
• Statistically stable energy for electrons lies within these overlapping bands and only slight  

excitations lead to conduction b/c the variation in allowable quantum states is nearly  
continuous
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Semiconductors
• Semiconductors are distinctly different
• In Semiconductors there is no overlapping  

degeneracy between conduction and  
valence bands

• The result is a bandgap, Eg, that is present  
between bound and conducting electron
states

• The width of the conduction band is called  
the electron affinity,χ

• At energies above the Ec+ χ electrons can
be ejected from the material

• In silicon for example, all of the valence  
electrons are used to fill the binding  
orbitals located in the valance band

Eg  = Ec  −Ev
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Bandgap Basics
• The application of excess energy (light, thermal, electrical) or the addition of extra electrons into  

the system results in conduction by moving electrons into the conduction band
• In thermal equilibrium electrons can be excited into the conduction band leaving a hole in the  

valance band
• Holes and electrons propagate in throughout the material via quantum mechanical tunneling from  

site to site randomly
• The application of a driving potential forces electrons and holes to migrate in opposite directions  

based on charge density
• The effective mass of holes ,mh*, and electrons me* is a quantum mechanical quantity relating the  

inertial resistance to acceleration of each under a driving force due to electric fields within the  
periodic structure
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Thermal Considerations and
Recombination

 The presence of a finite band gap requires that at T=0K, there is no electrical conduction within

the material

 As temperature increases, more and more free  energy present in the semiconductor allows for the  

population of conduction bands with electrons.

 Due to atomic vibrations that increase with  temperature allowing for excitation of  

conduction band energy states

 Production of electrons in the conduction  band due to increased free energy generates  an 

equal number of holes in the valance band

 This is referred to as thermal generation

 When a wondering electron crosses a site within  the lattice where a hole is present, the electron  

releases its free energy and binds to the atoms  valence band.  This process is called recombination

 Electron concentration, n, within the conduction  band

 Hole concentration, p, within the valance band
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Semiconductor Statistics: Density of States

• Many important properties of semiconductors are described by considering electrons in the  
conduction band and holes in the valance band.

• Density of States (DOS), g(E), represents the number of electronics states in a band per unit  
energy per unit volume of the crystal

• We use quantum mechanics (QM) to calculate the DOS by considering how many electron  
wave functions there are within a given energy range per unit volume

• According to QM

where E = E – Ec for electrons in the  
conduction band
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DOS (Cont…)
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Semiconductor Statistics: Fermi Dirac Function

• The Fermi Dirac Function, f(E), is the probability of finding  
an electron in a quantum state with energy E. This  
function is a fundamental property of a collection of  
interacting electrons in thermal equilibrium

• Where kb is the Boltzmann constant, T is the  
temperature in Kelvin, Ef is the Fermi energy

• Fermi Energy =  energy required to fill all states at T=0K
• The Fermi energy is the chemical potential (or Gibbs

free energy) per electron in the material
• Changes in the Fermi energy across the material

represent the electrical work input or output per
electron

• In the equilibrium state of a semiconductor with no  
light or applied voltage, the change in Fermi energy, ∆Ef
= 0, AND Ef must be uniform throughout the system

• Note: The probability of a finding a hole is 1-F(E)
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where

is the effective density of states at the  
conduction band edge

Conduction Band Concentrations
in a Semiconductor

• Carrier concentration applet for variable  
temperature

• Note: DOS, g(E), remains constant. The carrier  
concentration varies as a function of F(E)

Electron concentration in the conduction band
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Valance Band Solution

where

is the effective density of states at the  
valance band edge

hole concentration in the valence band

Important note: The only assumptions  
specific to these derivations for n and p is  
that the Fermi energy is only a few kBT  
away from the band edges
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Intrinsic Semiconductor
• Intrinsic semiconductors are pure crystals where n = p
• It can be shown that in an intrinsic semiconductor that the Fermi level, Efi, is above Ev and

located in the bandgap at

• Typically Nc and Nv values are comparable and both occur in the logarithmic term so that Efi is  
approximately in the middle of the bandgap as shown in previous slides

• The product of n and p in an intrinsic semiconductor provides the mass action law

• Where Eg =Ec – Ev is the bandgap energy, ni
2 is the constant that depends on temperature and  

material properties, and not the Fermi energy.
• Thermal velocity of electrons in an intrinsic semiconductor at room temperature

 Nv 

 N 
E fi  =Ev + Eg − kBT ln

c 2 2
1 1

2
c v i

B

Eg

 = n


np = N N e

− k  T



s
v2

m*v2

2
3e

2

≈ 105 m

= kBTE =
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Extrinsic Semiconductors
• Semiconductors with small amounts of impurities
• These impurities increase/decrease the probability of obtaining an electron in the conduction band
• N-type semiconductors

– extrinsic semiconductors with excess electrons
– Arsenic added to silicon to which have one more valence (available electron) than silicon
– Arsenic is called a donor it donates electrons to the system
– For Nd  >> ni, at room temperature, the electron concentration inside the conduction band will

be nearly equal to Nd  such that Nd=n
(a)

As +

e–

x

As+ As+ As+ As+

Ec

Ed

CB

Ev

~0.05eV

As atom sites every 106 Si atoms

Distance into  
crystal

(b)
Electron Energy

(a) The four valence electrons of As  
allow it to bond just like Si but the fifth  
electron is left orbiting the As site. The  
energy required to release to free fifth-
electron into the CB is very small.

(b) Energy band diagram for an n-type Si doped  
with 1 ppm As. There are donor energy levels just  
below Ec  around As+ sites.

d e

h
d

i
d e N

n µ

ο ≈ eN µ

ο = eN µ +e

– Number of holes,  
p =
ni

2/NdConductivity, 

– σ, depends  on drift 
mobilities,µ, of  
electrons and holes

ο = enµe  + epµh 2

18



Extrinsic Semiconductors…..
• Semiconductors with small amounts of impurities
• These impurities increase/decrease the probability of obtaining an electron in the conduction band
• P-type semiconductor

– Extrinsic with less electrons
– Adding Boron (+3) metal which has one fewer electron and yields an increased hole per doped

B–
h+

B–

Ev

Ea

B atom sites every 106 Si atoms

x Distance  
intocrystal

~0.05eV

B– B– B–

h+

VB

Ec

Electron energy

(a) (b)

(a) Boron doped Si crystal. B has only three valence electrons. When it  substitutes 
for a Si atom one of its bonds has an electron missing and therefore a  hole. (b) 
Energy band diagram for a p-type Si doped with 1 ppm B. There are  acceptor 
energy levels just above Ev around B– sites. These acceptor levels accept
electrons from the VB and therefore create holes in the VB.

atom
– Boron is called an acceptor

– For Na >> ni, at room  
temperature, the hole  
concentration inside the  
valence band will be nearly
equal to Na such that Na=p

– Electron carrier concentration 
is determined by the mass
action law as n = n2/Ni a

– This value is much smaller than
p and thus the conductivity is

a hgiven by σ = eN µ
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Simplified Band Diagrams for Semiconductors
• Notice in the chart below that the Fermi level changes as a function of doping
• Notice also that carrier concentration (holes or electrons) also changes as a function of doping
• N-type:  majority carriers are electrons and minority carriers are holes
• P-type:  majority carriers are holes and minority carriers are electrons
• Mass action law still valid: nnopno=ni

2 where no is the doped equilibrium carrier concentration

CB

Ec  
EFn

Ev

Ec

EFp 
Ev

Ec

EFi

Ev

VB

(a) (b) (c)

Energy band diagrams for (a) intrinsic (b) n-type and (c) p-type  
semiconductors. In all cases, np = ni2. Note that donor and acceptor  
energy levels are not shown.
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Ionization Energy

◆ Ionization energy is the energy required to elevate the donor electron into  
the conduction band and hole into the valence band.
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Compensation Doping
• Doping of a semiconductor with both donors and acceptors to control properties
• Provides precise control of carrier concentrations

For p-type    po = Na − Nd ,    For n-type no = Nd − Na

• Utilized extensively where p and n type doping of different regions meet. 
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Compensated Semiconductor…….
◆ If we assume complete ionization, Nd

+ = Nd and Na 
- = Na, then

◆ If Na = Nd = 0, (for the intrinsic case), ⇒ no = po

◆ If Nd >> Na, ⇒ no = Nd

◆ If Na > Nd, is used to

calculate the conc. of holes in valence band

o

i
n

n2
no + Na = po + Nd , recall po =

2
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(Na− Nd)⇒ po =
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Compensated Semiconductor……
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Degenerate and Nondegenerate Semiconductors

c v

is only valid when n << Nc
• Semiconductors where n<< N  and p << N  are termed

nondegenerate
• When a semiconductors has been excessively doped

with donors
– then n may be 1019 – 1020 /cm3

n > N  or P>Nvp
– N is then comparable to Nc and the Pauli  

exclusion principle comes into play
– In this case Fermi Dirac statistics are required
– Degenerate semiconductor

CB

g(E)

• In nondegenerate semiconductors the number of  
states in the carrier band far exceeds the number of  
electrons

• Thus the probability of two electrons trying to occupy  
the same allowed state is virtually zero

• This means that the Pauli exclusion principle can be  
neglected and the DOS is represented only by  
Boltzmann statistics

• In this case,
E

Impurities  
forming a band

(a) (b)

EFp

Ev

EFn

Ev

Ec

CB
Ec

VB

(a) Degenerate n-type semiconductor. Large number of donors form a  
band that overlaps the CB. (b) Degenerate p-type semiconductor.
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Energy Band Diagram in an Applied Field

V

E  − eV

A

B
n-T ype Semiconduct or

PE(x) = –eVElect ron Energy

Ec − eV

F

Ev−eV

V(x), PE(x)
V(x)

x

E

Ec  
EF

Ev

Energy band diagram of an n-type semiconductor connected to a
voltage supply of V volts. The whole energy diagram tilts because
the electron now has an electrostatic potential energy as well. 26



• The time independent Schrödinger equation for a given potential function is written as

Potential Theory: A More Precise Band Diagram

∇Ψ + 2me [E −V (x)]= 0


2 with a general solution of

r

If the potential energy, V, is periodic in nature as that shown below, then one can write it as
V (x) =V (x +ma) m =1,2,3,...

PE(r)
PEof the electron around an  
isolatedatom

x

When N atoms are arranged to form 
the crystal then there is an overlap  
of individual electron PE functions.

V(x)

x = Lax = 0 2a 3a

0
aa

Surface Crystal

PEof the electron, V(x), inside  
the crystal is periodic with a  
period a.

The electron potential energy (PE), V(x), inside the crystal is periodic with the same  
periodicity as that of the crystal, a. Far away outside the crystal, by choice,V = 0 (the  
electron is free and PE = 0). 27
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E-K Bandgap Diagram (Bloch Wavefunction)

• The solution is called a Bloch Wavefunction

Ψ (x) =U (x) e jkx  
k k

– where U(x) is a periodic function that 
depends on V(x). The two share the same  
periodicity

• The wavevector, k, in this solution acts like  
a quantum number and has values from –
π/a to π /a

• Momentum, p,  in the crystal is ħk
• External forces:

F = qE = dp = d (k)
dt dt
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Direct vs. Indirect Bandgap

–k

Direct Bandgap

(a)GaAs

VB

Indirect Bandgap,Eg

kk –k

k

(b)Si

• Direct Bandgap
– Base of the conduction band is matched to the max height of the valence band
– Recombination through the emission of a photon (Light!!!!!!)

• Indirect Bandgap
– direct recombination would require a momentum change (not allowed)
– Recombination centers (lattice defects) are required to recombine  CB to VB bands
– The result is a phonon emission (lattice vibration) that propagates across the lattice

E E E

CB

k–k

(c) Si with arecombination center

Eg

Ec

Ev

CB E c

cb           E
v

kvb VB

CB

Er
Ec

Phonon
Ev

Photon

VB

(a) In GaAs the minimum of the CB is directly above the maximum of the VB. GaAs is  
therefore a direct bandgap semiconductor. (b) In Si, the minimum of the CB is displaced from  
the maximum of the VB and Si is an indirect bandgap semiconductor. (c) Recombination of  
an electron and a hole in Si involves a recombination center .
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 The net flow of the electron and holes in a semiconductor
will generate current.

 The process which these charged particles move is call
transport.

 Two basic transport : Drift & Diffusion.

 The carrier transport phenomena are the foundation for
finally determining the current-voltage characteristics of
semiconductor devices.
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Carrier Drift
 Transport : The process which charged particles ( holes or electrons) 

are move.
 Understanding  of the electrical properties ( I-V properties)
 Basic current Equation :
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Carrier Drift….

◆ When an E-field (force) applied to a semiconductor, electrons and  
holes will experience a net acceleration and net movement, if there are  
available energy states in the conduction band and valence band. The  
net movement of charge due to an electric field (force) is called “drift”.

◆ Mobility: the acceleration of a hole due to an E-field is related by

If we assume the effective mass and E-field are constants, the we can  
obtain the drift velocity of the hole by

where vi is the initial velocity (e.g. thermal velocity) of the hole and t is  
the acceleration time.

dtpF = m* dv = qE

p

2

d im*v = qEt + v ∝ t, E
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Drift Current Density
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Drift Current Density……
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Drift Current Density……
The drift current due to the motion of electrons is

n

J = −e∑vi
i=1

where n is the number of electrons per volume and vi is the electron
velocity in the crystal.

37



E = 0

◆ In semiconductors, holes/electrons are involved in collisions with  
ionized impurity atoms and with thermally vibration lattice atoms. As  
the hole accelerates in a crystal due to the E-field, the velocity/kinetic  
energy increases. When it collides with an atom in the crystal, it lose s  
most of its energy. The hole will again accelerate/gain energy until is  
again involved in a scattering process.

3
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Mobility Effects…..
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Mobility Effects……
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Mobility Effects……..
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Mobility Effects……
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Mobility Effects….
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Mobility Effects……
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Mobility Effects….
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Mobility Effects…..
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Mobility Effects…..
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Mobility Effects
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Conductivity
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Conductivity……
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Conductivity…..
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Conductivity / resistivity….

Upto certain region current increases linearly with 
the increase of voltage. After that limit of voltage 
current saturates because of velocity saturation.    

Conductivity first increases with the increase of temperature as both mobility and
concentration increase. After that conductivity decrease as concentration remains
constant (extrinsic region) but mobility decreases due to lattice scattering. Then the
conductivity again starts rising in this region )
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Velocity Saturation
So far we assumed that mobility is indep. of E-field, that is the drift velocity is in
proportion with the E-field. This holds for low E-filed. In reality, the drift velocity
saturates at ~107 cm/sec at an E-field ~30 kV/cm. So the drift current density will
also saturate and becomes indep. of the applied E-field.

For GaAs, the electron
drift velocity reaches a
peak and then decreases as
the E-field increases.
⇒negative differential
mobility/resistivity, which
could be used in the
design of oscillators.

This could be understood by 
considering the E-k diagram of GaAs.
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Velocity Saturation of GaAs….
In the lower valley, the effective
mass of the electron m * = 0.067mo.
The small effective mass leads to a
large mobility. As the E-field
increases, the energy of the
electron increases and can be
scattered into the upper valley,
where the effective mass is
0.55mo. The large effective mass
yields a smaller mobility.

n

o

The intervalley transfer mechanism results in a decreasing average drift velocity of 
electrons with E-field, or the negative differential  mobility characteristic.
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Carrier Diffusion
Diffusion is the process whereby particles flow from a region of high concentration
toward a region of low concentration. The net flow of charge would result in a
diffusion current.
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Carrier Diffusion…..
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Diffusion Current Density

◆ The electron diffusion current density is given by Jndif = eDndn/dx,  
where Dn is called the electron diffusion coefficient, has units of cm2/s.

◆ The hole diffusion current density is given by Jpdif = -eDpdp/dx,  where Dp is 
called the hole diffusion coefficient, has units of cm2/s.

◆ The total current density composed of the drift and the diffusion current
density.

1-D

or 3-D

dp
n dx p dxn x p xJ = enµ E + epµ E + eD dn −eD

J = enµnEx + epµ pEx + eDn∇n − eDp∇p 57
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Graded Impurity Distribution
◆ In some cases, a semiconductors is not doped uniformly. If the

semiconductor reaches thermal equilibrium, the Fermi level is constant
through the crystal.

◆ Since the doping concentration decreases as x increases, there will be a
diffusion of majority carrier electrons in the +x direction.

◆ The flow of electrons leave behind positive donor ions. The separation of
positive ions and negative electrons induces an E-field in +x direction to
oppose the diffusion process.
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Induced E-Field

that is, if the intrinsic Fermi level changes as a function of distance  
through a semiconductor in thermal equilibrium, an E-field exists.

◆ If we assume a quasi-neutrality condition in which the electron  
concentration is almost equal to the donor impurity concentration, then

◆ So an E-field is induced due to the non-uniform doping.

dx dx e dx
◆ The induced E-field is defined as Ex = −

dφ = − d (EFi /(−e)) = 1 dEFi

dx

dx dx

nkT

d

x

d F i

1 dNd(x)
Nd (x) dx

 e   N (x) 
⇒ E = − kT 

⇒ d (EF − Ei ) = d(−Ei ) = kT dNd(x)


 i 

 Nd (x)
≈ N  (x) ⇒ E − E  = kT ln

 EF −Ei no ≈ ni exp
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◆ The Electric potential φ is related to electron potential energy by charge 
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Einstein Relation
◆ Assuming there are no electrical connections between the

nonuniformly doped semiconducotr, so that the semiconductor is in
thermal equilibrium, then the individual electron and hole currents
must be zero.

◆ Assuming quasi-neutrality so that n ≈ Nd(x) and

◆ Similarly, the hole current Jp = 0

n dxn n x⇒ J = 0 = enµ E + eD dn

dx
dN (x)1 dN (x)

dx
dN (x)

d
n

d

d
n n d

d

= kT - - - -Einstein relation⇒ Dn

+ eD) e  N (x) dx 

µn e

⇒ 0 = −e µ N  (x  kT 

Jn = 0 = eNd (x)µnEx + eDn

p

⇒ Dp kT
µ = e
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Einstein Relation……..

◆ Einstein relation says that the diffusion coefficient and mobility are not
independent parameters.

Typical mobility and diffusion coefficient values at T=300K  
(µ = cm2/V-sec and D = cm2/sec)

µn µpDn Dp

Silicon  
GaAs  
Germaium

1350
8500
3900

35
220
101

480
400
1900

12.4
10.4
49.2
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