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Solid state structures

Cubic lattices: Unit cells for types of cubic lattice structure.
a I a E a i
Simple cubic (sc) Body-centered cubic (bcc) Face-centered cubic (fcc)

Diamond lattice unit cell, showing the four nearest neighbour structure

The basic lattice structure for many important
semiconductors is the diamond lattice, which is
characteristic of Si and Ge. In many compound
semiconductors, atoms are arranged in a basic
diamond structure but are different on alternating
sites. This is called a zincblende lattice and is
typical of the TIT-V compounds. The diamond
lattice can be thought of as an fcc structure with
an extra atom placed at a/4+b/4+c/4 from each of
the fccatoms.
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The Silicon Atomic Structure

Solid mm)state of matter
Matter  m=m)a collection of atoms

Atoms comprise of a central
positively charged nucleus, and

negatively charged electrons.

The motion of the constituents of an atom are

described by the laws of quantum mechanics.

The motion of constituents are described by
the Schrodinger equation.

Schrodinger equation is defined by Silicon: our primary example and focus
Atomic no. 14
Hy=E Y, 14 electrons in three shells: 2) 8) 4
where H is called the Hamiltonian. i.e., 4 electrons in the outer "bonding" shell
Silicon forms strong covalent bonds with 4
neighbors



Energy Band Diagrams

Quantization of the atom !

Lone atoms act like infinite potential
wells in which bound electrons oscillate
within allowed states at particular well

defined energies o

The Schrédinger equation is used t0  Energy levels in the well

define these allowed energy states

Flectron

Y(x) = sin{nme/a)
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Quantum Mechanics and Molecular Binding

All atoms have specific bound states

. . . - . H H H H
Molecular binding requires filling of these allowed states in N /k/\ i | N
o : : a A I a
such a way as to reduce the amount of energy required to fill i o M, T .
various states . ) | o (RIS =\ e
i e oo Y Y .
@@ e \E | PR
- - b L Fig. 4.2: (a) Electron probability distributions for bonding and
5."-1111116“:‘1{[ A B [ hY : antibonding orbitals, ¢, and ¢~ (b) Lines represent contors of
. ) * i constant probability.
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Fig. 4.7: (a) Three molecular orbitals from three v, atomic orbitals
overlapping in three different ways. (b) The energies of the three

molecular orbitals labeled as a, b and ¢ in a system with 3 H atoms 5
(highly simplified).



Effect of Periodicity in Solid Systems

The compression of quantum states
into periodic structures results overlap
of available quantum states

Pauli exclusion principle states that:

— electrons must fill available
guantum states from lowest to
highest potential

— allowed states are defined by
orbital solutions obtained from
guantum mechanics

As atoms come closer together, orbitals
become shared allowing electrons to fill
exchange orbitals between the
materials

As the number of atoms brought into
proximity increases degeneracies occur
resulting in allowable energy bands

These bands can be modeled using the
Kronig Penning model with solutions
that give an electron Density of States

(a) (b)

Encrgy Band

] Between Planes of lons

(d)
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Quantized States in Solid Li

Allowable Quantum States in Li

System of N Li Atoms
:3 - l)Ulaol_icl("'\‘r) 2p
29 1(EF > [ [ |E, [ SYSTEM
B _' E 3 | NLiAtoms
= = e NN = = ——1;1‘_— N Electrons
g g ;_1 N g =% 25 N Orbitals
= ; EB = ________;"_3::'_- ¥ D) 2N States
50! -
; _.:b {EI_ Lls .
! Ls Interatomic
] T - :
” . Separation (R)
Solid Isolated Atoms

Fig. 4.8: The formation of a 2s-energy band from the 2s-orbitals
when N Li atoms come together to form the Li solid. The are N 2s-
electrons but 2N states in the band. The 2s-band therefore is only

half full. The atomic ls orbital is close to the Li nucleus and

remains undisturbed in the solid. Thus each Li atom has a closed K-

shell (full 1s orbital).

Overlapping Orbitals in 1 mol of Li

1 mol = 1023 atoms

N i T Free electron
B L S RS e E =0 (Vacuum Level)
Es,
£ =) t.lp
: JI —
& = Zs
3 5
(| e .
;)& »*: - E 1s
; Interatomic
! l Separation (R)
R=a R=ox
The Solid Isolated Atoms

Fig. 4.9: As solid atoms are brought together from infinity, the
atomic orbitals overlap and give rise to bands. Outer orbitals
overlap first. The 3s orbitals give rise to the 35 band, 2p orbitals to
the 2p band and so on. The various bands overlap to produce a
single band in which the energy is nearly continuous.



Metal Energy Bands

* Overlapping energy degeneracies in metals
* Lead to continuous energy bands

e Statistically stable energy for electrons lies within these overlapping bands and only slight
excitations lead to conduction b/c the variation in allowable quantum states is nearly

continuous

Overlapping
energy bands

gy

Electron Ener

| =81,

Solid Atom

Fig. 4.10: In a metal the various energy bands overlap to give a
single band of energies that is only partially full of electrons. There
are states with energies up to the vacuum level where the electron is
free.

Electron outside

Electron Energy

the metal
Vacuum "
------------- 0 ——= 726V
Level
Electron inside the
metal Em" 25eV > 4.7V
Em
E g i 72eV >0

Fig. 4.11: Typical electron energy band diagram for a metal

All the valence electrons are in an energy band which they
only partially fill. The top of the band is the vacuum level
where the electron is free from the solid (PE = 0).
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Semiconductors

e Semiconductors are distinctly different

) (€) (@

* In Semiconductors there is no overlapping
degeneracy between conduction and
valence bands

e Theresultisabandgap, E,, thatis present
between bound and conducting electron

states Eg = EC _EV
e The width of the conduction band is called
the electron affinity,

H Si CRYSTAL

¢ At energles d bove the Ec+ X eIeCtrons can Fig. 4.17: (2) Formation of energy bands in the 81 crystal first involves

be eJeCted from the mate r|a | hybridization of 35 and 3p orbitals to four identical whyb orbitals which

make 109.5° with each other as shown in (b). (c} whyb orbitals on two
° In Silicon for example’ a” Of the Valence neighboring 8i atoms can overlap te form Y or ¥, The first is a bonding
. . . orbital (full) and the second is an antibondiong orbital {cmpty)_. In the crystal
electrons are used to f| ” the b| nd I ng ¥y overlap to give the valence band (full) and v, overlap to give the
. . conduction band (empty).
orbitals located in the valance band Flechrom aicr s

T.

E 4y

EPEE F

E,
n=3 hv=> f;ﬂ
|
n=2 E

/J

- Electron energy - =———# -

I
I
I
I
|
- Do e (a) (b)
1 e n = I-_; Wi P
"o Interatomic distance == Fig. 5.3: (a) A photon with an energy greater than £, can excite an
Figure 3-3 Schematic showing the splitting of three energy states into allowed bands of electron from the VB to the CB. (b) When a photon breaks a Si-Si 9

energies. bond, a free electron and a hole in the Si-5i bond is created.



Bandgap Basics

* The application of excess energy (light, thermal, electrical) or the addition of extra electrons into
the system results in conduction by moving electrons into the conduction band

* Inthermal equilibrium electrons can be excited into the conduction band leaving a hole in the
valance band

* Holes and electrons propagate in throughout the material via quantum mechanical tunneling from
site to site randomly

 The application of a driving potential forces electrons and holes to migrate in opposite directions
based on charge density

*  The effective mass of holes ,m,*, and electrons m_* is a quantum mechanical quantity relating the
inertial resistance to acceleration of each under a driving force due to electric fields within the
periodic structure

Electron energy

T.

E+y

CB (empty at T=0)
=11]
% E. T “Band gap”
g Thermal £, Orrange of
§ excitation J forbidden electron
o | Ev energies; Eg,,

(a) (b)

VB (full at T=0)

Fig. 5.3: (a) A photon with an energy greater than £, can excite an
electron from the VB to the CB. (b) When a photon breaks a Si-51
bond, a free electron and a hole in the Si-Si bond is created.
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Thermal Considerations and
Recombination

The presence of a finite band gap requires that at T=0K, there is no electrical conduction within

the material

As temperature increases, more and more free energy present in the semiconductor allows for the

population of conduction bands with electrons.

v" Due to atomic vibrations that increase with temperature allowing for excitation of

conduction band energy states

v Production of electrons in the conduction band due to increased free energy generates an

equal number of holes in the valance band
v' This is referred to as thermal generation

When a wondering electron crosses a site within the lattice where a hole is present, the electron

releases its free energy and binds to the atoms valence band. This process is called recombination
Electron concentration, n, within the conduction band

Hole concentration, p, within the valance band



Semiconductor Statistics: Density of States

Many important properties of semiconductors are described by considering electrons in the
conduction band and holes in the valance band.

Density of States (DOS), g(E), represents the number of electronics states in a band per unit
energy per unit volume of the crystal

We use quantum mechanics (QM) to calculate the DOS by considering how many electron
wave functions there are within a given energy range per unit volume

According to QM rr:
2 _ #1202 -~ In here nfmz:-nf:. n?
E = 1(JI?+H +!i‘2] L./ I i
Smi~ " o 8ml’? Vol = ":Fi'r""-t )

=

Sml . “n-
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g(L) = (87

=

1/2

)32 g2
E

where E = E — E_for electrons in the

conduction band M

Fig. 4.22: In three dimensions, the volume defined by a sphere of
radius &' and the positve axcs m,, A, and m,, 15 all the possible
combinations of poisitive my, B, and a5y, values winch sabsfy
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Semiconductor Statistics: Fermi Dirac Function

The Fermi Dirac Function, f(E), is the probability of finding
an electron in a quantum state with energy E. This
function is a fundamental property of a collection of
interacting electrons in thermal equilibrium

1

1+exp(E_E*')

J(E) =

kT
Where k, is the Boltzmann constant, T is the
temperature in Kelvin, Eis the Fermi energy

Fermi Energy = energy required to fill all states at T=0K
The Fermi energy is the chemical potential (or Gibbs
free energy) per electron in the material

Changes in the Fermi energy across the material
represent the electrical work input or output per
electron

In the equilibrium state of a semiconductor with no
light or applied voltage, the change in Fermi energy, AE;
= 0, AND E;must be uniform throughout the system

Note: The probability of a finding a hole is 1-F(E)

LLLLLILIT (T

LTI I'I'liFIF;.IIIII mn
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)
[IJ
e
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Conduction Band Concentrations
in @ Semiconductor

e Carrier concentration applet for variable At large energies where E-E.>>kT

temperature (note: kT=0.025eV at 293K)
FOE) = 1 N —(E =E_}
* Note: DOS, g(E), remains constant. The carrier (£)= E-E.\ . A\ &r
. . . exp +1
concentration varies as a function of F(E)

Electron concentration in the conduction band

(a) (b) (c) (d)
HE) = (B-E )"

E B E Ec+x Ec+x
fece N f f~ n= [ n,(EYdE = [ gcs(E)f(E)dE
< For Area :_rnE{E}dE =n Ef. Ef.
i l:-li.:l:t'l'ul:l! P 8»\/7 " (b1 E )
06 0 0e® n T . 2 — Ly :
e Ef o n= f(lz E.) “exp-|——L|dE
..... h’ . kT
E, [5eete el “C
Area=p k
where N = 2( 25“”;’”]
‘ h-
gE) B n{E) or px(E) is the effective density of states at tITg

conduction band edge



Valance Band Solution

Atenergies where Eg-E >>kT  (i.e. Eis below Eg,
hole concentration in the valence band

F(E)=—7 115 501 =1 E, E,
e p=J PAEYE = [ g, (E)1- £ (E)JaE
0 0
|Large negative axponentia | (E’ o E )
p =N, exp| - ———
So, the probability of occupancy far below E¢ is 100%. kT
3/2
Note that the probability of non-occupancy is 1-F(E) 20m kT
(or the probability of a state being empty) where Nl_, =2 f >
1

is the effective density of states at the
Important note: The only assumptions valance band edge
specific to these derivations for n and p is
that the Fermi energy is only a few kgT
away from the band edges
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Intrinsic Semiconductor

Intrinsic semiconductors are pure crystals wheren =p

located in the bandgap at 1 ( N )|
v)

It can be shown that in an intrinsic semiconductor that the Fermi level, E, is above E, and
1 C
Eq=E, +-E;—ZksT I
2 % 2 (N
Typically N.and N, values are comparable and both occur in the logarithmic term so that Efi is
approximately in the middle of the bandgap as shown in previous slides

The product of n and p in an intrinsic semiconductor provides the mass action law
o=
T) _ h2

np=N_N_g' ,

Where E,=E.—E, is the bandgap energy, n?is the constant that depends on temperature and
material properties, and not the Fermi energy.

Thermal velocity of electrons in an intrinsic semiconductor at room temperature

m’v? 3
E = £ = _kBT
2 2
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Extrinsic Semiconductors

e Semiconductors with small amounts of impurities
* These impurities increase/decrease the probability of obtaining an electron in the conduction band
* N-type semiconductors

— extrinsic semiconductors with excess electrons

— Arsenic added to silicon to which have one more valence (available electron) than silicon

— Arsenic is called a donor it donates electrons to the system

— For N4 >> n;, at room temperature, the electron concentration inside the conduction band will
be nearly equal to N4 such that N4=n

— Number of holes, N A A A
o= A
n;2/N4Conductivity, / 'A ‘ . ‘ 0
— o, depends on drift @&..!
mobilities,, of T 1T IT1
electrons and holes . ! . . . ’
e0000:

0= enye+epyz B N

= eNdlue +e — N luh As atom sites every 106 Siatoms

(a) The four valence electrons of As (b) Energy band diagram for an n-type Si doped

d allow itto bond just like Si but the fifth : .
electron is left orbiting the As site. The \évé}gv\l, %przrﬁjhgkfgfsa;gsdonor energy levels just
. :

O~ eN d/ue energy required to release to free fifth-
electron into the CB is very small. 18

(b)

Electron Energy

Distance into
crystal




Extrinsic Semiconductors.....

e Semiconductors with small amounts of impurities
* These impurities increase/decrease the probability of obtaining an electron in the conduction band

* P-type semiconductor

Extrinsic with less electrons

Adding Boron (+3) metal which has one fewer electron and yields an increased hole per doped

atom
Boron is called an acceptor

For N, >> n;, at room
temperature, the hole
concentration inside the
valence band will be nearly
equal to N, such that N_=p
Electron carrier concentration
is determined by the mass
action law asn=n?/N,

This value is much smaller than
p and thus the conductivity is
givenby oo = eN 1z,

Electron energy

A

B atom sites every 10° Si atoms

R

J’ > X Distance

)

(a)

intocrystal

' ------ f ------- ' ------- f ------ ‘-~0.056V

+
.g)h...g... oY 1 1 Jof I I |
00000000000000000 \\B
000000000000 006000
000000000000 OOGOOY

(b)

(a) Boron doped Si crystal. B has only three valence electrons. When it substitutes
for a Si atom one of its bonds has an electron missing and therefore a hole. (b)
Energy band diagram for a p-type Si doped with 1 ppm B. There are acceptor
energy levels just above E, around B- sites. These acceptor levels accept

electrons from the VB and therefore create holes inthe VB.
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Simplified Band Diagrams for Semiconductors

Notice in the chart below that the Fermi level changes as a function of doping

Notice also that carrier concentration (holes or electrons) also changes as a function of doping
N-type: majority carriers are electrons and minority carriers are holes

P-type: majority carriers are holes and minority carriers are electrons

Mass action law stillvalid:  n_ p,,=n2 where no is the doped equilibrium carrier concentration

CB
Ec e o o o EC 00000000 Ec e O
E EFn ----------------
Fi EFp
EV E Ev
O O O O v O O O0O0O0O000
VB

(a) (b) (c)

Energy band diagrams for (a) intrinsic (b) n-type and (c) p-type
semiconductors. In all cases, np = nj2. Note that donor and acceptor

energy levels are not shown. 20



lonization Energy

€ lonization energy is the energy required to elevate the donor electron into
the conduction band and hole into the valence band.

Table 4-3 Impurity ionization energies in silicon

and germanium

Semiconductor

Impurity Si Ge
Donors
Phosphorus 0.045 eV 0.012 eV
Arsenic 0.05 0.0127
Acceptors
Boron 0.045 0.0104
* Aluminum 0.06 0.0102

Table 4-4 Impurity ionization energies in gallium
arsenide

Donor impurity Ionization energy (eV)
Selenium 0.0059
Tellurium 0.0058
Silicon 0.0058
Germanium 0.0061

Acceptor impurity
Beryllium 0.028
Zinc 0.0307
Cadmium 0.0347
Silicon 0.0345
Germanium 0.0404
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Compensation Doping

Doping of a semiconductor with both donors and acceptors to control properties
Provides precise control of carrier concentrations

For p-type p,=N, — Ny, Forn-typeN, = Nd — Na

Utilized extensively where p and n type doping of different regions meet.

Total electron

concentration
Thermal ( Donor
electrons no electrons
—ey /_/\__.\

7 EE I
A\ J J
Y Y
Unionized Nit=(Ng-—nq)
donors Ionized donors
------------------------------ Eg
p— Unionized Ni=(N,—s)
A ‘FVCO dﬁ"lﬂ’ acceptors Ionized acceptors
dycdvms Bl e 7
+L-! ;"ﬂffj .
T Hhe valény band &8
Mv! ann;}]:"l? B
st of the i Thopen (
Total hole
) }UhS concentration

Figure 4-14 Energy-band diagram of a compensated semiconductor showing ionized and
un-ionized donors and acceptors.
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Compensated Semiconductor.......

€ If we assume complete ionization, Ng* = Nyand N,- = N, then

2
n,+ N,=p,+ Ny, recall p,= "
2

r‘|O

n;
n+N,= = +N, =n2—(N,-N_)n, —n?=0
nn

2
= N, :(Nd_zNa)-l—\/(Nd;Naj -I-ni2

@ If N,=Ny=0, (for the intrinsic case), = n,= p,
& IfN;>> N, = n,= Ny

¢ IfN,>N, :po_w \/( a2 dJ IS used to

2
calculate the conc. of holes in valence band
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Compensated Semiconductor......

Intrinsic
electrons
f—A_\
IR S N S . _
) E
4 + + + + + + & +
Jd 1 1 J\ J
Y Y
Ionized donors Unionized donors
B i i ettt EFi
> A few donor electrons
annihilate some
intrinsic holes

——
?

Netp, = e

Fi{?dure 4-15 Energy-band diagram showing the redistribution of electrons when

added.

sk Extrinsic

Partial
ionization

3y
=

| R R B R
ST100 200 300 400 500 600 700
TCK)

~16 Electron concentration versus temperature showing the three regions: partial
on, extrinsic, and intrinsic.
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Degenerate and Nondegenerate Semiconductors

In nondegenerate semiconductors the number of
states in the carrier band far exceeds the number of
electrons

Thus the probability of two electrons trying to occupy
the same allowed state is virtually zero

This means that the Pauli exclusion principle can be
neglected and the DOS is represented only by
Boltzmann statistics

In this case, 1

1+ EXP(H)

J(E) =

kT

is only valid when n << N,

Semiconductors where n<< N and p << N are termed
nondegenerate

When a semiconductors has been excessively doped
with donors

— then n may be 101°-102° /cm3
n>N,or P>N,

— Nis then comparable to N.and the Pauli
exclusion principle comes into play

— In this case Fermi Dirac statistics are required
— Degenerate semiconductor

CB /
Impurities
forming aband ——>QSsazazzzzers

9(E) «—

(a)

(b)

(a) Degenerate n-type semiconductor. Large number of donors form a
band that overlaps the CB. (b) Degenerate p-type semiconductor.



Energy Band Diagram in an Applied Field

V(x), PE(X)

A V()
B

Elect ron Energy PE(x) = -eV

Aa

*
[~~~ T ~

v Tl
\ EF—EV
A\

B

n-Type Semiconductor

Energy band diagram of an n-type semiconductor connected to a
voltage supply of V volts. The whole energy diagram tilts because
the electron now has an electrostatic potential energy as well.



Potential Theory: A More Precise Band Diagram

The time independent Schrodinger equation for a given potential function is written as

V¥ + 20 [E-V (0)]= 0

with a general solution of W(x)=Ce™ + D™

If the potential energy, V, is periodic in nature as that shown below, then one can write it as

V(X) =V (x+ ma)
PE(r)
r
V(x) :
0 . ad s—a—
ANYYNY
_IO T 2| 3| — > X

Surface Surface

m=1,2,3,...

PE of the electron around an
isolatedatom

When N atoms are arranged to form
the crystal then there is an overlap
of individual electron PE functions.

PEof the electron, V(x), inside
the crystal is periodic with a
period a.

The electron potential energy (PE), V(x), inside the crystal is periodic with the same
periodicity as that of the crystal, a. Far away outside the crystal, by choice,V = 0 (the

electron is free and PE =0).



E-K Bandgap Diagram (Bloch Wavefunction)

The solution is called a Bloch Wavefunction

The E-k Diagram The Energy Band
_ Diagram
¥ (x)=U(x) ek

where U(x) is a periodic function that CB
depends on V(x). The two share the same )
periodicity E s o
The wavevector, k, in this solution acts like Ef b | Mo
a quantum number and has values from - Valence E = hﬁ
n/ato it /a Band (VB) /Occmedw"

e 2mE VB

’ ﬁz,
I “—>k

Momentum, p, in the crystal is hk —$/a S/a

External forces:

F=qE =

dp _ d (k)

dt

dt

The F-k diagram of a direct bandgap semiconductor such as GaAs. The E-k
curve consists of many discrete points with each point corresponding to a
possible state, wavefunction y;(x), that is allowed to exist in the crystal.

The points are so close that we normally draw the F-k relationship as a
continuous curve. In the energy range F, to E_. there are no points (4(x)

solutions).
© 1999 S.0. Kasap, Optoelectronics (Prentice Hall)



Direct vs. Indirect Bandgap

e Direct Bandgap
— Base of the conduction band is matched to the max height of the valence band

— Recombination through the emission of a photon (Light!!!!11)
* Indirect Bandgap
— direct recombination would require a momentum change (not allowed)
— Recombination centers (lattice defects) are required to recombine CB to VB bands

— Theresult is a phonon emission (lattice vibration) that propagates across the lattice
E

Indirect Bandgap, Eg

kD

>k

'Ec

le:,_Phonon
~ E

Vv

(c) Si with arecombination center

(2) GaAs (b) Si

(@) In GaAs the minimum of the CB is directly above the maximum of the VB. GaAs is
therefore a direct bandgap semiconductor. (b) In Si, the minimum of the CBis displaced from
the maximum of the VB and Si is an indirect bandgap semiconductor. (c) Recombination of
an electron and a hole in Si involves a recombination center .



» Carrier Transport Phenomena
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The net flow of the electron and holes in a semiconductor
will generate current.

The process which these charged particles move is call
transport.

Two basic transport : Drift & Diffusion.
The carrier transport phenomena are the foundation for

finally determining the current-voltage characteristics of
semiconductor devices.



| Carrier Transport |

" 4

v

“Orift” “Oiffusion”
The movement of camrier dus The flow ot carrier due to density

to electric field (E) gradients (dn/dx)
electron divider

E ot 0000 E,f

+ - |
ele.ctrnn ‘
L —

-
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Carrier Drift

0 Transport : The process which charged particles ( holes or electrons)
are move.

0 Understanding of the electrical properties ( |-V properties)
O Basic current Equation :

[ece-li-n-E

e: electronic charged (constant, 1.6 10-19 )
u; mobility { higure of ment that retiect the spaed|

n: carrier concentration

E: Eloctric fiald
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Carrier Drift....

€ When an E-field (force) applied to a semiconductor, electrons and
holes will experience a net acceleration and net movement, if there are
available energy states in the conduction band and valence band. The
net movement of charge due to an electric field (force) is called “drift”.

€ Mobility: the acceleration of a hole due to an E-field is related by
F=m —=qE
"ot

If we assume the effective mass and E-field are constants, the we can

obtain the drift velocity of the hole by
vV, :qE*t+vioct, E

m
p

where v;is the initial velocity (e.g. thermal velocity) of the hole and t is
the acceleration time.
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Drift Current Density

Consider a positively charged hole,

~When electric field, E, is applied, the hole accelerates
F= m;a =eE

m’p; effective mass of hole, a; acceleration, e; electronic charge

»However, hole collides with ionized impurity atoms and with thermally vibrating
lattice atom

Lattice atom
VAN

o | 000000 mm

lonized impurity atom — . ‘ . . \. .
000040
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Drift Current Density......

Lattice atom
hoe | @ @ @ _@ oo —>
].'._.-.. #""".-. -“ E

lonized impurity atom —

—

Holes accelerates
dueto E

i

‘ Gain average drift velocity, v,

Vg = M, E

Involves in collision
(“Scattering Process”)
—? Loses most of energy

H,,; Hole mobility (unit; cm?/Vs)
Describes how well a carrier move due to E
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Drift Current Density......

The drift current due to the motion of electrons § J =-e)_v,

i=1
where n is the number of electrons per volume and v; is the electron
velocity in the crystal.

Drift current density, J4; (unit; A/cm?) due to hole
I parg = €PVap
S pay = €M1, PE

pldrf

Electiic Field [Vicm]

—

Current Density J
[Alem?]

Drift current density due to electron

« Election

Jnldrf — EJHHFIE Area A Motion

Total drift current;

S =eun+u pE

The sum of the individual electron and hole drift current densities
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Mobility

@®
®

E=0
€ In semiconductors, holes/electrons are involved in collisions with
lonized impurity atoms and with thermally vibration lattice atoms. As
the hole accelerates in a crystal due to the E-field, the velocity/kinetic
energy increases. When it collides with an atom in the crystal, it lose s
most of its energy. The hole will again accelerate/gain energy until is
again involved in a scattering process.
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Mobility Effects.....

« The electron in s/c have 3 degree of freedom — they can
move in a 3-D space. The K.E of electron is given by

3
K, A6 = Lm”vi = — kT
2 2

From the theorem for equipartition of energy, 2 KT unit
energy per degree of freedom.

* m, — effective mass of electron,
+ v, — average thermal velocity (~ 10’cm/s at T=300K)



Mobility Effects......

Electron in s/c moving rapidly in all direction, where thermal
motion of an individual electron may be visualized as a
succession of random scattering from collisions with lattice
atoms, impurity atoms, and other scattering centers

Average distance between collisions — mean free path.
Average time between collisions — mean free time 1.

For typical mean free path ~ 10 cm, 7, = 10-/v,~10-1%s
(orin 1ps).
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Mobility Effects........

When small electric field, E, is applied to s/c sample, each
electron will experience a force —gkE from the field and
accelerated along the field (in opposite direction) during the
time between collisions — additional thermal velocity
component.

This additional component called drift velocity.

Combination displacement of an electron (due to random
thermal motion) & drift component illustrated in Fig. 3.1(b).

Note that: net displacement of the electron is in the
opposite direction of applied field.
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Mobility Effects......
£=0

Without electric field B E—

d
1

2
.44 g
(a)

(b)

Figure 3.1. Schematic path of an electron in a semiconductor. (a) Random
thermal motion. (b) Combined motion due to random thermal motion and an
applied electric field.
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Mobility Effects....

« The momentum applied to an electron is given by -qE =,
and momentum gained is m,v,.. Thus, using physics
conservation of energy, electron drift velocity:

2
v =—u E ©)
+ Note that: v, is proportional to E
« The proportionality factor may be written as

r
u, = 1-=< (3)
m
* The proportionality factor also called electron mobility.
« A similar expression may be written for holes in valence
band may be written as: v, =, E

» Mobility is very important parameter for carrier transport — it
describes how strongly the motion of an electron is influenced
by an applied electric field.
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Mobility Effects......

From eq. (3), mobility is related directly to mean free time
between collisions determined by the various scattering
mechanism.

Two MOST important mechanisms: lattice scattering and
impurity scattering.

Lattice scattering — results from thermal vibrations of the
lattice atoms at any temperature, T>0K (it becomes
dominant at high temp. — mobility decreases with
increasing temp.) — theoretically mobility due to lattice
scattering u, decrease in proportion to T-3

Impurity scattering — results when charge carrier travels
past am ionized dopant impurity (donor or acceptor). It
depend on Coulomb force interaction.

Impurity scattering depends on total concentration of
lonization impurities (sum of +ve and —ve charge ions). It
becomes less significant at higher temperatures.
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Mobility Effects....

The probability of a collision taking place in unit time,

1/ 7, - the sum of the probabilities of collision due to the
various scattering mechanism:

1 | 1 (4)
= —
r C r C . lattice r C . impunty
or
1— — : - : (4a)

H M K g
1, — lattice scattering mobility

1, — impurity scattering mobility
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Mobility Effects.....

Electron mobility as a function of temp. for Si with 5
different donor concentration is given by Fig. 3.2.

For lightly doping (i.e 10™cm) - lattice scattering
dominates and mobility decreases as the temp. increases.

For heavily doped (i.e 10™cm-) - at low temp. impurity
scattering is most pronounced. Mobility is increases as
temp. increases.

For a given temp., mobility decreases with increasing
impurity concentration (due to enhanced impurity
scattering).

46



Mobility Effects.....

ind

Lightly dope

Np = 10"em—3 . P
=-=
=

Impurity Lattice
srattering seattering

LA T

10318

Heavily doped //_\

50
100 2003 e L8] 1Oy

Figure 5.2
Electron mobility in silicon versus temperature for various donor
concentrations. Insert shows the theoretical temperature dependence of
electron mobility.




Mobility Effects

Mobility reaches a
maximum value at low
impurity concentrations
corresponds to the lattice
scattering limitation.

Both electron & hole
mobilities decrease with
increasing impurity
concentration.

Mobility of electrons is
greater than holes due to
the smaller effective mass
of electrons.

Muobility {em®/V - 5)

100
5000 f

Mobility (cm®/V —s)

L]

2000
1000 |
500

2001

I s i ]
¥ 102

A I.I L i I A i II II.I
1w 1pls 1mn'e (i O (1 1

IlgFur][Ltuntr'mralI-:Jn {fcrm ™)
L I A L L=

Mobilities and diffusivities in Si and
GaAs at 300 K as a function of impurity

concentration.

Mobility {cm®/V - s)

Diffusivity (cm?fs)
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Conductivity

Conductivity | the ability of o maferial to conduct elecmc
current

Drift current

o; conductivity [(Q.cm)1]

o=e(ln+u,p)

Function of electron and hole concentrations and mobilities
P; resistivity [Q.cm]
I |
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Ressstiving (Lo}

Conductivity......
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Fig 6: Resistivity vs impurity concentration at T=300K in (a) silicon and (b)

germanium, GaAs and GaP
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ConduCtiVity. eeee

V%

+

Bar of semiconductor

L

-V
Area, A - /
1 V
Current density, J = — Electric field, £ =—
A I
I =of
- Hesistance, R is a function of resistivity, or
! . ) conductivity, as well as the geometry of the
E — G_I samiconductor
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Conductivity / resistivity....

If we consider, for example, a p-type semiconductor with an acceptor doping N (N, = 0) in which
N, == n;, and if we assume that the electron and hole mobilities are of the same order of magnitude, then the

conductivity becomes
T = el + [ip) = eplyp
Similarly, for n-type semiconductor current density is given by

J, = el ne

50, for same amount of doping, same electric field and at same temperature J, > .J, as [, > i,

Conductivity first increases with the increase of temperature as both mobility and
concentration increase. After that conductivity decrease as concentration remains
constant (extrinsic region) but mobility decreases due to lattice scattering. Then the

conductivity again starts rising in this region )

Saturation region

Upto certain region current increases linearly with © ome
the increase of voltage. After that limit of voltage y ptype

current saturates because of velocity saturation. /

/ Intrinsic

jr semiconductor
/ /
//
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Camier drift velocity (em s)

Velocity Saturation

So far we assumed that mobility is indep. of E-field, that is the drift velocity is in
proportion with the E-field. This holds for low E-filed. In reality, the drift velocity
saturates at ~107 cm/sec at an E-field ~30 kV/cm. So the drift current density will
also saturate and becomes indep. of the applied E-field.

Drift velocity increase linearly with applied electric field.

lt]g 1Ly 11l
e E H i vAtlow electric field, FOr GaAs, the electron
Gans (electrons) - Vg = ME vdincrease linearly  drift velocity reaches a
AT T 1 with applied L. peak and then decreases as
107 _ e slope=mobility the  E-field increases.
= — : —negative differential
3 1 mobility/resistivity, which
. 2 T =300K v'At high electric field, could be wused in the
10 L Si ;;F;—'“-'"'"’““ i vd saturates design of oscillators.
5 oo T > Constant value
-
j »
o ﬂf‘r This could be understood by

1P 10° 10* 10° 106 considering the E-k diagram of GaAs.
Electric field (V/iem)
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Velocity Saturation of GaAs....

In the lower valley, the effective
mass of the electron m *= 0.067m,,
The small effective mass leads to a
large mobility. As the E-field
Increases, the -energy of the
electron Increases and can be
scattered into the upper valley,
where the effective mass IS
0.55m,. The large effective mass
yields a smaller mobility.

k §-4 !'r"-"ﬂ" -band siructire for galliom arwenide shos ng the appsr valley and lowg

¥n the conduction band. (From See [R])

The intervalley transfer mechanism results in a decreasing average drift velocity of
electrons with E-field, or the negative differential mobility characteristic.
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Carrier Diffusion

Diffusion is the process whereby particles flow from a region of high concentration
toward a region of low concentration. The net flow of charge would result in a
diffusion current.

Camer diwder

00000 ., = "“:2! o«

current density may explain by mathematical
formalism below:
_ 1 dn dn
Hs F, = 2V F=F-F =7 {[ (0)“’3]{"(0)”3]}

2
n(lyv, dn dn

==Y i—:-D N
2 T dx " dx

RHS F,

F ~ average electron flow
per unit area. o J, =qD, —
| ~ mean free path dx

D,, ~ diffusion coefficient 55



Carrier Diffusion.....

Diffusion; process whereby particles from a region of high concentration toward
a region of low concentration.

- b
']
2
@ Electron flux \
- J ) [ dn
s wddif =\ A
e \odx)
E Electron diffusion dn
e current densily J iy = €D, —
§ dx
w ,
Position x - i
D... electron diffusion coefficient
Things difiuse (spontaneously reamrange) from regions of high conceniration o low concentration
NOTE:

Diffusion moves things downhill => Flow is proportional to NEGATIVE of conceniration slopell!
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Diffusion Current Density

=

€ The electron diffusion current density is given by J, 4= eD,dn/dXx,
where D, is called the electron diffusion coefficient, has units of cm?/s.

€ The hole diffusion current density is given by J,q;= -eD,dp/dx, where D, is
called the hole diffusion coefficient, has units of cm?/s.

€ The total current density composed of the drift and the diffusion current

density.
J=enu E, +epu E, +eD @—eD dp
P " dx P dx

or 3-D J=enukE,+epuE,+eD,Vn-eD,Vp
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»Graded impurity distribution
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Graded Impurity Distribution

€ In some cases, a semiconductors is not doped uniformly. If the

semiconductor reaches thermal equilibrium, the Fermi level is constant
through the crystal.

o

: EC
i , Electron
. Doping | iffusion

Er
inentmtion » =" Eg
“Donor) |
/ E“'
- —_—X
Generated E-field
‘ Fig. 4.14b Energy-band diagram for a semiconductor
B4.14a  Voriation of doping concentration
with distance

in thermal equilibrium with a nonuniform

donor impurity concentration

€ Since the doping concentration decreases as X increases, there will be a
diffusion of majority carrier electrons in the +x direction.

¥ The flow of electrons leave behind positive donor ions. The separation of

positive ions and negative electrons induces an E-field in +x direction to
oppose the diffusion process.
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Induced E-Field

€ The Electric potential ¢ is related to electron potential energy by charge

(-e)

¢“-* - (Ep—Ep)
€ The induced E-field is defined as E, __do_ _d(Er/(-€) _1dEs
dx dx e dx

that is, If the intrinsic Fermi level changes as a function of distance
through a semiconductor in thermal equilibrium, an E-field exists.

€ If we assume a quasi-neutrality condition in which the electron
concentration is almost equal to the donor impurity concentration, then

nozniequr EFk;_EJJsz(x):EF—Eiszln(
_ d(Ee-E)_d(-E)_ KT dNy(x)
dx dx Ny(x)  dx

B (kT\ dN,(X)
N (x) dx

n.

N, (x)\J

€ So an E-field is induced due to the non-uniform doping.



Einstein Relation

€ Assuming there are no electrical connections between the
nonuniformly doped semiconducotr, so that the semiconductor is in
thermal equilibrium, then the individual electron and hole currents
must be zero.
=J, :O:enynEx+eDndd—n
X

€ Assuming quasi-neutrality so that n ~ Ny(x) ad
dN,(x)
d

J,=0=eN,(X)u,E,+eD,

= 0=- nﬂnNd(X{LkT\J L dN,() +eD, dN, (x)
e JNy(x) dx dx
- Dn _kT L. -Einstein relation
1 1 lun © Dp kT
€ Similarly, the hole current J,=0 = i "
p
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Einstein Relation........

€ Einstein relation says that the diffusion coefficient and mobility are not
Independent parameters.

Typical mobility and diffusion coefficient values at T=300K
(n = cm?/V-sec and D = cm?/sec)

Hn D, Hp D,
Silicon 1350 35 480 12.4
GaAs 8500 220 400 10.4
Germaium 3900 101 1900 49.2
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