
Symmetry Operations and Elements

• The goal for this section of the course is to understand how symmetry arguments can be

applied to solve physical problems of chemical interest.

• To achieve this goal we must identify and catalogue the complete symmetry of a system and

subsequently employ the mathematics of groups to simplify and solve the physical problem

in question.

• A symmetry element is an imaginary geometrical construct about which a symmetry

operation is performed.

• A symmetry operation is a movement of an object about a symmetry element such that the

object's orientation and position before and after the operation are indistinguishable.

• A symmetry operation carries every point in the object into an equivalent point or the

identical point.



Point Group Symmetry

• All symmetry elements of a molecule pass through a central point within the molecule.

• The symmetry of a molecule or ion can be described in terms of the complete collection of

symmetry operations it possesses.

• The total number of operations may be as few as one or as many as infinity. The more

symmetry operations a molecule has, the higher its symmetry is.

• Regardless of the number of operations, all will be examples of only five types.



The Identity Operation (E)

• The simplest of all symmetry operations is identity, given the symbol E.

• Every object possesses identity. If it possesses no other symmetry, the object is said to be

asymmetric.

• As an operation, identity does nothing to the molecule. It exists for every object, because the

object itself exists.

• The need for such an operation arises from the mathematical requirements of group theory.

• In addition, identity is often the result of carrying out a particular operation successively a

certain number of times,

i.e., if you keep doing the same operation repeatedly, eventually you may bring the object

back to the identical (not simply equivalent) orientation from which was started.

• When identifying the result of multiple or compound symmetry operations they are

designated by their most direct single equivalent.

• Thus, if a series of repeated operations carries the object back to its starting point, the result

would be identified simply as identity.



The Rotation Operation (C)

• The operation of rotation is designated by the symbol

Cn .

• If a molecule has rotational symmetry Cn , rotation by

2π/n = 360°/n brings the object into an equivalent

position.

• The value of n is the order of an n-fold rotation.

• If the molecule has one or more rotational axes, the

one with the highest value of n is the principal axis of

rotation.

• Successive C4 clockwise rotations of a planar MX4

molecule about an axis perpendicular to the plane of

the molecule (XA = XB = XC = XD).

• Multiple iterations are designated by a superscript,

e.g. three successive C4 rotations are identified as C4
3

• The C4
2 and C4

4 operations are preferably identified as

the simpler C2 and E operations, respectively.



• There are four other C2 axes in the place of the molecule.

• The C2' and C2" axes of a planar MX4 molecule.

• As these twofold axes are not collinear with the principal C4 rotational axis they are

distinguished by adding prime (‘) and double prime (‘’) to their symbols.

• Only two notations are needed for the four axes, because both C2
’ axes are said to belong to

the same class, while the two C2
’’ axes belong to a separate class.

i.e., both C2
’ axes are geometrically equivalent to each other and distinct from C2

’’ .

The C2' and C2" axes of a planar MX4 molecule.

• In listing the complete set of symmetry

operations for a molecule, operations of the

same class are designated by a single notation

preceded by a coefficient indicating the number

of equivalent operations comprising the class.

e.g. for the square planar structure here

discussed of D4h symmetry, the rotational

operations grouped by class are

2C4 (C4 and C4
3), C2 (collinear with C4)

2C2
’ , and 2C2

’’ .



General Relationships for Cn

Cn
n = E

C2n
n = C2 (n = 2, 4, 6, 8…etc.)

Cn
m = Cn/m (n/m = 2, 3, 4, 5…etc.)

Cn
n+m = Cn

m (m < n)

• Every n-fold rotational axis has n–1 associated operations (excluding Cn
n = E).

• Remember, the rotational operation Cn
m is preferably identified as the simpler Cn/m

operation where m/n is an integer value.



The Reflection Operation (σ)

• The operation of reflection defines bilateral symmetry about a plane, called a mirror plane or

reflection plane.

• For every point a distance r along a normal to a mirror plane there exists an equivalent point

at –r.

Two points, equidistant from a mirror plane σ, related by reflection.

• For a point (x,y,z), reflection across a mirror plane σxy takes the point into (x,y,–z).

• Each mirror plane has only one operation associated with it, since σ2 = E.



Horizontal, Vertical, and Dihedral Mirror Planes

• A σh plane is defined as perpendicular

to the principal axis of rotation.

• If no principal axis of rotation exists, σh

is defined as the plane of the molecule.

• σv and σd planes are defined so as to

contain a principal axis of rotation and

to be perpendicular to a σh plane.

• When both σv and σd planes occur in

the same system, the distinction

between the types is made by defining

σv to contain the greater number of

atoms or to contain a principal axis of a

reference Cartesian coordinate system

(x or y axis).

• Any σd planes typically will contain

bond angle bisectors.

• The five mirror planes of a square

planar molecule MX4 are grouped into

three classes (σh , 2σv , 2σd )



The Inversion Operation ( i )

• The operation of inversion is defined relative to the central point within the molecule,

through which all symmetry elements must pass (typically the origin of the Cartesian

coordinate system).

• If inversion symmetry exists, for every point (x,y,z) there is an equivalent point (–x,–y,–z).

• Molecules or ions that have inversion symmetry are said to be centrosymmetric.

• Each inversion center has only one operation associated with it, since i 2 = E.

Effect of inversion (i) on an octahedral MX6 molecule (XA = XB = XC = XD = XE = XF).



Inversion Center of Staggered Ethane

• Ethane in the staggered configuration. The inversion center is at the midpoint along the C-C

bond. Hydrogen atoms related by inversion are connected by dotted lines, which intersect at

the inversion center. The two carbon atoms are also related by inversion.



The Improper Rotation Operation (Sn)

• The improper rotation operation Sn is also known as the rotation-reflection operation and as

its name suggests is a compound operation.

• Rotation-reflection consists of a proper rotation followed by a reflection in a plane

perpendicular to the axis of rotation.

• n refers to the improper rotation by 2π / n = 360° / n.

• Sn exists if the movements Cn followed by σh (or vice versa) bring the object to an equivalent

position.

• If both Cn and σh exist, then Sn must exist.

e.g., S4 collinear with C4 in planar MX4.

• Neither Cn nor σh need exist for Sn to exist.

e.g., S4 collinear with C2 in tetrahedral MX4.



A tetrahedral MX4 molecule inscribed in a cube.

A C2 axis, collinear with an S4 axis, passes through

the centers of each pair of opposite cube faces

and through the center of the molecule.

i.e., each axis bisects one of the M-X bonds.

S4 improper rotation of a tetrahedral MX4 molecule

(XA = XB = XC = XD). The improper axis is perpendicular

to the page. Rotation is arbitrarily taken in a

clockwise direction. Note that neither C4 nor σh are

genuine symmetry operations of tetrahedral MX4.



• Successive S4 operations on a tetrahedral

MX4 molecule (XA = XB = XC = XD).

• Rotations are clockwise, except S4
-1 , which

is equivalent to the clockwise operation S4
3.

• Successively carrying out two S4 operations

is identical to the result of a single C2

operation about the same axis

i.e., S4
2 = C2

• Similarly, S4
4 = E

• Thus, there are only two operations

belonging to this class for the tetrahedral

MX4 molecule (S4 and S4
3 ) about this axis.

• In the highly symmetric tetrahedral system

there are three equivalent and

indistinguishable S4 axes.

• Consequently, each axes gives rises to two

S4 operations resulting in a class designated

as 6S4 (3S4 + 3S4
3 )



Non-Genuine Sn Operations:

• S1 = σ

• S2 = i



General Relations of Sn

• Equivalences of successive Sn operations:

� If n is even, Sn
n = E

� If n is odd, Sn
n = σ and Sn

2n = E

� If m is even, Sn
m = Cnm when m < n and Sn

m = Cn
m–n when m > n

� If Sn with even n exists, then Cn/2 exists

� If Sn with odd n exists, then both Cn and σ perpendicular to Cn exist.



Examples

• Find all symmetry elements and operations in the following:



Examples

• Find all symmetry elements and operations in the following:

E, 2C3 , 3σv E, i , 2C3 , C2 , 3σd , σh , 2S4

E, i , C2 , σh E, 2C4 , C2 , 2σv , 2σd



• Molecules are conventionally oriented relative to a right-hand Cartesian coordinate system:

• The following conventions of axis orientation are usually observed:

1. The origin of the coordinate system is located at the central atom or the center of the

molecule.

2. The z axis is collinear with the highest-order rotational axis (the principal axis). If there

are several highest order rotational axes, z is usually taken as the axis passing through

the greatest number of atoms.

However, for a tetrahedral molecule, the x, y, and z axes are

defined as collinear with the three C2 axes (collinear with the three S4 axes).

Defining the Coordinate System



3. For planar molecules, if the z axis as defined above is perpendicular to the molecular

plane, the x axis lies in the plane of the molecule and passes through the greatest

number of atoms.

If the z axis lies in the plane of the molecule, then the x axis stands perpendicular to the

plane.

Defining the Coordinate System (contd.)



4. For non-planar molecules, once the z axis has been defined, the x axis is usually chosen

so that the xz plane contains as many atoms as possible. If there are two or more such

planes containing identical sets of atoms, any one may be taken as the xz plane.

Where a decision about the orientation of the x axis cannot be made on this basis, the

distinction between x and y is usually not important or is not generally fixed by

convention.

Defining the Coordinate System (contd.)



• Multiplication of symmetry operations is the successive performance of two or more

operations to achieve an orientation that could be reached by a single operation

e.g., i 2 = E ; S4 S4 = S4
2 = C2 ; C4 σh = S4 etc.

• The order in which successive different symmetry operations are performed can affect the

result.

• Multiplication of symmetry operations is not commutative in general, although certain

combinations may be.

• In writing multiplications of symmetry operation we use a "right-to-left" notation:

� BA = X "Doing A then B has the same result as the operation X."

� We cannot assume that reversing the order will have the same result.

� It may be that either BA ≠ AB or BA = AB.

• Multiplication of symmetry operations is associative:

C(BA) = (CB)A

Combining Symmetry Operations (Multiplication)



The order of performing S4 and σv , shown here for a tetrahedral MX4 molecule, affects the result.

The final positions in each case are not the same, but they are related to each other by C2 .

S4 σv ≠ σv S4 but C2σv S4 = S4 σv



• We will now consider the complete set of symmetry operations for a particular molecule

and determine all the binary combinations of the symmetry operations it possesses.

• The symmetry elements of the CBr2Cl2 molecule are shown below. This molecule has a

tetrahedral geometry

Note: tetrahedral geometry does not automatically imply tetrahedral symmetry !

• The complete set of symmetry operations are E, C2 , σv , σv‘



Point Groups of Molecules
• Chemists in general and spectroscopists in particular use the Schönflies notation.

• In contrast , crystallographers prefer to use the Hermann-Mauguin notation, which is best

suited for designating the 32 crystallographic point groups and the space groups used to

describe crystal structures.

• Familiar Schönflies labels and their corresponding Hermann-Mauguin notation are

• All of the chemically important point groups fall within one of four general categories:

1. Non-rotational

2. Single-axis rotational

3. Dihedral

4. Cubic



• With their low orders (h = 1,2) and lack of an axis of symmetry, the non-rotational point groups

represent the lowest symmetry point groups.

� C1 is the point group of asymmetric molecules which only possess the identity element E.

� The Cs point group describes the symmetry of bilateral objects that lack any symmetry

other than E and σh .

� The Ci point group is not commonly encountered as most molecules which posses the i

element also possess other complimentary symmetry elements.

Non-Rotational Point Groups



• The simplest family of this group are the Cn point groups, which consist of operations

generated by an n-fold rotation Cn applied successively n times.

• These point groups are an example of the important cyclic groups.

Single-Axis Rotational Point Groups



• A cyclic group of order h is generated by taking a single element X through all its powers up

to Xh = E.

G = { X, X2 , ... , Xh = E }

• All cyclic groups are Abelian, since all of their multiplications commute.

• The Cn and S2n groups are cyclic groups; e.g.,

C4 = { C4 , C4
2 , C4

3 , E }

S4 = { S4, C2 , S4
3 , E }

• The multiplication tables of cyclic groups "scroll" from row to row and column to column:

e.g.,



• To the rotations of the corresponding Cn groups the family of Cnv groups adds n vertical mirror

planes, which intersect at the Cn axis.

• The point group C
∞v , which has a infinite-fold C

∞
rotational axis, is an important member of this

family. It is the point group of all non-centrosymmetric linear molecules.

e.g., H-Cl, C≡O.

• To generate any of the Cnh groups, we need only add a horizontal mirror plane to the series of

Cn rotations of the appropriate cyclic Cn group.

• Since Cnσh = Sn and C2σh = S2 = i , these groups also have n-fold improper axes when n > 2,

and they are centrosymmetric when n is even.

• The S2n series are not common.



• The dihedral groups have n twofold axes perpendicular to the principal n-fold axis. These C2

axes are called the dihedral axes.

• The number and arrangement of the dihedral axes are dictated by the n-fold order of the

principal axis.

e.g. the staggered conformation of ethane is of D3d symmetry and possesses 3C2 dihedral axes.

Dihedral Point Groups



• There are three families of dihedral groups: Dn , Dnd , Dnh

1) The Dn groups may be thought of as Cn groups to which n dihedral C2 operations have

been added.

Unlike the Cn groups, the Dn groups are not cyclic.

2) Similarly, the Dnd groups may be thought of as Cnv groups to which n dihedral C2

operations have been added.

In Dnd groups, the combination of rotational operations and vertical mirror reflections (σd)

generates a series of S2n operations about an axis collinear with the principal axis.

3) The Dnh groups may be thought of as Cnh groups to which n dihedral C2 operations have

been added.

Like the Cnh groups, the Dnh groups include n-fold improper axis when n>2 and are

centrosymmetric.



• The cubic groups are associated with polyhedra that are geometrically related to the cube.

• All are characterized by the presence of multiple, intersecting, high-order rotational axes.

• There are seven groups of this type, three of which are frequently encountered and highly

relevant in chemistry

Cubic Point Groups



• The perfect tetrahedron defines the Td group, comprised of the following 24 operations, listed

by classes:

E , 8C3 (= 4C3 , 4C3
2 ), 3C2 , 6S4 (= 3S4 , 3S4

3 ), 6σd

with h = 24 , Td represents one of the higher symmetries encountered in chemistry.

• A three-fold axis, generating the operations C3 and C3
2 , emerges from each of the four

triangular faces of a tetrahedron.

• When a tetrahedron is inscribed inside a cube a C2 axis collinear with the bisector of opposing

bond angles emerges from each pair of apposite cube faces.

• Three S4 axes, each associated with S4 and S4
3 operations, are each collinear with these C2

axes.

Tetrahedron (Td)



• The octahedron and cube both belong to the point group Oh , which is comprised of the

following 48 operations (h = 48)

E , 8C3(= 4C3 , 4C3
2 ), 6C4(= 3C4 , 3C4

3 ), 6C2 , 3C2(= 3C4
2), i , 6S4(= 3S4 , 3S4

3 ), 8S6(= 4S6 , 4S6
5 ),

3σh(= σxy , σyz , σxz), 6σd

• In the octahedron a fourfold axis emerges from each pair of opposite apices, whereas a

threefold axis emerges from each pair of opposite triangular faces.

• In the cube, a fourfold axis emerges from each pair of opposite faces, whereas a threefold axis

emerges from each pair of opposite corners, extending the diagonals of the cube.

Cube (Oh)



• Both the regular icosahedron and dodecahedron belong to the point group Ih , composed of

120 symmetry operations

E , 8C3(= 4C3 , 4C3
2 ), 6C4(= 3C4 , 3C4

3 ), 6C2 , 3C2(= 3C4
2), i , 6S4(= 3S4 , 3S4

3 ), 8S6(= 4S6 , 4S6
5 ),

3σh(= σxy , σyz , σxz), 6σd

• Aside from the C
∞v and D

∞h point groups which have an order of h = ∞, Ih represents the

highest symmetry one is likely to encounter in structural chemistry.

• Buckminsterfullerene C60 is an example of a high-order polyhedron with Ih symmetry.

• A fivefold axis emerges from the face of each five-membered ring and a threefold axis emerges

from the face of each six-membered ring.

Icosahedron (Ih)



Flow chart for systematically determining the point group of a molecule.

• In determining the point group of a structure we often ignore some of its symmetry elements

which make up its group.

• The classification process only concentrates on finding the characteristic elements that uniquely

define a group.



Examples for point group classification.



• Representations of the three conformations of ethane as

two triangles separated along the C3 axis. The corresponding

Newman projections are shown on the right.



Optical Activity and Symmetry

• Chiral molecules can exist as enantiomers, which will rotate plane-polarized light in opposite

directions.

• Chiral molecules are dissymmetric, but not necessarily asymmetric (point group C2).

• Asymmetric molecules are just the least symmetric among all dissymetric molecules.

• A molecule is dissymmetric and may be chiral either if it is asymmetric or if it has no other

symmetry than proper rotation.

• Dissymetric molecules can have proper rotations (Cn), but they cannot have any other

symmetry.

• Thus, chiral molecules belong to one of the following point groups:

C1 , Cn , Dn (T, O, I)



• Enantiomers of dissymetric species. CHFClBr (point group C1) is asymmetric, but [Co(en)3]3+ 

(point group D3) is not



Non-Chiral Dissymetric Molecules

• Sometimes, theoretically possible enantiomeric pairs do not exist, due to stereochemical

non-rigidity.

• The structure of hydrogen peroxide (point group C2 )


