Gravity Surveying

1

Introduction

Gravity surveying...

Investigation on the basis of relative variations in the Earth´gravitational field arising from difference of density between subsurface rocks

Application

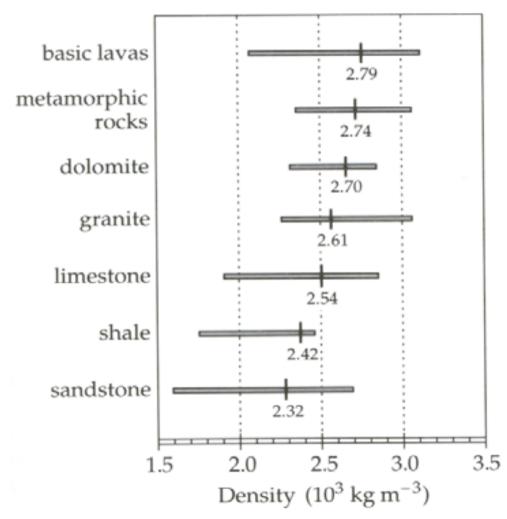
- Exploration of fossil fuels (oil, gas, coal)
- Exploration of bulk mineral deposit (mineral, sand, gravel)
- Exploration of underground water supplies
- Engineering/construction site investigation
- Cavity detection
- Glaciology
- Regional and global tectonics
- Geology, volcanology
- Shape of the Earth, isostasy
- Army

Structure of the lecture

- 1. Density of rocks
- 2. Equations in gravity surveying
- 3. Gravity of the Earth
- 4. Measurement of gravity and interpretation
- 5. Microgravity: a case history
- 6. Conclusions

1. Density of rocks

Rock density



Rock density depends mainly on...

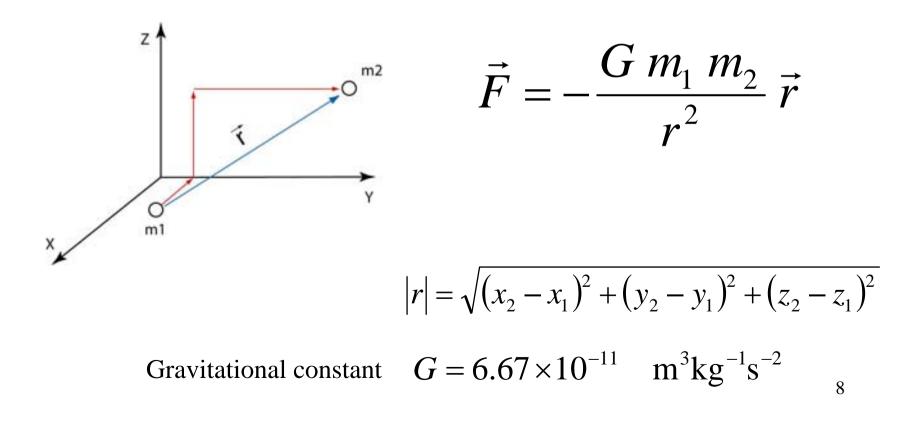
- Mineral composition
- Porosity (compaction, cementation)

Lab or field determination of density is useful for anomaly interpretation and data reduction

2. Equations in gravity surveying

First Newton's Law

Newton's Law of Gravitation



Second Newton's Law

$$\vec{F} = m \vec{a} \qquad \vec{a} = -\frac{G M}{R^2} \vec{r} = \vec{g}_N$$
$$g_N \cong 9.81 \quad \text{m/s}^2$$

 g_N : gravitational acceleration or "gravity" for a spherical, non-rotating, homogeneous Earth, g_N is everywhere the same

$$M = 5.977 \times 10^{24}$$
 kg mass of a homogeneous Earth
 $R = 6371$ km mean radius of Earth

Units of gravity

- 1 gal = 10^{-2} m/s²
- $1 \text{ mgal} = 10^{-3} \text{ gal} = 10^{-5} \text{ m/s}^2$
- 1 μgal = 10⁻⁶ gal = 10⁻⁸ m/s² (precision of a gravimeter for geotechnical surveys)
- Gravity Unit: 10 gu = 1 mgal
- Mean gravity around the Earth: 9.81 m/s^2 or 981000 mgal

Keep in mind...

...that in environmental geophysics, we are working with values about...

 $0.01-0.001 \text{ mgal} \approx 10^{-8} - 10^{-9} g_N !!!$

Gravitational potential field

The gravitational potential field is conservative (i.e. the work to move a mass in this field is independent of the way)

The first derivative of U in a direction gives the component of gravity in that direction

$$\nabla U = \vec{g} = \frac{\vec{F}}{m_2} \quad \text{with} \quad \nabla U = \frac{\partial U}{\partial x}\vec{i} + \frac{\partial U}{\partial y}\vec{j} + \frac{\partial U}{\partial z}\vec{k}$$
$$U = \int_{\infty}^{R} \vec{g} \cdot \vec{r} \, dr = -G \, m_1 \int_{\infty}^{R} \frac{dr}{r^2} = \frac{G \, m_1}{R}$$

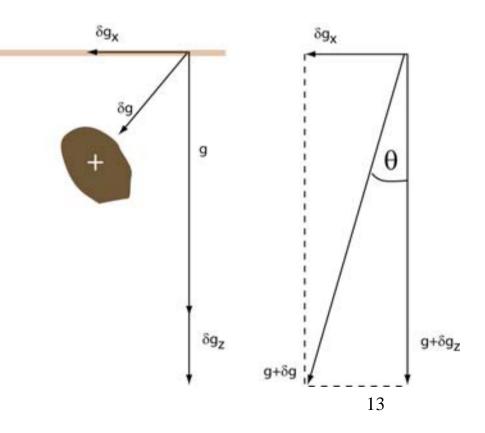
12

Measurement component

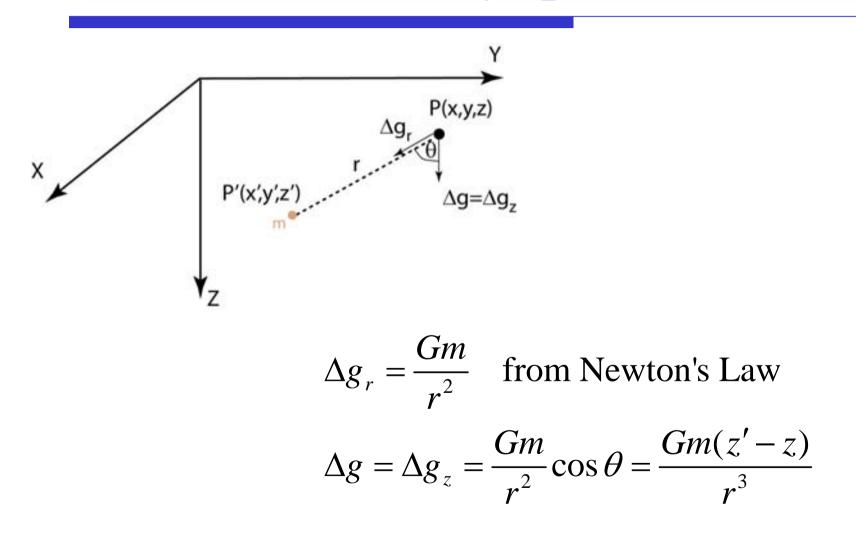
The measured perturbations in gravity effectively correspond to the vertical component of the attraction of the causative body

ETH

we can show that θ is usually insignifiant since $\delta g_z << g$ Therefore...

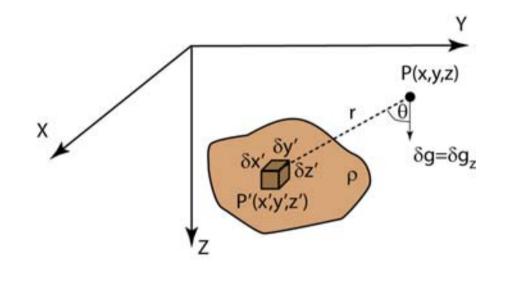


Grav. anomaly: point mass



14

Grav. anomaly: irregular shape



$$\Delta g = \frac{Gm(z'-z)}{r^3}$$

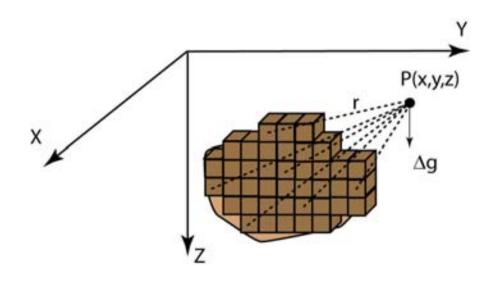
for
$$\delta m = \rho \, \delta x' \delta y' \delta z'$$
 we derive:

$$\delta g = \frac{G\rho(z'-z)}{r^3} \delta x' \delta y' \delta z'$$

with ρ the density (g/cm³)

$$r = \sqrt{(x'-x)^{2} + (y'-y)^{2} + (z'-z)^{2}}$$

Grav. anomaly: irregular shape



for the whole body:

$$\Delta g = \sum \sum \sum \frac{G\rho(z'-z)}{r^3} \delta x' \delta y' \delta z'$$

if $\delta x', \delta y'$ and $\delta z'$ approach zero:

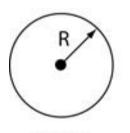
$$\Delta g = \iiint \frac{G\rho(z'-z)}{r^3} dx' dy' dz'$$

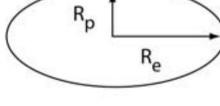
Conclusion: the gravitational anomaly can be efficiently computed! The direct problem in gravity is straightforward: Δg is found by summing the 16 effects of all elements which make up the body

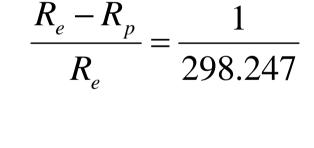
3. Gravity of the Earth

Shape of the Earth: spheroid

- Spherical Earth with *R*=6371 km is an approximation!
- Rotation creates an ellipsoid or a spheroid





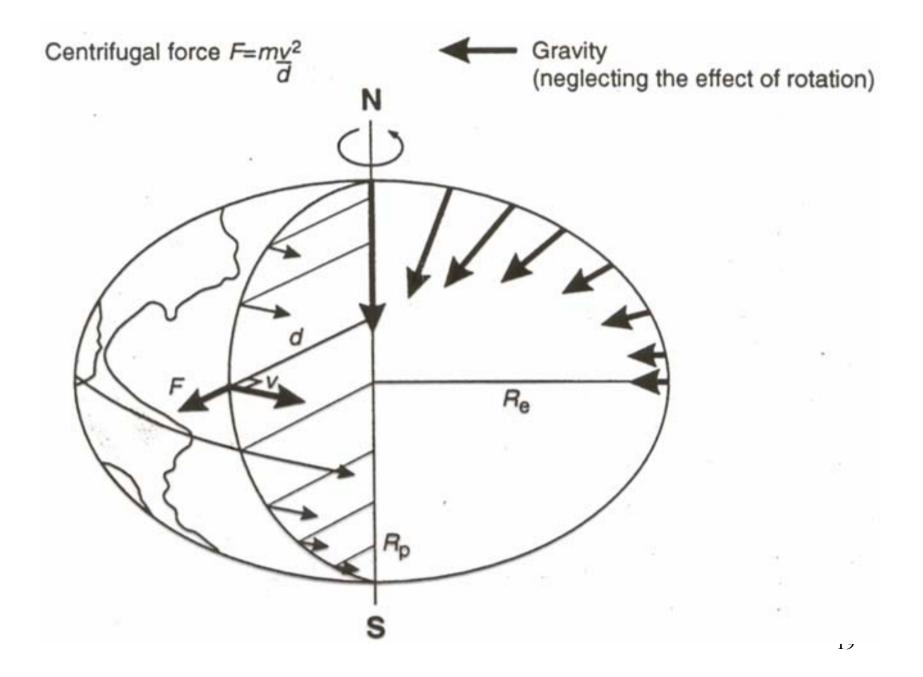


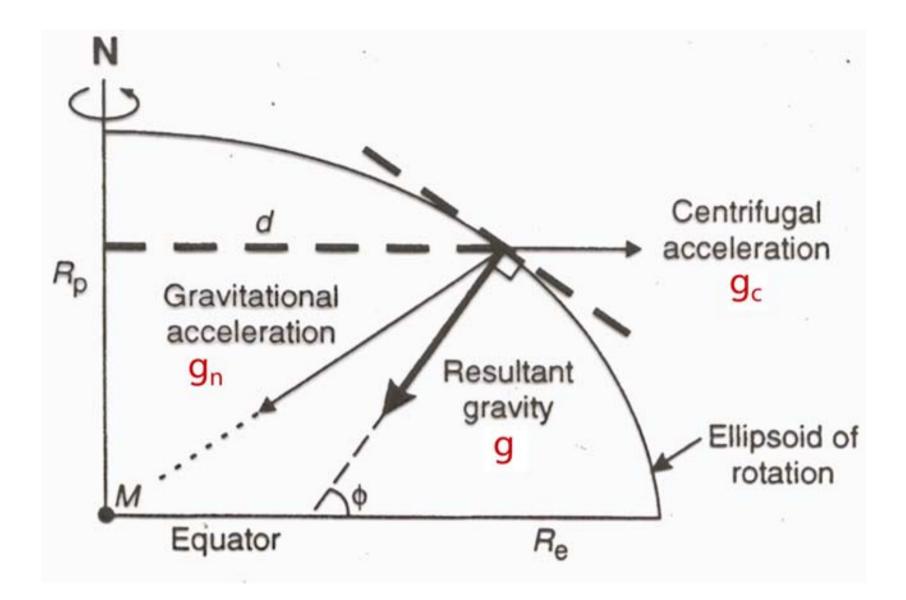
sphere

spheroid

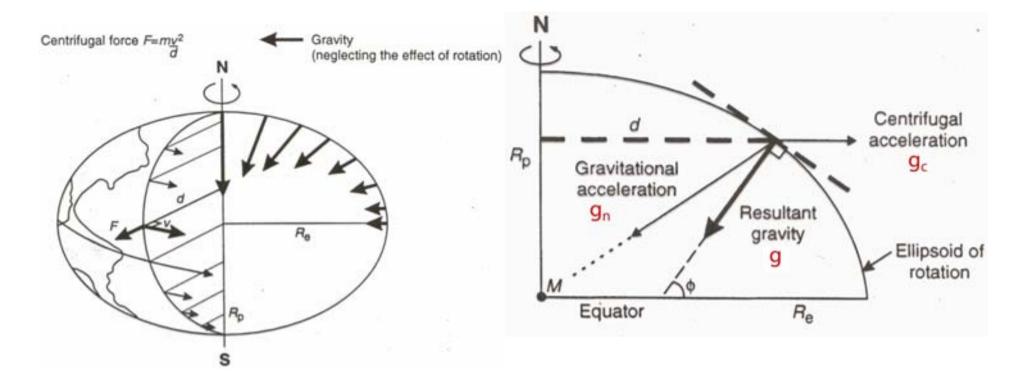
Deviation from a spherical model:

$$R_e - R = 7.2$$
 km
 $R - R_p = 14.3$ km





The Earth's ellipsoidal shape, rotation, irregular surface relief and internal mass distribution cause gravity to vary over it's surface



$$g = g_n + g_c = G\left(\frac{M}{R^2} - \omega^2 R\cos\phi\right)$$

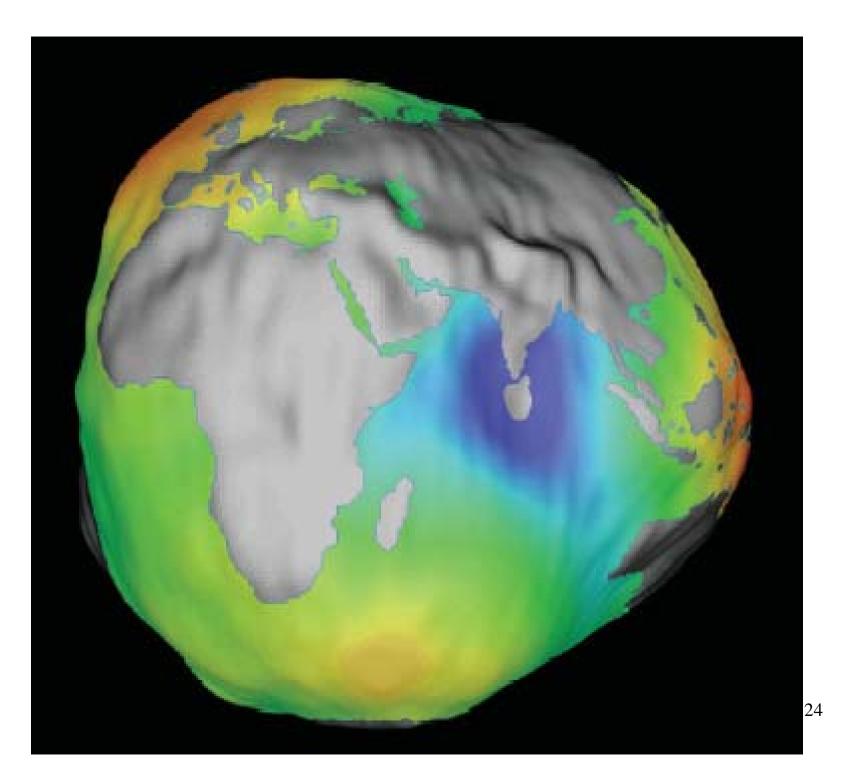
- From the equator to the pole: g_n increases, g_c decreases
- Total amplitude in the value of g: 5.2 gal

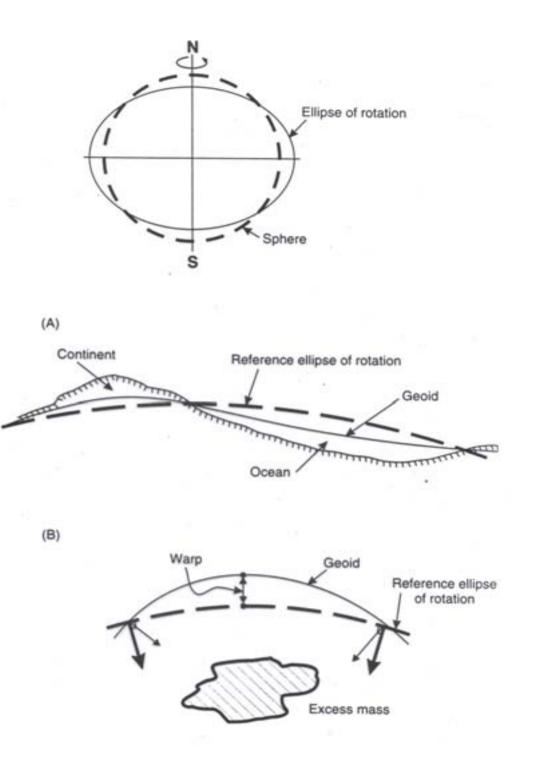
Reference spheroid

- The reference spheroid is an oblate ellipsoid that approximates the mean sea-level surface (geoid) with the land above removed
- The reference spheroid is defined in the Gravity Formula 1967 and is the model used in gravimetry
- Because of lateral density variations, the geoid and reference spheroid do not coincide

Shape of the Earth: geoid

- It is the sea level surface (equipotential surface *U*=constant)
- The geoid is everywhere perpendicular to the plumb line





Spheroid versus geoid

Geoid and spheroid usually do not coincide (India -105m, New Guinea +73 m)

