Bergey's Manual:

Reference for Prokaryote identification

Bergey's Manual of Determinative Bacteriology: Is standard reference for laboratory identification of bacteria.	staining, biochemical tests
Bergey's Manual of Systematic Bacteriology Provides phylogenetic information on bacteria and archaea	Based on rRNA sequencing

Bergey's Manual of Determinative Bacteriology

First published in 1923 by **David Hendricks Bergey**, it is used to classify bacteria based on their structural and functional attributes by arranging them into specific familial orders.

9th Edition
Edited by John G. Holt
Copyright 1994
Williams & Wilkins, Baltimore
ISBN 0-683-00603-7
This book is still in print

Criteria for identification and classification

Morphology Cell Shape & Arrangement Cell Size Staining Reaction

Chemical Chemical Composition Teichoic acid LPS

Cultural Nutritional Requirements Living Host Requirement Physical Conditions Temperature, Light, Gas

Metabolic

Energy Yielding Processes

Fermentation
Energy Utilizing
Processes

Nutrient

transport
Motility
Enzymes

Antigens Stimulate the immune system -antigens Genetics G-C ratio Plasmids

Pathogenic Cause disease Host - plant, animal Ecological Habitat

Bergey's Manual of Systematic Bacteriology 1st Edition

John G. Holt, Editor-in-Chief Williams & Wilkins, Baltimore, MD

Published in 4 volumes:

Volume 1 (1984)

Gram-negative *Bacteria* of general, medical, or industrial importance ISBN 0-683-04108-8

Volume 2 (1986)

Gram-positive *Bacteria* other than *Actinomycetes* ISBN 0-683-07893-3

Volume 3 (1989)

Archaeobacteria, Cyanobacteria, and remaining Gram-negative

Bacteria ISBN 0-683-07908-5

Volume 4 (1989)

Actinomycetes ISBN 0-683-09061-5

Bergey's Manual of Systematic Bacteriology 2nd Edition

Published by Springer, New York The second edition is being published in 5 volumes

Volume 1 (2001)

The *Archaea* and the deeply branching and phototrophic *Bacteria* **Editor-in-Chief:** George M. Garrity **Editors:** David R. Boone and Richard W. Castenholz ISBN 0-387-98771-1 Volume 2 (2005)
The *Proteobacteria*Editor-in-Chief: George M. Garrity
Editors: Don J. Brenner, Noel R. Krieg and James T. Staley
ISBN 0-387-95040-0

2A: Introductory essays2B: The Gammaproteobacteria2C: Other classes of Proteobacteria

Volume 3 (2009)

The *Firmicutes* **Editors:** Paul De Vos, George Garrity, Dorothy Jones, Noel R. Krieg, Wolfgang Ludwig, Fred A. Rainey, Karl-Heinz Schleifer and William B. Whitman ISBN 0-387-95041-9 Volume 4 (2010)

The *Bacteroidetes*, *Spirochaetes*, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, *Verrucomicrobia*, *Chlamydiae*, and *Planctomycetes* Editors: Noel R. Krieg, James T. Staley, Daniel R. Brown, Brian Hedlund, Bruce J. Paster, Naomi Ward, Wolfgang Ludwig and William B. Whitman ISBN 0-387-95043-5

Volume 5 (2012) in two parts

The Actinobacteria Editors: Michael Goodfellow, Peter Kämpfer, Hans-Jürgen Busse, Martha Trujillo, Kenichiro Suzuki, Wolfgang Ludwig and William B. Whitman ISBN 0-387-95042-7

Bergey's Manual of Systematic Bacteriology

- Prokaryotes into 25 phyla
 - Archaea
 - 2
 - Bacteria
 - 23
- Consensus of experts

Microbial Phylogeny

Domains

- Based on the research of Woese and others in the 1980s and 1990s, most biologists divide all living organisms into 3 domains:
 - Domain Archaea
 - Domain Bacteria
 - Domain *Eucarya*
- rRNA sequence data suggests that Archaea & Eucarya may share a more recent common ancestor with each other than with bacteria.

• Phylogeny of domain Archaea (Volume 1)

Based primarily on rRNA sequence data, domain Archaea is divided into two phyla:

• Phylum Crenarchaeota

- Originally containing thermophylic and hyperthermophilic sulfur-metabolizing archaea
- Recently discovered *Crenarchaeota* are inhibited by sulfur & grow at lower temperatures

• Phylum Euryarchaeota

- Contains primarily methanogenic archaea, halophilic archaea, and thermophilic, sulfur-reducing archaea

• Phylogeny of domain *Bacteria*

 The 2nd edition of *Bergey's Manual of Systematic Bacteriology* divides domain *Bacteria* into 23 phyla. Nine of the more notable phyla are described here.

• Phylum Aquiflexa

- The earliest "deepest" branch of the *Bacteria*
- Contains genera *Aquiflex* and *Hydrogenobacter* that can obtain energy from hydrogen via chemolithotrophic pathways

• Phylum Cyanobacteria

-Oxygenic photosynthetic bacteria

• Phylum Chlorobi

- -The "green sulfur bacteria"
- -Anoxygenic photosynthesis
- -Includes genus Chlorobium

• Phylum Proteobacteria (Volume 2)

- -The largest group of gram-negative bacteria
- -Extremely complex group, with over 400 genera and 1300 named species
- -All major nutritional types are represented: phototrophy, heterotrophy, and several types of chemolithotrophy
- -Sometimes called the "purple bacteria," although very few are purple; the term refers to a hypothetical purple photosynthetic bacterium from which the group is believed to have evolved.
- -Divided into 5 classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria

• Phylum *Proteobacteria* (cont.)

- –Significant groups and genera include:
 - » Photosynthetic genera such as *Rhodospirillum* (a purple non-sulfur bacterium) and *Chromatium* (a purple sulfur bacterium)
 - » Sulfur chemolithotrophs, genera *Thiobacillus* and *Beggiatoa*
 - » Nitrogen chemolithotrophs (nitrifying bacteria), genera *Nitrobacter* and *Nitrosomonas*
 - » Other chemolithotrophs, genera *Alcaligenes*, *Methylobacilllus*, *Burkholderia*

• Phylum Proteobacteria (cont.)

-Significant groups and genera include:

» The family *Enterobacteriaceae*, the "gram-negative enteric bacteria," which includes genera *Escherichia*, *Proteus*, *Enterobacter*, *Klebsiella*, *Salmonella*, *Shigella*, *Serratia*, and others

» The family *Pseudomonadaceae*, which includes genus *Pseudomonas* and related genera

» Other medically important *Proteobacteria* include genera *Haemophilus*, *Vibrio*, *Camphylobacter*, *Helicobacter*, *Rickettssia*, *Brucella*

- Phylum *Firmicutes* (Volume 3)
 - -"Low G + C gram-positive" bacteria
 - -Divided into 3 classes
 - » Class I Clostridia; includes genera *Clostridium* and *Desulfotomaculatum*, and others
 - » Class II *Mollicutes*; bacteria in this class cannot make peptidoglycan and lack cell walls; includes genera *Mycoplasma*, *Ureaplasma*, and others.
 - » Class III Bacilli; includes genera Bacillus, Lactobacillus, Streptococcus, Lactococcus, Geobacillus, Enterococcus, Listeria, Staphylococcus, and others

- Phylum Actinobacteria (Volume 5)
 - -"High G + C gram-positive" bacteria
 - Includes genera Actinomyces, Streptomyces, Corynebacterium, Micrococcus, Mycobacterium, Propionibacterium

• Phylum Chlamidiae (Volume 4)

 Small phylum containing the genus *Chlamydia* obligate intracellular parasites, causes sexually transmitted diseases

• Phylum Spirochaetes (Volume 4)

- -The spirochaetes
- -Characterized by flexible, helical cells with a modified outer membrane (the outer sheath) and modified flagella (axial filaments) located within the outer sheath
- -Important pathogenic genera include *Treponema*, *Borrelia*, and *Leptospira*
- Phylum Bacteroidetes (Volume 4)
 - -Includes genera *Bacteroides, Flavobacterium, Flexibacter,* and *Cytophyga*; *Flexibacter* and *Cytophyga* are motile by means of "gliding motility"

• Phylogeny of domain *Eucarya*

- The domain *Eucarya* is divided into four kingdoms by most biologists:
 - Kingdom *Protista*, including the protozoa and algae
 - Kingdom *Fungi*, the fungi (molds, yeast, and fleshy fungi)
 - Kingdom *Animalia*, the multicellular animals
 - Kingdom *Plantae*, the multicellular plants

Prokaryotic Diversity And Taxonomy: Current Status Future Challenges

- 1. The abundance of bacteria and archaea on Earth-Kluvyer and Niel one half of living protoplasm on Earth is microbial
- **2. The definition of bacterial species-** DNA –DNA hybridization , >70 % similarity
- **3. How many prokaryotic species have been described?** ICSP, In 2003 validated names of prokaryotes described were 6205 belonging to 1174genera

- **4. How many prokaryote species are there on Earth?** 16S rRNA sequencing approach, microbes from environment, limitations
- 5. Are bacteria distributed ubiquitously and do endemic bacterial species exist? Symboints and pathogens of animals and plant endemic, Antarctic region, Sea water
- 6. Why are we not able to grow all living prokaryotes? Complex nutritional requirement, microbial consortia
- 7. Novel types of metabolism in prokaryotes- ammonium oxidation, reversed methanogenesis

8. Are there endangered Prokaryotes?

geogrophical areas or habitats may be endangered e.g. hot springs

9. Development of novel isolation techniques for prokaryotes

Laser optical tweezers-Use of infra red laser for micromanipulation of a single bacterial cell in a capillary tube.

Dilution cultures- Oligotropic marine bacteria

10. Funding for microbial diversity studies- 5% of living species, less funds are available as compared to research in plants and animals, DNA chip technology/ proteomics