Phytoplasma and Spiroplasma

Definitio

N Phytoplasmas are obligate bacterial parasites of plant phloem tissue and of the insect vectors that are involved in their plant-to-plant transmission. Phytoplasmas were discovered in 1967 by Japanese scientists who termed them mycoplasma-like organisms (MLOs)

PHYTOPLAS

General Characters

- 1. Phytoplasmas are unicellular prokaryotic phytopathogens
- 2. They are small is size ranging between 200-800 nm
- 3. Phytoplasmas lack cell wall making them pleomorphic in nature
- 4. The cell is surrounded by triple-layer lipo-protein plasma membrane
- 5. Phytoplasmas can not be grown on artificial media making it difficult to study their biology
- 6. Phytoplasmas do not require sterol for growth
- 7. Phytoplasmas are generally ovoid but filamentous forms have been exceptionally observed
- 8. The cell of phytoplasmas contains both DNA and RNA

PHYTOPLAS

- 9. Phytoplasmas are sensitive to tetracyclines and insensitive to penicillins
- 10.Phytoplasmas are obligate parasites of plants and insects
- 11.Phytoplasmas inhabit phloem sieve elements or salivary glands of vector insects
- 12.Phytoplasmas can be transmitted by grafting, dodder or insects
- 13.Phytoplasmas are considered to be the closest relatives of Acholeplasma
- 14. Phytoplasmas are known to have smallest genome of all the living organisms.
- Unlike the rest of mollicutes, phytoplasma use UGA triplet code as stop codon

Some Plant Diseases Caused By Phytoplasma

Little Leaf of Brinjal

This o	disease		
transmitted	l by	а	
leafhopper	(<u>Hishimon</u>	US	
<u>phycitis).</u>	-		

Symptoms

- Leaves & plant become small
- Node & internodes reduce in size
- Leaves yellowing
- Plants look like- bush
- No fruiting if form they become –small and hard

<u>Contol</u>

Healthy

seeds.

Treated with Thiram @ 2g/kg of seed before sowing. Continuous raising of nursery in the same plot should be

Sesamum

Symptoms

- Plants are stunted
- Floral parts modified to leafy structures

bearing no fruits and seeds.

•Virescence, proliferation, seed capsule cracking, formation of dark exudates on foliage and floral parts, and yellowing.

Sesame phyllody is transmitted by a leafhopper (Orosius albicinctus).

Prevention

- Remove all the reservoir and weed hosts.
- Avoid growing sesamum near cotton, groundnut and grain legumes.
- Rogue out the infected plants periodically.

Symptoms

The common symptom called the 'rosette spike' is characterised by severe reduction in leaf size and reduction of internodes

The most common insect Vectors are Moonia alhimaculata and Nephotettix virescence. •<u>Control</u> •No specific method to control. •Planting of Mysore gum trees (a hybrid of Eucalyptus tereticornis) at a distance of 10-20 metres. •Treatment with tetracycline checks the disease.

Grassy Shoot of

<u>Symptoms</u>

Proliferation of tillers, which give it typical grassy appearance.
The leaves of infected plants do not produce <u>chlorophyll</u>.

Causal organism

Caused by a <u>phytoplasma</u> (<u>Candidatus</u>

nhvtonlasma

<u>Control</u>

- •Replacement by healthy plants.
- Uprooting.
- •hot air treatment before planting.

Translocation of Phytoplasma in Plants

- Phytoplasmas enter in to sieve tubes through insect transmission and moves throughout the plant body via phloem along with the cell sap
- They are very poorly distributed in the roots as compared to stem tissues
- Highest Phytoplasma concentration is found in the mature leaves

SPIROPLAS MA DEFINITION

Spiroplasma is a genus of Mollicutes, a group small bacteria without cell walls. **Spiroplasma** shares the simple metabolis parasiti lifestyle friedorglony morphology and, small gereograe of other Mollicutes, but has a distinctive helical morphology, unlike Mycoplasma.

STRUCTU

SPIROPLAS

- 1. Spiroplasma are helical, prokaryotic microorganisms associated with a few diseases in plants
- 2. These organisms lack true cell wall
- 3. The cell is surrounded by a triple-layered unit membrane
- 4. They are culturable phytopathogens forming 'fried egg' type of colonies similar to mycoplasmas
- 5. The cell of *Spiroplasma* can vary in shape. They may be spherical, slightly ovoid or helical
- 6. Spiroplasma show rapid rotary or screw motion

SPIROPLAS

- 7. There A A flagella present in these organisms
- 8. Spiroplasmas require sterols for their growth on culture media
- 9. Spiroplasmas are resistant to penicillin
- **10.** They are sensitive to tetracyclines
- 11. Spiroplasmas can be transmitted by insects, dodder and grafting
- 12. The cell contains both DNA and RNA

Diseases caused by

- Snirolnasma
- The diseases caused by Siroplasma are as follow:
- Citrus stubborn (Siroplasma citri).
- Leaf roll
- Yellow dwarf of rice.
- Pear decline.
- Corn stunt (Siroplasma kunkelii)
- Periwinkle yellows (Siroplasma phoeniceum)

 Present in the phloem Transmitted by several leafhoppers including <u>Circulifer</u> tenellus Causative agent Spiroplasma citri SYMPTOMS Different shapes of fruits Effect on colour **Control** The most effective way to prevent citrus stubborn preventdisease is *citr* to Spiroplansectin yđươn susceptible g g,m pelantsing and

Citrus

Grape leafroll

<u>Symptoms</u>

Leaf tissue between the veins turns deep red to purple, with downward curling or cupping of the leaf margins.

Grapevine Leafroll-Associated Viruses (GLRaVs)

ControlThereisnochemica controfor grapeleafrollIdisease

Corn stunt (<u>Siroplasma</u>

List of symptoms/signs Inflorescence - discoloration panicle Inflorescence - twisting and distortion Leaves - abnormal colours Leaves abnormal forms Leaves - necrotic areas Leaves - yellowed or dead Stems - witches broom Whole plant dwarfing

Control

Management of volunteer plants during the off-season by removing infected plants or discing will reduce potential sources of inoculum.

Comparison of important characteristic of different prokaryotic microorganisms

	Character	Bacteria	Mycoplasma	Spiroplasma	Phytoplasma
1.	Cell structure	Prokaryotic	Prokaryotic	Prokaryotic	Prokaryotic
2.	Cell shape	Rod, spherical,	Ovoid, coccoid,	Spiral/helical	Generally
		spiral, comma,	filamentous	ovoid	spherical
		etc.			
3.	Cell size	0.5 μm – 20 μm	300 – 2000 nm	100 – 240 nm	200 – 800 nm
				diameter and	
				1-2 µm long	
4.	Cell wall	(+)	(-)	(-)	(-)
5.	Plasma	Lipo-protein	Lipo-protein	Lipo-protein	Lipo-protein
	membrane	triple-layered	triple-layered	triple-layered	triple-layered
6.	Cultivability	(+)	(+)	(+)	(-)
7.	Sterol	(-)	(+)	(+)	(-)
	requirement				
8.	Genome size	140 – 1300 Kb	580 – 2320 Kb	940 – 2220 Kb	530 – 1350 Kb
9.	Plasmid	(+)	(-)	(-)	(+)
10.	G+C Ratio	28-80	24-41	25–26	23–29
11.	Penicillin	(+)	(-)	(-)	(-)
	sensitivity				
12.	Tetracycline	(+)	(+)	(+)	(+)
	sensitivity				
13.	Host range	Plants,	Animals,	Plants	Plants
		animals,	human beings		
		human beings			

