Unit III

Measures of Dispersion: Range, Average Deviation, Standard Deviation, Variance and Coefficient of Variation

DISPERSION:

- Dispersion (also known as Scatter, Spread or Variation) measures the extent to which the items vary from some central value.
- It indicates the scattering of data.

RANGE:

- Range is defined as the difference between the value of largest item and the value of the smallest item included in the distribution.
- Measures of Range may be absolute or relative.

FOR INDIVIDUAL OBSERVATIONS OR DISCRETE SERIES:

1. Absolute Measure of Range:

 $\mathbf{R} = \mathbf{L} - \mathbf{S}$

where L = Largest Value S = Smallest Value

2. Relative Measure of Range:

Coefficient of Range = $\frac{L-S}{L+S}$

Calculate Range and Coefficient of Range:

Roll No.	Marks
1	5
2	15
3	25
4	35
5	45
6	55

Range = L - S= 55 - 5= 50

Coefficient of Range $= \frac{L-S}{L+S}$ $= \frac{55-5}{55+5}$ = 0.833

Calculate Range and Coefficient of Range:

Marks	No. of students
5	10
15	20
25	30
35	50
45	40
55	30

$$Range = L - S$$
$$= 55 - 5$$
$$= 50$$

Coefficient of Range =
$$\frac{L-S}{L+S}$$

= $\frac{55-5}{55+5}$
= 0.833

For Continuous Series:

Absolute Measure of Range:

 (a) Method I: R = U_L - L_S
 Where U_L = Upper limit of Largest value class
 L_S = Lowest limit of Smallest value class

(a) Method II: $\mathbf{R} = M_L - M_S$ $M_L =$ Mid-point of Largest value class $M_S =$ Mid-point of Smallest value class

2. Relative Measure of Range:

(a) Method I: Coefficient of Range= $\frac{U_L - L_S}{U_L + L_S}$

(b) Method II: Coefficient of Range= $\frac{M_L - M_S}{M + M_S}$

Marks	No. of students	Mid-Point
0-10	10	5
10-20	20	15
20-30	30	25
30-40	50	35
40-50	40	45
50-60	30	55

- 1. Absolute Measure of Range:
- (a) Method I: R = 60 0= 60
- (a) Method II: R = 55 5= 50
- 2. Relative Measure of Range:

(a) Method I: Coefficient of Range =
$$\frac{U_L - L_S}{U_L + L_S}$$

= $\frac{60 - 0}{60 + 0}$
= 1
(b) Method II: Coefficient of Range = $\frac{M_L - M_S}{M + M_S}$
= $\frac{55 - 5}{55 + 5}$
= 0.833

Mean Deviation:

- Mean or Average Deviation is the arithmetic Mean of the absolute deviations of all items of the distribution from a measure of central tendency which could be mean or median or sometimes even mode.
- Measures of Mean Deviation may be absolute or relative.

1. Absolute Measure of Mean Deviation FOR INDIVIDUAL OBSERVATIONS: $M.D. = \frac{\sum |D|}{N}$

Where, M.D. = Mean Deviation

 $\sum |D|$ = Deviations of Items from Mean or Median ignoring \pm signs

N = Number of Observations

FOR DISCRETE OBSERVATIONS: M.D. $=\frac{\sum f|D|}{N}$

Where, M.D. = Mean Deviation

|D| = Deviations of Items from Mean or Median ignoring \pm signs

N = Number of total frequencies

 $\sum f|D|$ = Total of Product of Deviations and respective frequencies

FOR CONTINUOUS SERIES: M.D. $=\frac{\sum f |D|}{N}$

Where, M.D. = Mean Deviation

|D| = Deviations of Mid-Points of classes from Mean or Median ignoring \pm signs

N = Number of total frequencies

 $\sum f|D|$ = Total of Product of Deviations and respective frequencies

Calculate Mean Deviation and Coefficient of Mean Deviation from Median.

Roll No.	Marks
1	25
2	5
3	55
4	45
5	15
6	35

Marks	Deviations from Median Ignoring signs $(D = X - 30)$
5	25
15	15
25	5
35	5
45	15
55	25
N = 6	$\sum D = 90$

STEP 1: Arrange the size of item in ascending order. STEP 2: $\frac{N+1}{2}$ th item $=\frac{6+1}{2}$ $= 3.5^{\text{th}}$ item STEP 3: Median = Size of 3.5^{th} item = $(3^{\text{rd}} + 4^{\text{th}} \text{ item})/2$ = (25+35)/2= 30

STEP 4: Mean Deviation (M.D.)
$$=\frac{\sum |D|}{N}$$

= 90/6
= 15

Calculate Mean Deviation and Coefficient of Mean Deviation from Mean.

Marks
10
20
30
40
50

Marks	Deviations from Mean Ignoring signs $(D = X - 30)$
10	20
20	10
30	0
40	10
50	20
N = 5	$\Sigma D = 60$

Mean $\overline{X} = \frac{\sum X}{N}$ $= \frac{150}{5}$ = 30

From the following data, calculate Mean Deviation and coefficient of Mean Deviation

Marks	No. of students
5	10
15	20
25	30
35	50
45	40
55	30

Marks	No. of students	Cf
5	10	10
15	20	30
25	30	60
35	50	110
45	40	150
55	30	180

STEP 1: Arrange the size of item in ascending order.

STEP 2:
$$\frac{N+1}{2}$$
th item
= $\frac{180+1}{2}$
= 90.5th item

STEP 3: Median = Size of 90.5th item = 35

Marks	Deviation from Median (X-35)	No. of students	f <i>D</i>
5	30	10	300
15	20	20	400
25	10	30	300
35	0	50	0
45	10	40	400
55	20	30	600
		180	$\sum f D =2000$
STEP 4: Mean Deviation (M.D.) $= \frac{\sum f D }{N}$ $= \frac{2000}{180}$ = 11.11			
Coefficient of M.D. about Median = $\frac{M.D.about Median}{Median}$			
$=\frac{11.11}{35}$			
	= 0.3175		

Marks	No. of Students
0-10	10
10-20	20
20-30	30
30-40	50
40-50	40
50-60	30

Marks	No. of Students	No. of Students (cf)
0-10	10	10
10-20	20	30
20-30	30	60
30-40	50	110
40-50	40	150
50-60	30	180

 $\left(\frac{N}{2}\right)$ th term =180/2

= 90th term

Cumulative frequency which includes 90^{th} term = 110 Class corresponding to 110 is 30-40

Median = L+
$$\left[\frac{\frac{N}{2}-cf}{f}\right] * i$$

= 30+ $\left[\frac{\frac{180}{2}-60}{50}\right] * 10$
= 30+ (30*10) / 50
= 30+6
= 36

Marks	Mid-points	Deviation from Median (X-36)	No. of Students	f <i>D</i>	
0-10	5	31	10	310	
10-20	15	21	20	420	
20-30	25	11	30	330	
30-40	35	1	50	50	
40-50	45	9	40	360	
50-60	55	19	30	570	
			N=180	$\sum f D = 2040$	
Mean Devi	Mean Deviation (M.D.) = $\frac{\sum f D }{N}$ = $\frac{2040}{180}$ = 11.33				
Coefficient of M.D. about Median = $\frac{M.D.about Median}{Median}$					
$=\frac{11.33}{36}$					
	= 0.3148				

STANDARD DEVIATION:

- Standard Deviation is the square root of the arithmetic mean of the squares of deviations of all items of the distribution from arithmetic mean.
- Measures of Standard Deviation may be absolute or relative.

Absolute Measure of Standard Deviation:

i. For individual observation:

Actual Mean Method	Assumed Mean Method
$\sigma = \sqrt{\frac{\sum x^2}{N}}$	$\sigma = \sqrt{\frac{\sum d^2}{N} - \left(\frac{\sum d}{N}\right)^2}$
Where, σ = Standard Deviation $X = (X-\overline{X})$ i.e. deviations taken from Actual mean x^2 = Squares of deviation N = Total of observations	Where, σ = Standard Deviation d = (X-A) i.e. deviations taken from Assumed mean d^2 = Squares of deviation N = Total of observations

Actual Mean Method	Assumed Mean Method	Step Deviation Method
$\sigma = \sqrt{\frac{\sum f x^2}{N}}$ Where, σ = Standard Deviation $X = (X - \overline{X})$ i.e. deviations taken from Actual mean x^2 = Squares of deviation $f x^2$ = Product of square of deviation and respective frequency N = Total of observations	$\sigma = \sqrt{\frac{\sum f d^2}{N} - \left(\frac{\sum f d}{N}\right)^2}$ Where, σ = Standard Deviation d = (X-A) i.e. deviations taken from Assumed mean d^2 = Squares of deviation $f d^2$ = Product of square of deviation and respective frequency N = Total of observations	$\sigma = \sqrt{\frac{\sum f d^2}{N} - \left(\frac{\sum f d}{N}\right)^2} *c$ Where, σ = Standard Deviation $d = \frac{(X-A)}{c}$ i.e. deviations taken from Assumed mean and divided by common factor (c) $d^2 = \text{Squares of deviation}$ $f d^2 = \text{Product of square of deviation}$ and respective frequency $N = \text{Total of observations}$

CONTINUOUS SERIES:

Actual Mean Method	Assumed Mean Method	Step Deviation Method
$\sigma = \sqrt{\frac{\sum fx^2}{N}}$ Where, σ = Standard Deviation $x = (m-\overline{X})$ i.e. deviations taken from Actual mean x^2 = Squares of deviation fx^2 = Product of square of deviation and respective frequency N = Total of observations	$\sigma = \sqrt{\frac{\sum f d^2}{N} - \left(\frac{\sum f d}{N}\right)^2}$ Where, σ = Standard Deviation d = (m-A) i.e. deviations taken from Assumed mean d^2 = Squares of deviation $f d^2$ = Product of square of deviation and respective frequency N = Total of observations	$\sigma = \sqrt{\frac{\sum f d^2}{N} - \left(\frac{\sum f d}{N}\right)^2} *c$ Where, σ = Standard Deviation $d = \frac{(m-A)}{c}$ i.e. deviations taken from Assumed mean and divided by common factor (c) d^2 = Squares of deviation $f d^2$ = Product of square of deviation and respective frequency N = Total of observations

Relative Measure of Standard Deviation :

Coefficient of Variation = $\frac{Standard Deviation}{Arithmetic Mean} * 100$

VARIANCE:

• Variance is the arithmetic mean of the squares of deviations of all items of the distributions from arithmetic mean.

OR

- Variance is the square of the standard deviation OR
- Standard Deviation is the square root of the variance
- Variance = σ^2

OR

• $\sigma = \sqrt{Variance}$

• INTERPRETATION OF VARIANCE:

Smaller the value of Variance	Lesser the variability or greater the uniformity in the population	
Larger the value of Variance	Greater the variability or lesser the uniformity in the population	

From the following data, calculate Standard Deviation, Coefficient of Variation and Variance.

Roll No.	Marks
1	5
2	15
3	25
4	35
5	45
6	55

Roll No.	Marks
1	5
2	15
3	25
4	35
5	45
6	55
N = 6	$\sum X = 180$

$$Mean = \frac{\sum X}{N}$$
$$= \frac{180}{6}$$
$$= 30$$

Roll No.	Marks	<i>x</i> i.e. (X-30)	<i>x</i> ²
1	5	-25	625
2	15	-15	225
3	25	-5	25
4	35	5	25
5	45	15	225
6	55	25	625
N = 6	$\sum X = 180$	0	$\sum x^2 = 1750$

Standard Deviation	Coefficient of Variance	Variance
$=\sqrt{\frac{\sum x^2}{N}}$	$=\frac{\sigma}{Mean}*100$	$= \sigma^2$
$=\sqrt{\frac{1750}{6}}$	$=\frac{17.078}{30}*100$	⁼ (17.078) ²
= 17.078	= 56.928%	= 291.667

From the following data, calculate Standard Deviation, Coefficient of Variation and Variance.

Marks	No. of students	
5	10	
15	20	
25	30	
35	50	
45	40	
55	30	

Marks	No. of students	Fx
5	10	50
15	20	300
25	30	750
35	50	1750
45	40	1800
55	30	1650
	N = 180	$\sum fX = 6300$

 $Mean = \frac{\sum fX}{N}$ $= \frac{6300}{180}$ = 35

Marks	No. of students	<i>x</i> i.e. (X-35)	<i>x</i> ²	fx ²
5	10	-30	900	9000
15	20	-20	400	8000
25	30	-10	100	3000
35	50	0	0	0
45	40	10	100	4000
55	30	20	400	12000
	N = 180			$\sum f x^2 = 36000$

Standard Deviation	Coefficient of Variance	Variance
$\sigma = \sqrt{\frac{\sum f x^2}{N}}$	$=\frac{\sigma}{Mean}*100$	$= \sigma^2$
$=\sqrt{\frac{36000}{180}}$	$=\frac{14.142}{35}*100$	⁼ (14.142) ²
$=\sqrt{200}$	= 40.406%	= 200
= 14.142		

From the following data, calculate Standard Deviation, Coefficient of Variation and Variance.

Marks	No. of students
0-10	10
10-20	20
20-30	30
30-40	50
40-50	40
50-60	30

Marks	Μ	No. of students	D i.e, (X-40) (A=40)	d ²	fd	fd ²
0-10	5	10	-35	1225	-350	12250
10-20	15	20	-25	625	-500	12500
20-30	25	30	-15	225	-450	6750
30-40	35	50	-5	25	-250	1250
40-50	45	40	5	25	200	1000
50-60	55	30	15	225	450	6750
		N = 180	-60		-900	40500

Mean	Standard Deviation	Coefficient of Variance	Variance
$A + \frac{\sum fd}{N}$	$\sigma = \sqrt{\frac{\sum f d^2}{N} - \left(\frac{\sum f d}{N}\right)^2}$	$=\frac{\sigma}{Mean}*100$	$= \sigma^2$
$40 + \frac{-900}{180}$	$= \sqrt{\frac{40500}{^{180}} - \left(\frac{-900}{180}\right)^2}$	$=\frac{14.142}{35}*100$	⁼ (14.142) ²
35	$=\sqrt{225-25}$	= 40.406%	= 200
	= 14.142		

Calculate Coefficient of Variation if Median is 23, Mode is 29, Variance is 100

Coefficient of Variation = $\frac{\sigma}{Mean}$ *100 Standard Deviation = $\sqrt{Variance}$ $=\sqrt{100}$ = 10 Mode = 3 Median - 2 Mean29 = 3*23 - 2*Mean2* Mean = 69 - 29Mean = 40/2Mean = 20Coefficient of Variation = $\frac{10}{20}$ *100 = 50%