10.6 Nuclear Medicine From FA Smith, Applied Radiation Physics

This title refers to the imaging of any radioactive material within a human body.
Different applications include:

Whole body imaging: The body can be either viewed when stationary by wide-
angle detectors or moved slowly across the field of view of detectors which
subtend a small solid-angle of a particular region. Two principal types of
investigation exist - (a) the determination of small amounts of radioactive
contamination e.g. the study of actinide ingestion of radiation workers for which
detectors with high efficiency are required. (b) bone scans following the
administration of bone-seeking radiopharmaceuticals. Isotopes employed are
mostly **"Tc, but *Ga and '"'In are also used in particular cases. This technique
is also known as y-ray autoradiography.

Single Photon Emission Computerized Tomography (SPECT): This uses the
Anger Gamma Camera, or another dedicated system, and is the most widely-
used technique. It can give two types of image — static or dynamic. The former
gives a 2-dimensional histogram of total activity within the field of view of the
camera face. The latter gives time-dependent information from a selected Region-
of-Interest (ROI) of that view. Tomographic information is obtained by the rotation
of the camera head about the body being imaged.
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» Positron Emission Tomography (PET): Here, there is coincidence counting of
annihilation photons at 511 keV by detectors placed either side of the body
along a line through the region of interest. Each detector views this region of
Interest, Since the two photons are correlated, the spatial resolution is somewhat
higher that in SPECT. The resolution in image space is limited by the smoothing
necessary to reduce the noise due to poor counting statistics. Typical Full-Width-

Half-Maximum image resolutions are 1 —2 cm in SPECT and 7 —9 mm in PET.

10.6.1 Compartmental analysis with radioisotope tracers

Compartmental Analysis is used to quantify the time-dependence of the uptake of a
radiopharmaceutical. A model is constructed of the various organs (compartments)

involved in the transport within the body of an injected radiopharmaceutical. The
complexity of the model increases with the number of compartments and on their
nature. It matters, for example, whether the system is considered to be open or
closed.



An appropriate model is used in conjunction with the clinical measurements to
give information on the pathology of the organ systems. This information can be :

rate constants which give information on the flow between organs,
the distribution of transit times of blood flow through an organ,
the total rate of blood flow through an organ.

As a rule, the half-life of the isotope is chosen to be roughly equal to the length
of the scan in order to minimize dose to the patient. A correction for isotope decay is
therefore required in the determination of time-dependent processes.

Consider a closed 3-compartment model.

10.6.2 Rate constants

The flow of activity between the compartments, Fig.(10.19), following the injectior
of amount q, into compartment 1 at time t = 0 is described by the following differentia
equations :
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Fig.(10.19) lllustration of a 3-compartment closed system. Att =0, radioactivity is injected intc
compartment 1. Compartments 2 and 3 can take up radioactivity from 1 with rate constants K,
and K,,. The radioactivity can be returned to 1 from the respective compartments with rate constants
K,, and K,,. Uptake is monitored in each compartment by detectors d2 and d3.
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Therate constant K expresses the transfer from compartment x to compartment
y. The limiting conditions at time t = 0 are q, = q,, q, = q, = 0. For an isotope with
decay constant A in a closed system, we also have the amount of circulating activity

given by, G, =q, 6xp(-At).

When there is no reversible transfer of activity from compartments 2 and 3 back
to 1 (i.e. K,, = K,, = 0) the general solutions of the above equations are :

9007 +C, (10.10)
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Fig.(10.20) The mode! of a closed three-compartment system as represented in Fig.(10.19). Ar
initial injection of radioactive material, q,, is made at time t = 0. At a later time the quantities ir
each of the three compartments are q, , g, and q, .



qoe ™ +Cy (10.11)
where K = K, + K,,. The constants of integration, C, represent the amounts of

activity in each of the two compartments as t approaches infinity, and are obtained
from the limiting conditions att = 0. Under the restrictions imposed by the need to
minimize dose, however, the isotope lifetime should never be significantly greater
than the time required for the clinical investigation. Except in cases where the decay

constant of the isotope, A, approaches zero, therefore, the values of :

K12 K13

C, = C, =
2 K,2+K,3q°' and “3 K., + Kog Qot (10.12)

are not constant but have a time-dependence due to the radioactive decay of the
isotope. Substituting Eqs.(10.12) into Eqs.(10.11) and (10.10), we get :

. : K _
9z =qoe™ —1-e | and g2 =0 —Z[1-e]  (10.13)
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Fig.(10.21) The uptake in compartments 2 and 3 using Eqs.(10.13) for ®Tc and "'C. Value
assumed for the rate constants are : K,, = 0.0325 min*', K, =0.0975 min”, K =0.13 min". Deca)
constants are : ®*™T¢, A =0.00192 min"': "'C, A =0.034 min"' : q, = 360 arbitrary units. ¢ g

WeTc: A q, ®Tc: Hq, ''C : % q, "C.



10.6.3 Transit times

Another important aspect of dynamic tracer studies is the study of the distribution o
transit times of blood through an organ or through the vascular bed of a tissue
Mathematical modelling of such studies generally assumes :

o that the input into the system of a radioactive label occurs instantaneously (i.e
it is a delta function),Fig.(10.22),

o the output from the system (organ, tissue...) will be the summation of flow of the
label through all the pathways available.

Under these circumstances, a distribution of transit times will be observed at

the output. The Mean Transit Time is the mean value of the transit time distribution
of the outflow curve h(t). Thus :
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(10.14)

The denominator of Eq.(10.14) is unity if there is no loss of label in the system
(Le. itis a conservative system) when the mean transit time becomes :

7= [t aer (10.15)

The amount of activity retained by the system at any time tis the system retention
function R(?) :

R(t)=1- £h(t)dt
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Fig.(10.22) Time-dependent functions that describe the passage of radioactive tracer through a
system.



giving h(t) = - dR/dt. Integrating Eq.(10.15) by parts, with u =, dv/dt =h(t)and v
= (1-R(t)), we have :

T =uv - Iv du / dt
T s fR(t)dt (10.16)

The mean transit time is therefore the total area under the system retention
function.

In general, the input is not a delta function but will have a distribution I(#). The

output is then described by a function O(t) which is the convolution of I(t) with the
impulse response function h(t).

O(t) = I(t) * h(t)



10.6.4 Flow rates through a single channel

Blood flow through vessels and its perfusion of organs and tissues is a widely used
investigation in nuclear medicine. In a simple analogue system such as Fig.(10.19)
a known amount of tracer, Q, is injected into compartment 1 as a bolus with a time
distribution assumed to be a delta function. A sample volume dV withdrawn
downstream from the injection point at a time ¢ following the injection, has a tracer
concentration, C(t) = dQ/dV. If the sample is collected over a time df, the flow rate is:

F_dv__dQ
dt — C(t)dt

Under the assumption that the mixing is uniform, the sample is representative
of the whole system such that :

dQ _ C(t)dt
Q Eﬁwm




The flow-rate then becomes :
Q

F =
fcmat (10.17)

Eq.(10.17) embodies the Stewart-Hamilton principle of indicator-dilution. Its
application in an investigation of cardiac output, for example, entails the measurement

of an activity:time curve, proportional to C(t), over the heart following an intravenous
injection. In this case, blood recirculation ensures that C(t) reaches an equilibrium

value over a measurement time period which is much shorter that the isotope half-
life.

The flow-rate generated by the heart, F, can then be determined by measuring
the equilibrium value of the output curve, C, , and equating itto Q/V "where V' is
a blood sample volume taken at equilibrium. Thus Eq.(10.17) is modified to :

C’Q
F= V'
fc(t ot (10.18)
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Fig.(10.23) A typical activity:time curve, proportional to C(t), measured over the heart. The lower
curve would be observed without any recirculation of the injected activity, for example, when the
blood volume Is infinitely large and there is only one pass of the activity through the heart. The
upper curve shows the equilibrium value, C_, achieved when the injected activity becomes uniformly
distributed.



The numerator of Eq.(10.18) must be the integrated area of the lower curve in
Fig.(10.23) — that is, C(t) corrected for recirculation.

10.6.5 Flow through an organ having multiple channels

The complex micro-circulation within an organ can be modelled as a system of
parallel elements which start at the input and end at the output. At the boundary of
the organ at A, Fig.(10.24), the tracer input, Q, divides in proportion to the flow in
each channel. Thus :

dQ dF
Q F

From the Stewart-Hamilton principle, Eq.(10.17) :



dQ
E?(t)dt (10.19

F
dF = —dQ =
Q

The fluid volume which arrives at the output B from each channel in time tis dV =
dF. Substituting Eq.(10.19) we have :

tdQ
E:(t it

dVv =

Since dQ s the quantity of tracer delivered at the output between times tand ¢
dt in each channel, dQ = C(t) F dt so that :

C(t)Ftat
dv =
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Fig.(10.24) Model of parallel flow through an organ or tissue.



The total volume, V, is the sum of all individual channel volumes

F EC(: )dit
i fca )t

When the tracer input is delivered as a delta function, C(t) can be replaced by
the impulse response function h(t),

F fth(t )dit

V= =FT (10.21)
fh(t)dt

The mean transit time in Fig.(10.25) is defined as :

Zt N, At

Z N, At (10.22)
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Fig.(10.25) An impulise response function h(t). Counts N, are recorded at time t in the time
interval At — that is, between ¢ and t+ At.



