CHAPTER

ONE

GEOMETRY
AND LINE
GENERATION

INTRODUCTION

Perhaps our age will be known as the Information Revolution or the Computer Revolu-
tion, for we are witnessing a remarkable growth and development of computer technol-
ogy and applications. The computer is an information processing machine, a tool for
storing, manipulating, and correlating data. We are able to generate or collect and pro-
cess information on a scope never before possible. This information can help us make
decisions, understand our world, and control its operation. But as the volume of infor-
mation increases, a problem arises. How can this information be efficiently and effec-
tively transferred between machine and human? The machine can easily generate ta-
bles of numbers hundreds of pages long. But such a printout may be worthless if the
human reader does not have the time to understand it. Computer graphics strikes di-
rectly at this problem. It is a study of techniques to improve communication between
human and machine. A graph may replace that huge table of numbers and allow the
reader to note the relevant patterns and characteristics at a glance. Giving the computer
the ability to express its data in pictorial form can greatly increase its ability to provide
information to the human user. This is a passive form of graphics, but communication
can also be a two-way process. It may be convenient and appropriate to input graphical
information to the computer. Thus there are both graphical input and graphical output
devices. It is often desirable to have the input from the user alter the output presented
by the machine. A dialogue can be established through the graphics medium. This is
termed interactive computer graphics because the user interacts with the machine. Com-
puter graphics allows communication through pictures, charts, and diagrams. It offers
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GEOMETRY AND LINE GENERATION 3

I Ehis book we are going to present the algorithms for constructing a graphics
system which have the flavor of the CORE and GKS standards and, in some areas, go
beyond them.

We begin OUf_d'SCUSSion of computer graphics with the fundamental question of
how to locate ?"d display points and line segments. There are several hardware devices
(graphics terminals) which may be used to display computer-generated images. Some
of these will be discussed in Chapter 2. Before we talk about the devices which display
points, we shall review the basic geometry which underlies all of our techniques. We
shall consider what points and lines are and how we can specify and manipulate them.
We conclude this chapter with a discussion of how the mathematical description of
these fundamental geometric building blocks can be implemented on an actual display
device. Algorithms are presented for carrying out such an implementation for a line
printer or common cathode ray tube (CRT) display. These algorithms will allow us (if
needed) to use the line printer or CRT as a somewhat crude, but effective, graphics dis-
play device for demonstrating the graphics principles described in the rest of the text.

LINES

We can specify a point (a position in a plane) with an ordered pair of numbers (x, y),
where x is the horizontal distance from the origin and y is the vertical distance. Two
points will specify a line. Lines are described by equations such that if a point (X, y)
satisfies the equations, then the point is on the line. If the two points used to specify a
line are (x,, ¥,) and (X,, y,), then an equation for the line is given by

Yy=Y1r _ Y27 Y1 (LD)

X — X X2 — X
This says that the slope between any point on the line and (x,, y,) is the same as the

slope between (X5, y,) and (X, ¥).
There are many equivalent forms for this equation. Multiplying by the de-

nominators gives the form

(x=x%)) (Y2-Y1) = (y-y1) (X2 —xy) (1.2)
A little more algebra solving for y gives
o y = 27N x) + ) (1.3)
i X2 - Xl
or 3
j—;:—m’;+ b _I (1.4)
where M
Y2 =¥
m =
X2 — X
and
b=y — mx,
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multiplying Sut the factors 10 Equation 1 ‘

Y
[
]
=
=
-

it _x)y Ry X2 T 0 (L3)

(y2— YD) X~ (x2
or ,._,,\«..-.,’ DT P

x + syt tiQ} (L6)
ossible values for 1, s, and t are

r = (y2-Y0

s = - (X3 — X))

where p

t = Xy —X1Y2

We say possible values because we see that multiplying r, s, and t by any common fac-
tor will produce a new set of r’, s’, and t' values which will still satisfy Equation 1.6
and, therefore, also describe the same line. The values for r, s, and t are sometimes
chosen so that _,1

+s’=1

~(1.7)

Comparing Equations 1.4 and 1.6 we see that

)
m= —— }
/2 S
and I
(1.8)

| ‘_"S

e s

Can we determine where ines will cros
two lines will cross? Yes, it is faj

where two li : . 7 Yes, 1t is fairly e :
SR Ccc)lr::nme;nw'l[l‘:] cross. By the two lines crossing we mean tl?at _?:}Sly " : plermine
problem is to find thi;lt p(')tl‘irrn“sw’l" satisfy both of the equations for the f . Sl_a,f_fc S(')I‘mhe
slope-i pont. Suppose we give the equation WO lines. The
Pe-intercept form: quations for the two lines in their

line 1: y=mx + b,

line 2: = "
- | | =myx + b .
ow if there is some point (x;, y.) shared by both lin 2th
es, then
Yi=mx; + b
1 and i = mzxi + bz (l lO)

will
1l both be trye. Equating over Yi gives

mx; + bl = mzxi + b2
(1.11)
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Solving for x; yields

b2~ by (1.12)
m —m;

x.:

Substituting this into the equation for either line 1 or line 2 gives

b,m, — bym,
P i (1.13)
“v ml - m2 N
Therefore, the point 7_::*";‘ L - )
b, — b b-m; — b
( 2 1 ’ oM, 1m2) (1.14)
m; — mp m; — mp

is the intersection point. Note that two parallel lines will have the same slope. Since
such lines will not intersect, it is not at all surprising that the above expression results
in a division by zero. When no point exists, we cannot solve for it.

If the Equation 1.6 form is used to describe the lines, then similar algebra yields
an intersection point which is given by i

\
(51l2 — Sy 4z — b (1.15)
Szrl i S|r2 ' Szrl . S]rz

——————

LINE SEGMENTS

What are line segments? Our equations for lines specify all points in a given direction.
The lines extend forever both forward and backward. This is not exactly what we need
for graphics. We would like to display only pieces of lines. Let’s consider only those
points on a line which lie between two endpoints p, and p,. (See Figure 1-1.)

This is called a line segment. A line segment may be specified by its two end-
points. From these endpoints we can determine the equation of the line. From this
equation and the endpoints we can decide if any point is or is not on the segment. If the
endpoints are p, = (x,, y,) and p, = (X2, ¥2) and these yield equationy = mx + b
(orrx + sy + t = 0), then another point p; = (X3, y3) lies on the segment if '

l. y; =mx; + b(orrx; + sy; + t = 0)
2. min(x,, X,) < X3 < max(x;, X3)

3. min(y,, y,) < y; =< max(y;, ¥2)

P2

FIGURE 1-1
A A line segment.
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x MOves uniformly ¢t

.y jncreases 10 b _
As U o Ving from Yi to y2 at the same time as x

When u is 0. X is X). A
ment, we must have the ¥ coordinat
changes.

y=yi + =Y (L17)

ght line. This can be shown by equating
that with this form, we can gen-
p from 0 to I} also, given the
see if the point lies within

The two equations together describe a stral
A little algebra recovers the line equation. Note
e line segment by letting u sSwee
t on the line, we can easily test t0

over u.
| erate the point on th
parameter value for a poin
the segment boundaries.
How long is a line segm
p, and p; we can determine its

ent? If we are given the tWo endpoints of a line segment
length L. Construct right triangle p,p.A by attaching a

vertical line to p, and a horizontal line to py. (See Figure 1-2.)
The Pythagorean theorem states that the square of the length of the hypotenuse

(p,p2) is equal to the sum of the squares of the lengths of the two adjacent sides (p,A

and p,A). If we call the coordinates of p; (X i
. : | (x5, yp), and the coordinates of p; (X3, Y2
then A will have coordmatfzs (X2, Y1) and the length of the segment L will be 2givezl; )l;-y)’

| L=
" L? = (xg= %)% + (Y2=y1) (1.18)
a! ) S AL 1% i |
L= [t = x)* + (2 = ya] "2 (1.19)
| yzr ST A = LW —epagy . '
I P2
I
I
l it
Ja

X, ——\‘\
Xy, ~ FIGURE 1-2

Line Scgment length.
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GEOMETRY AND LINE GENERATION 7

What is the midpoint of a line segment? The midpoint of a line segment is often
useful and easy to calculate. The point halfway between the endpoints of a segment
will have an x coordinate halfway between the x coordinates of the endpoints, and a y
coordinate halfway between the y coordinates of the endpoints. (See Figure 1-3.)
Therefore, the midpoint is

(X + %) (v, + Y2)] (1.20)

(xm'ym)'=[ > , >

PERPENDICULAR LINES

Can we tell if two lines are perpendicular? We can determine if two lines are perpen-
dicular by examining their slopes. Suppose we have two lines

y =mx + b,
and (1.21)
y = myx + b,

If the first line is perpendicular to the second, then a line parallel to the first (that is, a
line with the same slope) will also be perpendicular to the second. For example, y =
m,x should be perpendicular to y = myx + b,. The same argument applies to the sec-
ond line: y = m,x will be perpendicular to y = m,x. Now these are two lines which
intersect at the origin. (See Figure 1-4.)

Consider a point (x;, y;) on the line y = m;x so that y, = m;x, and a point
(X5, Y5) On'y = m,Xx so that y, = myX,. The three points (x; y;), (X5, ¥2), and (0, 0)
form a triangle. If the two lines are perpendicular, they will form a right triangle and
the Pythagorean theorem will apply. The distance between (0, 0) and (x,, y,) squared
plus the distance between (0, 0) and (x;, y,) squared will equal the square of the
hypotenuse between (X,, y,) and (X3, y,). The distance formula gives

Y2 ( P,
ym [~ m
Y\ P
, . . FIGURE 1-3
Xy Xm 9] The midpoint of a line segment.
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FIGURE 1-4

Construction for test for perpendicu-

lar lines.
2 (1.22)
24 (y, — ¥2)
x'f+y%+x%+y§=(xl—X2)+(y1 y2
Simplifying gives !
0 = -2y,y2 — <X1X2
(1.23)
or
Yo, 4t %2
X Y2
but since y, = m,x, and y, = myX,, we have
l
m = - (1.24)
m;

Therefore, if two lines are perpendicular, the slope of one will be the negative recip-
rocal of the slope of the other.

From Equations 1.8 and 1.22 we see that two lines expressed in the general form
for a line are perpendicular if

r1r2 + 5182 = O (1'25)
It also follows that

(Xb1 = Xa1)(Xpy = Xp) + (Yo1 = Ya)(Yb2 = Ya2) = O (1.26)

for (x,y, y,,) and (Xp14 Y1) on line 1,(X,2, ¥,,) and (Xb2, ¥b2) on line 2
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0. where 1, s, and t were chosen to satisfy Equation 1.7, We can find 4 Jine
t = 4 » O

syhi+h " pcrpcndiCUlaf to the given line and contains the given point. It is
whic
—sx + 1y + (sXp £ 1yp) =0 (1.27)
an determine the intersection point of the original line and this perpendicular, (See
;-}.’;:re 1-5.) Using Expression 1.15 we find it to be

(s (sxo — T¥o) — T, =St = T (SXo = 1Y) (1.28)

Now we can use the distance formula (Equation 1.19) to determine the distance be-
ween the point (Xo. Yo) and this intersection point. This is what we mean by the dis-

rance between the point and the line.
L = ({xo — [s (s%0 = 1¥o) — mtIF* + {yo — [—st = r (sx0 — ryp)l}")'”* (1.29)
This will reduce down to
L =[x + syo + t] (1.30)

Notice that this is just the magnitude of the value obtained by substituting the coordi-
nates of the point into the expression for the line. When the expression is zero. the
point is on the line, while other values give the distance of the point from the line. Re-
member that this only works because we have chosen values for r, s, and t which

(Xo, Yo)

Distance

(s(sxg — ryg) —nt, —st — r(sxy — rp))

FIGURE 1-§
Distance between a point and a line.
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VECTORS : ctor may be deno
. ector? A vector has @ single direction and a length. /31 V;_ tioh ); 4D int(ei'd
WhalI;S ]algﬁg[; D. indicates how far t0 move along the X:ax,i§6 |)re S y-+ul-
(D, Dyl WHEEE " i< direction. (See Figure 10
o . far to move along the y-axis direction D
cas 1% 8L ents, vectors have no fixed position in space. They tell us how
Unlike line s€g . cfieotinl o start. The idea of a vec-

far and what direction to moyg,__‘but they do not tell us where t et
tor is useful because it closely pa

rallels the manner in which a pen ‘
or an electron beam draws lines on a cathode ray tube. The command to the pen may
be to move so far from its current posl

ition in a given direction.
Two vectors may be added by adding their respective components.

VitV = [Dy1s Dyl] + [Dxa2s Dy2] = [Dat Dxa, Dyl T Dy2] (1.31)
ose we start at some point A. The
he second, from point B to point

le vector which will move

We can picture this in terms of pen movements. Supp
first vector moves the pen from point A to point B;t
C. The right-hand side of the above equation produces a sing
the pen directly from point A to point C. -
We can also multiply a vector by a number by multiplying each of its compo-

nents.
nV = n [D,, D,] = [nD,, nD,] (1.32)

T.hlS preserves the vector’s direction but changes its magnitude. A measure of that mag-
nitude is given by the vector’s length. Sl

_ 2 2
_['_Y' = (O; + D)™™ (1.33)

If we multiply a vector by the reciprocal of its length, the result is a vector with length

it . Unlt eCtOI' . i )

FIGURE 1.6
A A veclor.
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GEOMETRY AND LINE GENERATION 11

We sometimes use vectors as a shorthand way of expressing operations on all
coordinates. For example, the parametric equations for a line (Equations 1.16 and 1.17)
can be combined into the vector form

V=V +u(V,-V) (1.34)

[

where V.= [x, y], V| = [x|,y,],and V, = (x5, yal.
We shall consider additional vector operations in later chapters as the need
arises.

PIXELS AND FRAME BUFFERS

How does all this apply to an actual graphics display? To begin with, the mathematical
notion of an infinite number of infinitesimal points does not carry over to the actual
display. We cannot represent an infinite number of points on a computer, just as we
cannot represent an infinite quantity of numbers. The machine is finite, and we are lim-
ited to a finite number of points making up each line (usually no more than a few
hundred to a few thousand). The maximum number of distinguishable points which a
line may have is a measure of the resolution of the display device. The greater the
number of points, the higher the resolution. This limitation in the number of points
may not bother us too much, because the human eye does not notice much detail finer
than 1000 points per line segment. Since we must build our lines from a finite number
of points, each point must have some size and so is not really a poiht)ﬂall. It is called
apixel (short for picture element). The pixel is the smallest addressable screen element.
It is the smallest piece of the display screen which we can control. Each pixel has a
name or address. The names which identify pixels correspond to the coordinates which
identify points. Computer graphics images are made by setting the intensity and color
of the pixels which compose the screen. We draw line segments by setting the inten-
sities, that is, the brightness, of a string of pixels between a starting pixel and an end-
ing pixel. We can think of the display screen as a grid, or array, of pixels. We shall give
‘integer coordinate values to each pixel. Starting at the left with 1, we. shall number
each column. Starting at the bottom with 1, we shall number each row. The coordinate
(i, j) will then give the column and row of a pixel. Each pixel will be centered at its

“coordinates. (See Figure 1-7.)

We may wish to place the intensity values for all pixels into an array in our com-
puter’s memory. Our graphics display device can then access this array to determine
the intensity at which each pixel should be displayed. Thi{s array, which contains an in-
ternal representation of the image, is called the frame buﬁ?(. It collects and stores pixel

values for use by the display device. ‘

1

VECTOR GENERATION
“turning on’’ the pixels for a line segment is called vector generation. If

The process of fy the segment, how do we decide which pixels

we know the endpoints which speci
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FIGURE 1-7
6 7 8 9 10 Apixel

should have their intensity changed? There are several apprgaches to.thlsh problerr;. .We
shall present two examples here. The first is a general algonthm,.whlle t.e second is a
more efficient version for the case where the line segment_en‘c}po_l‘l_lﬁts are mtegel_' S.

The problem is to select pixels which lie near to the line segment. We might try
to turn on every pixel through which the line segment passes, but there is a problem
with this approach. It would not be easy to find all such pixels, and since vector gener-
ation may be performed often, especially for animated displays or complex images, we
want it to be efficient. Another problem is that the apparent thickness of the line would
change with slope and position. An altemnative would be to step along the columns of
pixels, and for each column ask which row is closest to the line. We could then turn on
the pixel in that row and column. We know how to find the row because we can place
the x value corresponding to the column into the line equation, solve for y, and note
which row it is in. This will work for lines with slopes between —1 and 1 (lines which
are closer to being horizontal than vertical). But for the steeply rising or falling lines,
the method will leave gaps. This failing can be overcome if we divide the lines into
'[rv}v]zscelzsses. Fgr the gentle slopes (-1 < m < 1) there are more columns than rows.

re the line segments where the length of the x component D, = ( x, — X, ) is

e s e g s s oD, (Jo =) ht i, ] > 0, Fo
, umns and solve for the rows.

where |D,| < ID_\'L We step up the rows and solve for the columns

It would still be very inefficient if we actual]

using what we learn about the position of the line at

its position at the next column (o :
rrow). Consider the
i L gentle slope ¢
C}c):;s: theb collurgns._Each time we move from one colump to [hl:: nea::? where we step
anges by 1. But if x always chane
: p es by exact] g S e
exactly m (the slope). The change in y is ’ Y.L then y will always change by

each column (or row) to determine

Yisr -y, = (mxi+| + b)"(mxi + b)

= My -x) = m(l) = m
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GEOMETRY AND LINE GENERATION 13

This means that as we step alon
line by just adding m to the yp
is first to find the column at the
umn, and then to step through t
to the y value each time to get
row at each column, and we t
Figure 1-8.)

g the columns, we can find the new value of y for the
osition at the previous column. So our approach so far
left end of the line segment and the y value at that col-
he columns which the line segment crosses, adding m
a new y value. The y values will be used to select a
urn on a pixel at the selected row and column. (See

The vector generation algorithms (and curve generation algorithms) which step
along the line (or curve) to determine the pixels which should be turned on are some-
times called digital differential analyzers (DDAs). The name comes from the fact that we

~ use the same technique as a numerical method for solving differential equations. For a
line segment, we solve the differential equation for a straight line and plot the result in-
stead of printing it.

We shall make one further refinement in our approach. Instead of determining
the full y value of the line segment for each column, we shall only keep track of the
current height above the closest row boundary. At each step, the height increases by m
along with y. We can check the height at each step to see if we have moved into a new
row. If we have entered a new row, then we change the row value used to select pixels
and also subtract 1 from our height so that we will now be measuring height from the
new row boundary. For lines with negative slopes, we could let the height decrease and
check for crossing of a lower row boundary, but instead we use the absolute value of

/ (xbw Yy ))

I
)

AL [CX)

FIGURE 1-8 .
Tum on pixels with centers closest to the line segment.
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height and slope and check as it steps up. This is in order to be consistent with the .
gorithm presented in the next section,

For lines with sharp slopes, a similar procedure is used, onl}.' the roles of x and y
are exchanged and a new **height’* is found for a new row by adding 1/m to the heigh;
value for the old row.

Now a few more words on how our particular vector generator finds the starting
point. For the gentle slope cases, we shall turn on pixels in the columns that have 5
center line which crosses the line segment. We shall center the columns and rows on in-
teger coordinate values, so if x, is the left end of the line segment and x,, is the right
end, then columns between ¢ = CEILING(x,) and f = FLOOR(xy) inclusive are af-
fected. (The function CEILING returns the smallest integer which is greater than or
equal to its argument, and FLOOR returns the largest integer which is less than or
equal to its argument.) Our starting y position will correspond to the point at x = ¢,
and might not be the endpoint y,. The starting y value may be determined from the line
equation as follows:

d=mc +b=mec+ (y,-mx,) (1.36)
= Ya + m(c -x,)
To find the index of the closest row, we round the value of y- Rounding may be done by
adding 0.5 and then using the FLOOR function. g oo
r = FLOOR(y + 0.5) (1.37)
it2
o
H
H
j+1
H
j
i . \J\J
FIGURE 1.9 | i i+2
Height of the line above Pixel-row boundaries,

W = LN /\
() 2
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To ﬁ.nd the height of y above the row boundary, we take the difference of y (where the
line is) and r (the row index). If we then add m to this, we have the height value which
should be checked for the next column and so on. (See Figure 1-9.)

We shall now present the full algorithm.

K//l.'l Algorithm VECGEN(XA, YA, XB, YB, INTENSITY) For changing pixel values
/(& » of the frame buffer along a line segment PDA RN )
Arguments _XA and YA are the coordinates of one endpoint — | Le ' /8
XB and YB are the coordinates of the other endpoint L,,(,o,.\fas\ :
INTENSITY is the intensity setting to be used for the vector
_Global FRAME the two-dimensional frame buffer array 0( J, ,_,j o } y
Local DX, DY the vector to be drawn R A i P )
‘Rand C the row and column indices for the pixel to be changed \
F the stopping index P
D the line segment coordinate at the starting point .
H the difference between the line segment and the row index
M the slope of the line segment
MI1 the change in H when a boundary is crossed
BEGIN " ' ’ -
determine the components of the vector
DX « XB - XA;
DY < YB - YA;
decide on whether to step across columns or up rows
IF |DX| > |DY| THEN

BEGIN
the gentle slope case
M « DY/ DX; ‘
set up of starting point depends on which point is leftm(?stc T .
-~ /)\ IF DX > 0 THEN CL'LU mn Ci ] .6 F |
9 BEGIN . " Nl Yo ko LA fj’"— .JCCC‘
C « CEILING(XA); ] p
f o . De<YA+ M=*(C- XA), Oy 7 Wz
e valldl ;= F« FLOOR(XB); / J
END Caler 01( z
' ELSE »
BEGIN
C « CEILING(XB);
D «YB + M * (C-XB);
F «— FLOOR(XA);
END; e ' :
L R ¢ R« FLOORD + "") P AL [ 9 ;{f\.: hot ot /
. . i H«<R-D +M; P J :
rame, S & IFM >O0THEN to

A

U/)’f e - *g' ctA1Q 7 /i
] ‘
I X

BEGIN

[ 7 € the positive slope case kasian -? & . G g le bLaaot
» w Ml M- [t L, '
arsNL ~now step through the columns // Hd x4

| 2
. Cc <FDO . {. .
bg WHILE C = F IX ol bhaene wy,

\_ A

j
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BEGI el in the frame buffer

BEGIN

then negative slo

M« -M;

H «-H;
_MiL<M-1 :
WHILEC =FDO “[—e
BEGIN
set the nearest pixel in the frame buffer

FRAME[C, R] < INTENSITY;

pe case

next column
C«<C+ 1
should row change
IFH > 0.5 THEN
BEGIN
R«<R-1; .
H « H + Ml,
END
ELSEH «<H + M;
END;
END;
END
ELSE
BEGIN
the sharp slope case
IF DY = 0.0 THEN RETURN,;
he.re the above steps are repeau;d
ENgith the roles of x and y interchanged
RETURN;
END;

Scanned by CamScanner



/..

GEOMETRY AND LINE GENERATION 17

knewing a prioni whether XA is left or right of XB, and YA above or below YB. The al-
gorithm also contains a test on the sign of the slope. It is used to select a loop which
moves the line in the proper direction.

/flESENHAM 'S ALGORITHM

I 2 The above algorithm was chosen because it can be revised into a very efficient and

-

popular form known as Bresenham's algorithm for the specnal case where the coordi-,
nates of the line segment endpoints are integers. The attractiveness of Bresenham’s

algonthm is that it can be implemented entirely with mteger arithmetic f Integer arith-

“metic is usually mucE faster than floating-point arithmetic. Furthermore, Bresenham'’s
algonthm does not reqmre any mu]tlpllcatxon or division. To derive the algorithm, first
consider the effect of i integer coordinates on determmmg the starting point. The start-

ing point will just be the endpoint of the line segment| No calculation is needed to_

move along the line to a pixel center, because it is already there:, ThlS eliminates one

mﬁlneﬁope was needed; but we also used the slope to update H. How

can we revise our test for new rows so that it requires only integer arithmetic? To
simplify the discussion, consider just the gentle slope case. The test was

H>0.5 (1.38)
where
He<H+ M
or
He<H+ M-1

at each column. Note first that we can rewrite the test as

H-0.5>0

Now we can multiply by 2 to get

2H-1>0 (1.39)

Notice how the 0.5 fraction is removed. But H still has a fractional part, which arises
from the denominator in M that is added in at each step. To remove it, we multiply by
DX. Assuming we have arranged the endpoints so that DX is positive, the test is then

2DXH-DX>0

Suppose we define G as
G = 2DX H-DX (1.40)

The test is simply
G>0__ (1.41)

Then how does G change from one column to the next? Solving for H gives
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e
H = "px
If H, o —Hge t+ M
h DY
then Gncw+DX<_9ciq_tP.)£+—l-)—;
2DX 2DX
(1.43)
or G W*_Gold+2DY
For the case
anw « Hold + M- 1
we get

1.44)
Gpew < God T 2DY - 2DX 1( v
i entirely wit
[ iti d subtractions and can be done |
ting G requires only additions and Subtrac d can S
'Cf:lcilras Ir’lI'ghe tric(llc then is to use the test G > 0 _tp_c%etermme whe'n a r;)hv; e a;r;ue
lcr:osgsed .by the line instead of the test H _>p(_)»./5_».fpr integer endpoints,

of His M, so the initial value of G is

G =2DX ( B\L) — DX = 2DY — DX (1.45)
DX

For each column, we check G. If it is positive, we move to the next row and add
2DY - 2DX to %ﬂvise, we keep the same row and add 2DY to G. The full al-

gorithm follows.

ues of the frame buffer along a line segment with integer endpoints
Arguments XA and YA are the coordinates of one endpoint
XB and YB are the coordinates of the other endpoint
INTENSITY is the intensity setting to be used for the vector
Global FRAME the two-dimensional frame buffer array
Local DX, DY the vector to be drawn
R, Cthe row and column indices for the pixel
F the final row or column
G for testing for a new row or column
INC1 incre
INC2 incre
POS-SLO

>&, 1.2 )Algorithm BRESENHAM(XA, YA, XB, YB, INTENSITY) For changing pixel

ment for G when row or column is unchanged
ment for G when row or column changes -

P . . . . ..
BEGiN ’E a flag to indicate if the slope is positive

determine the com
DX « XB - XA,
DY < YB - YA:

ponents of the vector
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GEOMETRY AND LINE GENERATION 19

determine the sign of the slope
POS-SLOPE « (DX > 0):
IF DY < 0 THEN POS-SLOPE « NOT POS-SLOPE:
decide on whether to ste '
IF IDX| > IDY| THEN
BEGIN
this is the gentle slope case
IFDX > 0 THEN
BEGIN
C «— XA;
R < YA:
F «— XB;
END
ELSE
BEGIN
C < XB;
R <« YB:
F « XA;
END;
INCI < 2 % |DY[;
G « 2 * |DY| - |DX]|;
INC2 « 2 * (|DY| - |DX|); -
IF POS-SLOPE THEN
BEGIN
now step across line segment
WHILE C = F DO
BEGIN
set nearest pixel in the frame buffer
FRAME|C, R] < INTENSITY;
next column
C«<C+ I;
should row change
IFG = 0 THEN
BEGIN
R«<R + I;
G «< G + INC2;
END
ELSE G « G + INCI,
END;
END
ELSE
BEGIN
WHILE C = FDO

BEGIN
set nearest pixel in the frame buffer

FRAME[C, R] < INTENSITY;
next column

C«C+ I

should row change

P across columns or up rows
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[FG >0 THEN
BEGIN
R<R-1
G« INCZv
D
EL;ESG «G + INCL,
END;
END:
END
ELSE
BEGIN

this is the sharp slope case
here the above steps ar¢ r.cpeated ;
with the roles of x and y interchange

END;
RETURN;
END:.

We have seen how the BRESENHAM algorithm is more efﬁc.lent than the VEC-
R - : ' iti d subtraction. We might ask,

GEN algorithm in that it requires only integer ad'dmon an ! 48 3
why not always use it? Why not always round line segment endpoints to in t.agers e-
fore vector generation? In fact, many systems will do just that, but note that in round-
ing the line segment endpoint positions, errors are introduced. These errors can be seen
in cases where two overlapping line segments are drawn on the display (as when two
objects are shown side by side). Another example occurs when a new line segment
with a different INTENSITY overlaps an old line segment; we might like to change the
old segment’s pixels to the appropriate values for the new segment. If we deal with
exactly the same line equation for both line segments, then the same pixels should be
selected; but if errors in the endpoint positions are introduced, the line equations might
not match, and the new line segment can leave pixels from the old line segment peek-
ing out from behind it. Note, however, that even our VECGEN algorithm can have er-

rors mtrgduced in the endpoint position as the result of round-off in the floating point
arithmetic of the machine.

Algorithms for vector generation (such as th

plemented i

ANTIALIASING OF LINES

Many displays ;
ys allow only two p;
have a jagged . 1Y WO pixel states, on or off. E -
or stair-s . . ror theg . {
next. The low AIPstep appearance when they step f es¢ displays, lines may
er the resolution, the more apparent P ITom one row or column to the
n

the effect. Thjs s one aspect of a
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phenomenon called aliasing. Aliasing produces the defects which occur when the scene
being displayed changes faster or more smoothly than every two pixels. Displays
which allow setting pixels to gray levels between black and white provide a means to
reduce this effect. The technique is called antialiasing, and it uses the gray levels to
gradually turn off the pixels in one row as it gradually turns on the pixels in the next.
(See Figure 1-10.)

The vector generation algorithms can be modified to perform antialiasing. Re-
member that for gentle sloped lines, we in effect examined the line position for each
column index and decided which row was closest. The line segment would lie between
two pixels, and we picked one. Suppose that instead of picking the closest, we turned
them both on. We should choose the intensity values according to a function of the dis-
tance between the pixel index and the line segment so that the pixel closest to the line
receives most of its intensity. The sum of the intensity values for the two pixels should
match the total intensity value for the line. The function used can be a simple or a com-
plex expression based on intensity patterns, pixel shapes, and how lines cover them. In
general, we want the pixel’s intensity to match the amount of the line which covers its
area. Antialiasing with complicated functions can still be done efficiently by storing
the function values in a table. The table is then used to look up the intensity for a dis-
tance between the pixel index and the line. (See Figure 1-11.)

THICK LINE SEGMENTS

Raster displays allow the display of lines with thickness greater than one pixel. To pro-
duce a thick line segment, we can run two vector generation algorithms in parallel to
find the pixels along the line edges. As we step along the line finding successive edge
pixels, we must also turn on all pixels which lie between the boundaries. For a gentle
sloping line between (X,, Y,) and (X,, yp) with thickness w, we would have a top
boundary between the points (X,, y, + W,) and (X, ¥ + W) and a lower boundary
between (X,, ¥, — Wy) and (Xy, Yp — Wy) where w, is given by
(w = 1) [(xy = x)° + (yp — ¥

— (1.46)
"y 2 T ke — xd

This is the amount by which the boundary lines are moved from the line center. The
(w — 1) factor is the desired width minus the one-pixel thickness we automatically re-
ceive from drawing the boundary. We divide this by 2 because half the thickness will
be used to offset the top boundary, and the other half to move the bottom boundary.
The factor containing the x and y values is needed to find the amount to shift up and

""" 0000000000000 0 0000 ° - "~
000000000000 GOS0« °

FIGURE 1-10
Antiahasing of a line.
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FIGURE 1-11

Using vertical distance from the pixel to determine intensity.

down in order to achieve the proper width w as measured perpendicular to the line di-
rection, not up and down. (See Figure 1-12.) Sharply sloping lines can be handled
similarly with the x and y roles reversed.

CHARACTER GENERATION

Along with lines and points, strings of characters are often displayed to label and anno-
tate drawings and to give instructions and information to the user. Characters are al-
most always built into the graphics display device, usually as hardware but sometimes
through software. There are two primary methods for character generation. One is
called the stroke method. This method creates characters out of a series of line seg-
ments, like strokes of a pen. We could build our own stroke-method character
generator by calls to the VECGEN algorithm. We would decide what line segments are
needed for each character and set up the calls to the VECGEN for each character we
wished to draw. In actual graphics displays, the commands for drawing the character
line segments may be in either hardware or software. The stroke method lends itself to
changes of scale; the characters may be made twice as large by simply doubling the
length of each segment.

The second method of character generation is the dor-
this scheme, characters are represented by an array of dots.
7 dots high is often used, but 7 x 9 and 9 x
devices, such as ink-jet or laser printers, m

matrix or bitmap method. In
An array of 5 dots wide and

I3 arrays are also found. High-resolution
ay use character arrays that are over 100
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FIGURE 1-12
Thick line construction.
> di-
iled
pixels on a side. This array s like a small frame buffer, just big enough to hold a
character. The dots are the pixels for this small array. Placing the character on the
screen then becomes a matter of copying pixel values from the small character array
into some portion of the screen’s frame buffer (usually, for common alphanumeric ter-
minals the dot matrix is allowed to directly control the intensity of small parts of the
Ino- screen, eliminating the need for a large frame buffer). The memory containing the
- al- character dot-matrix array is often a hardware device called a character-generator chip,
mes but random access memory may also be used when many fonts are desired. The size of
> 1S a dot is fixed, so the dot-matrix method does not lend itself to variable-sized charac-
eg- ters. (See Figure 1-13.)
cter
are
we
ctef
f10
th¢
In FIGURE 1-13
’ d Character generation. (a) Stroke method,
an (@) ®) (b) dot-matrix method.
iof
el
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Antialiasing techniques can be applied to characters, This can improve the ap.
pearance of the character, particularly for very small fonts and characters where the f;.
nite resolution of the display interferes with their smooth curved shapes.

DISPLAYING THE FRAME BUFFER
ﬁL\ino algorithms such as VECGEN or BRESENHAM, a frame buffer array may be
modified to_contain ling segments and characters, This array directly corresponds 1o

R A e

the screen and holds an intensity- “coded Torm of the image o be displayed. To use this
device. some additional operations are required. We must be able to clear the frame
buffer. We need to begin with a blank array for the same reason that we start a pen-and.-
ink drawing with a blank piece of paper. Another operation which is necessary is trans-
fer of the information from the frame buffer to the display medium (the display screen
or the paper). For raster graphics displays, this operation is built into the hardware, The
frame buffer is continually being \g.mncd by the hardware to l()rm the screen IdeL
Any change in the frame ‘buffer is tmmc.dlau,ly shown on the screen. For g graphics out-
put on a line printer, however, there is no hardware which automatically shows the con-
tent of the frame buffer. In this case, the display operation must be done by a software
routine. Finally, routines may be necessary for initialization and termination of the
graphics system. When starting a graphics program, hardware devices and storage may
be allocated and variables may be initialized by an initialization routine. Upon the
completion of the job, the deallocation of the storage, the release of hardware devices,
and other housekeeping chores may be done by a termination routine.

To complete this chapter, we would like to give the algorithms needed to obtain
graphics output from a line printer or common CRT terminal. The first algorithms, the
vector generators, have already been presented. We shall need a frame buffer array to
hold the image. The size of this array depends upon the resolution of the display de-
vice. If a CRT displaying 24 lines of 80 characters each is used, the frame buffer might
be dimensioned FRAME(80,24]. This is not the only choice. In many displays we find
that setting the lower right-hand pixel will cause automatic scrolling of the image,
shifting the top line off the screen. This can be prevented by not using the bottom line,
and [80,23] may be more appropriate. Or we may find that the display screen is not
square, and for the sake of treating the x and y directions equally, we may select a
square subarea like [60,23]. A line printer may use an array FRAME(90,50] or larger,
depending on the storage available and the number of characters per line. The frame
buffer will be an array of characters. The INTENSITY of algorithm 1.1 will be a
character such as the period or asterisk, out of which we will construct the picture. For
a clear or empty frame buffer corresponding to a clear display, the array should be
filled entirely with blanks. This is done by the following algorithm.

1.3 Algorithm ERASE Clears the frame buffer by assigning every pixel a background
value
Global FRAME the two-dimensional frame buffer array
WIDTH-START and HEIGHT-START the starting indices of FRAME
WIDTH-END and HEIGHT-END the ending indices of FRAME
Local X, Y frame buffer indices

Scanned by CamScanner



GEOMETRY AND LINE GENERATION 25

BEGIN
FOR'Y = HEIGHT-START TO HEIGHT-END DO
FOR X = WIDTH-START TO WIDTH-END DO
FRAME[X, Y] «*
RETURN;
END;

A call of the ERASE routine clears the display. We can use this whenever we wish to
draw a new picture.,

The DISPLAY routine is used to show the contents of the frame buffer on a line
printer. Note that while our y coordmate begins at the bottom and increases as we
move up the dlsplgy printers typically begin at the top of the page and work down.
This means that the y coordinate must be displayed beginning with its high values and
working down.

1.4 Algorithm DISPLAY This displays the contents of the frame buffer
Global FRAME the frame buffer array
WIDTH-START and HEIGHT-START the starting indices of FRAME
WIDTH-END and HEIGHT-END the ending indices of FRAME
Local X, Y the pixel being displayed
BEGIN
FOR Y = HEIGHT-END TO HEIGHT-START DO
PRINT FOR X = WIDTH-START TO WIDTH-END, FRAME[X, Y];
RETURN;
END;

To complete this package, we must include a routine to initialize the parameters
for the display size and to perform any system-dependent housekeeping. Included in
the initialization should be the establishment of frame buffer size parameters and the

clearing of the display.

1.5 Algorithm INITIALIZE-1
Global WIDTH-START and HEIGHT-START the starting indices of FRAME

WIDTH-END and HEIGHT-END the ending indices of FRAME
WIDTH, HEIGHT the dimensions of FRAME
BEGIN '
perform any needed storage allocation, hardware assignment,
or other system-dependent housekeeping;
HEIGHT-START « starting column index of FRAME;
WIDTH-START « starting row index of FRAME;
HEIGHT-END <« ending column index of FRAME;
WIDTH-END <« ending row index of FRAME:
HEIGHT < HEIGHT-END - HEIGHT-START;
WIDTH < WIDTH-END - WIDTH-START,

ERASE:;
RETURN:;
END;
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1.6 Algorithm TERM
INATE
BEGIN
release any assigned hardware devices;

perform any necessary final h ing;
OF ry ousekeeping;

END;

FURTHER READING

'\I;gedre are a large numt?er (?f texts on analytic geometry. One book which is oriented t,.

T4 computer graphics is [ROG76]. Use of a frame buffer was first described |
[NQL?I]. Bresenham presented his algorithm in [BRE65]. DDAs and Bresenham’s ;r
gonthm are also discussed in [EAR77], [FIE85], [LOC80], and [SPR82]. An altema:
tive approach to vector generation based on the general form of the line equation rather
than on the parametric form is presented in [DAN70]. Another approach based on the
structural properties of the line is described in [BRO74] and [CED79]. A symmetric -
gorithm which allows a sequence of lines to be erased by drawing them in reverse
order with *‘white ink’’ is given in [TRA82]. An example of a 7 X 9 dot-matrix font
-may be found in [VAR71]. An example of specialized character-generation hardware
may be found in [THO72]. A discussion of antialiasing lines may be found in
[CRO78], [GUP81], and [PIT80]. A simple, fast algorithm for antialiased lines is
given in [KET85]. Antialiasing of characters is described in [WARB80]. A more general
discussion of aliasing and antialiasing is presented in [LEL80]. An early description of
CORE was published in [GSPC79]. An overview of the GKS standard is given in
[BON&2]. The GKS standard is published in [GKS84].
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