CHAPTER

O

GRAPHICS
PRIMITIVES

(@%%ﬁ’" h*zlmq)

4

INTRODUCTION

The computer graphics user wil] not,
for a project. Instead, he will have
clude special hardware for output
routines for performing the basic gra

in general, have to start from scratch in preparing
a graphics system available. This system will in-

and input of pictorial information and software
phics operations.

The purpose of a graphics system is to make programming easier for the user.
s high-level computer languages make programming easier by supplying power-
ful operations and constructs which match the requirements of the problem, a graphics
System supplies operations and constructs suited to the creation of graphical images to
enhance the development of a graphics program. In fact, some graphics systems are in
the form of special high-level graphics languages, languages suitable for solving
graphics problems. Other graphics systems are in the form of extensions to general-
purpose high-level languages such as FORTRAN, PL/I, or PASCAL . Such extensions

may be made through a “‘package’’ of subprograms or by the addition of new language
constructs.

Just a

While the form may vary between different graphics systems, there are certain
basic operations which can almost always be found. These are operations S‘f‘:h as mov-
ing the pen (or electron beam), drawing a line, writing a chzfracter ora s.trmg of text,
and changing the line style. In this chapter we shall'begm constructing our own
graphics system. We shall start by looking in more det.tsul at some of the.[ypes of dis-
Play devices. We shall present algorithms for some basic grapl‘ncs operations, and we
shall introduce the concepts of device independence and of a display file.

33

Scanned by CamScanner

34 CHAPTER TWO

DISPLAY DEVICES

We saw in the last chapter h
number of picture elements, Or piXe

ow computer graphics images are composed of 3 finiye
Is. A display with good resolution might have 100y

divisions in both the x and y directions. The screen_woul_d theq ha_ve 1000 X 1090 .
million, pixels. Each pixel requires at Ef_gggne b'E,.?:fw'BLEHSltX j/r]fqnpatlgrrl; light ,
dark. and further bits are needed if shades of gray or different color§ are desired. Thyg
if we actually store the information for each plxel'm the c_omputer S memory, a lot o
memory may be required. This is. in fact, what is done in some raster graphics .

of the memory used to hold the pixels

plays. As we said in Chapter 1, the portion) '
called the frame buffer. The memory is usually scanned and displayed by direct memop,

access, that is, special hardware, independent of the central processor (leaving the pro.
cessor free for generation of the images). (See Figure 2-1.)

In the raster display, the frame buffer may be examined to determine what is ¢y.
rently being displayed. Surfaces, as well as lines, may be displayed on raster disgla'y
devices. Since images may be displayed on television-style picture tubes, raster djs.
play devices can often take advantage of the technological research and mass produc.
tion of the television industry. The raster terminal can also display color images. One
of the problems with the raster display is the time which may be required to alter every
pixel whenever the image is changed. Another disadvantage is the cost of the required
memory. This has been eased in some displays by using a coarse resolution (fewer
pixels). However, technological progress has steadily brought the price of memory
down, and at this point in time it appears that raster graphics will play a dominant role

in the future.
In the past, the cost of memory made the raster display seem much less promis-

ing. Different designs for graphics displays were developed in an effort to reduce ex-

pensesf{@g approach was to let the display medium remember the image, instead of
_using the computer memory. This is. what plotters.do..A pen is lowered onto paper and
“moved under the direction of a vector generation algorithm. (See Figure 2-2.)

Once the line is drawn, the ink on the paper ‘‘remembers’’ it, and the computer
need not consider it further. The main disadvantage to this approach is that once
drawn, a line cannot be easily removed. If we wish to change the image on the plotter
by removing a line, we must get a fresh piece of paper and redraw the picture (without
the removed line). This can be time-consuming (and can use a lot of paper). For this
reason, plotters are not the best devices for interactive graqhics.

The first *‘low-cost’” CRT display (under $5000) was produced by Tektronix. Be-
cause of good resolution and low cost, these terminals became widely accepted and
may be commonly found today. The terminals use special cathode ray tubes called di-
rect view storage tubes (DVST), which behave much the same way as a plotter. An elec-

LINE-ABS-2
(0.2,0.2)
FIGURE 2-1

Display Raster display system.

Scanned by CamScanner

Frame buffer

User program

08 Lo, ° Jo
o T il

LINE-ABS-2 _
(0.2,0.2)

FIGURE 2-2

User program Plotter PIBIRG b0
stem.

tron beam is dlr'eCIed at the surface of the screen. The position of the beam i -
trolled by electric or magnetic fields within the tube. Once th sphotd o
this special. tube have been illumi ’ - Unce the screen phosphors of
Figure 2-3.) tlluminated by the electron beam,‘they stay lit. (See
. As was the case with th‘e plotter, one cannot alter a DVST image except by eras-
ing the entlrf: screen and drawing it again. This can be done faster than on a plotter, but
the Process is stlll_ time-consuming, making interaction difficult and eliminating these
“devices from use in real-time animation.

A dlsplay de\./ice which stores the image (as plotters and storage tubes do) but al-
lows selective erasing is the plasma panel. The plasma panel contains a gas at low pres-
sure sandwiched between horizontal and vertical grids of fine wires. A large voltage
difference between a horizontal and vertical wire will cause the gas to glow as it does
in a neon street sign. A lower voltage will not start a glow but will maintain a glow
once started. Normally the wires have this low voltage between|them. To set a pixel,
the voltage is increased momentarily on the wires that intersect the desired point. To
extinguish a pixel, the voltage on the corresponding wires is reduced until the glow
cannot be maintained. Plasma panels are very durable and are often used for military
applications. They have also been used in the PLATO educational system.

A device which is now becoming economical is the liquid crystal display. This is a
flat panel display technology, which makes it less bulky than CRTs. Also, because of
its low voltage and power requirements, it is lighter in weight, making it the display of
choice where portability is required. In a liquid crystal display, light is either transmit-
ted or blocked, depending upon the orientation of molecules in the liquid crystal. An
electrical signal can be used to change the molecular orientation, turning a pixel on or
off. The material is sandwiched between horizontal and vertical grids of electrodes
which are used to select the pixel.

At the present time, liquid crystal televisions are available, but the display is
formed on a single semiconductor wafer, which limits its size. Larger but slower dis-
plays are also available (640 X 250 pixels). This technology is still young and may
compete with CRT displays in the future. ‘ .

Another approach to the display of graphical information, which has had a pro-
found effect on today’s graphics methods, is the vector refresh display. The vector re-

LINE-ABS-2 5
(0.2,0.2) /
FIGURE 2-3

DVST Display Direct view storage tube system.

User program

Scanned by CamScanner

JO ¢ HAPTER Tw(

image i : it tri
rastf dp the computer’s memory, but it tries to be mych mor
r display. To Specify a line segment, all that is require i,L

ir::;rsts}::'tsrf);azesgres only the c'ommands.nccessary for drawing the line segments. The
saved in wha ic COI’I gden;:ralq IS saved, instead of l-he output. These commands are
MNecior called t e dxsplay_ﬁ[‘e. They are examined and the lines are drawn using

_ r-generating algorithm. This is done on a normal cathode ray tube, so the image
quickly fades. In order to present a steady image, the display must be drawp re.
peatedly. This means that a vector generator must be applied to all of the lines ip an
'mage fast enough to draw the entire image before flicker is noticeable (more than 3()
times a second). To do this, the vector generators of refresh displays are usually im.
plemented in hardware. (See Figure 2-4.)

Refresh displays do allow real-time alteration of the image. They also have some
disadvantages. The images formed are composed of line segments, not surfaces, and 3
complex display may flicker because it will take a long time to analyze and draw it

The concept of a display file has proved to be a useful one. It provides an inter-
face between the image specification process and the image display process. It also de-
fines a compact description of the image, which may be saved for later display. The
display-file idea may be applied to devices other than refresh displays. Such files are
sometimes called pseudo display files, or metafiles. Standards are currently under de-
velopment for metafiles to aid in the transport of images between computers.

Devices such as vector refresh displays, pen plotters, and DVSTs may only di-
rectly support /ine drawing. They do not provide support for the solid areas which can
be constructed on raster displays. Such line-drawing devices are called calligraphic dis-
plays.
All the graphics display systems we have described can display the image as it is
being constructed. When a command to draw a line segment is issued, the line segment
can immediately appear on the screen or paper. The major difference is in whether the
display may be altered. To change a vector refresh display, one needs only to change
the display file. To change a raster display, one alters the frame buffer. A similar altera-
tion can change a plasma panel. However, to change a plotter or a DVST, one must
first call a new-frame routine, which shifts the paper or erases the screen, and then one
must redraw the entire image.

We should mention one further class of display device. They are raster printers
and plotters that create the image in a single sweep across the page. There are a number
of technologies which fall into this category including film printers, laser printers.

LINE-ABS-2
(0.2,0.2)

User program Display file Display processor Display

FIGURE 2-4
Vector refresh display system.

Scanned by CamScanner

GRAPHICS PRIMITIVES 37

»lectrostatic plotters, -

;l(ftc.lmatrix fimers T:]hee;ma'l ‘md thermal-transfer printers. ink-jet printers. and impact

- magix m}-tem [€VICes can range in resolution from about 100 pixels per inch
- 1 . .

0 P 519 O\CF 1000 pixels per inch for film printers. Dot-matrix print-

ers have an array of wires which can

bC indi\’idu&ll 100 pl SS |]
y [rlc..Cer to €SS an Inked l'lbeH
IO l“ake a d0[on Ihe papel. By SW(‘(}I)inn [he ']rray

I : i : across the paper. images can be
formed. Ink-jet printers form Ilny droplets of ink which can be ouided to tﬁe paper to
form dots..They use nozzles which move across the paper. Laser printers are built on
top of copier technology. Instead of copying the ligh

! ' t pattern reflected from a piece of
paper. a laser 1s used to supply the light pattern. A ro

Lal tating mirror sweeps the laser in a
raster pattern, and a light valve turns the beam on or off to form the image which is

“‘copied.” Fnlm‘prnmers use a laser scanning system similar to laser printers, but they
focu.s the laser d.lrectly on photographic film to form the picture. Thermal printers have
a print head.w.hlch can burn tiny dots on a heat-sensitive paper. Thermal-transfer print-
ers have a similar print head, but it is used to melt dots of wax-based pigment onto the
paper. Electrostatic plotters use an array of wires to which a voltage may be selectively
applied. As the paper passes across the wires, it is given a pattern of electrostatic
charges. The paper then passes through a liquid toner which is attracted to the pattern
on the paper.

As we saw in Chapter 1, one way to produce an image on such raster devices is
to first construct it in a frame buffer. The image is constructed by altering the contents
of this array, just as may be done for a raster display. The difference from a raster dis-
play is that the user will not be able to watch the image being formed. When the user
has completed the image, it may output in the order required for printing. These de-
vices require an additional procedure for showing the image.) -

By creating a frame buffer, alphanumeric terminals and printers may be used for
graphics output. They have the same behavior as raster printing devices. The resolution -

of such devices is usually not very good, but they are readily available and may be suf-
ficient for the user’s needs. ’

- Kore

PRIMITIVE OPERATIONS ‘L mous.

Regardless of the differences in display devices, most graphics systems offer a similar
set of graphics primitive commands (although the form of the commands may differ
between systems). The first primitive command we shall consider is that for drawing a

line segment. While a segment may be specified by its two endpoints, it is often the
case that the segments drawn will be connected end to end. (See Figure 2-5.)

4)

S

k FIGURE 2-5
J Connected line segments.

Scanned by CamScanner

“Cege / - '
" cg,i(_f_ C(Mﬁ-’r’\t Jl,&(_oiur’.-‘- "JI",{,‘ f
. CHAPTER Two //7aj',/‘ . / /f\s‘,/){c/,. o
) e
\ CececelS 'to 7
- | Dl‘—wi? 29 VIS
final point of the last segment becomes the first point of the ne(;(t segment -

To avoid v SN)
cloona, bspecanng this point twice, the system can keep track of the currens pen o
€am position. The command then becomes: draw a line from the current pos.‘r

tion to the point specified. This is

LINE-ABS-2(X, v)
and is called an absolute line command because the actual coordinates of the final posi-

tion are passed. (See Figure 2-6.)
There is also a relative line command. In this command we only indicate how far

to move from the current position (see Figure 2-7):

LINE-REL-2(DX, DY)

The actual endpoint of the segment may be determined from the current position and
the relative specification. If we let (XC, YC) denote the current position, then

L{NE-REL-Z(DX, DY)
1s the same as

LINE-ABS-2(XC + DX, YC + DY)

The above procedures are fine for producing a connected string of line segments, but it
may happen that we wish to draw two disconnected segments. (See Figure 2-8.)

This can be accomplished by the same mechanism if we picture these two seg-
ments as connected by a middle segment which happens to be invisible. We have com-

mands for moving the pen position without leaving a line. Again there can be both ab-

solute and relative moves.

- MOVE-ABS-2(X, Y)
MOVE-REL-2(DX, DY)

. We can construct a line drawing (say of a house) by a series of line and move
commands. If these commands are located in a subprogram, then each time a subpro-
gram is called, an image of the house is produced. If absolute commands are used,
then the house will always be located at the same position on the screen. If, however,

~

a

FIGURE 2-6
The absolute line command.
Scanned by CamScanner

bs bads s
’\;. [Lxl(ll,L\ ’) al l/\. “ (Il“’;(’*b\l .-ﬁ(‘){fn/l:%. J/l‘;o

MQUE (Do GRAPHICS PRIMITIVES 39

P — It [O d/\u/ Fi' .

®) % (;J,\ﬂ(y(‘ J(-’/h iy

/ l D - C p
K c/ ~hao vje Ll
=D N> FIGURE 2.7 / j
The relative line command.

=

only relative commands are used, then the

y | X position of the house will depend upon the
position of the pen (or beam)

‘ at the time when the subprogram was entered. This may
be used for the construction of pictures made of repeated instances of basic compo-
nents. The subprogram for each type of component should be written using only rela«
tive commands. Drawing the entire picture is reduced to positioning the beam and call-
ing subprograms. For example, suppose we write the following subprogram for a
house.

Subprogram House
BEGIN QDX‘.OY)

LINE-REL-(0.0.2); 0 R Cwngnd voduy aral

LINE-REL-2(0.1.0.1);

LINE-REL-2(0.1-0.1): aslal 0 2 ras a
LINE-REL-2(0.-0.2): .
LINE-REL-2(0.2.0): Lire 04

END:

This will start at the current pen position, which will become the lower-left corner of
the drawing. It will draw the left wall, the roof, the right wall, and, finally, the floor.
(See Figure 2-9.) v

Since only relative commands were used, we can draw three houses by simply
calling this subp.rogram at three different star,ting positions. (See Figure 2-10.)

BEGIN [%,y o5
MOVE-ABS-2(0.1,0.2); j p
HOUSE; o %
MOVE-ABS-2(0.4,0.2);

HOUSE: 0-3-
MOVE-ABS-2(0.7.0.2);
HOUSE: 6.2 -

END:

0. 11

FIGURE 2-8
Disconnected line segments.

Scanned by CamScanner

Q} FIGURE 2.9
Subprogram HOUSE.

THE DISPLAY.F ILE INTERPRETER

While it might be possible to have the LINE command directly alter the fr
we ehall Not organize our system in this manner. Instead, we shal| ms;me b‘_’ffer.
mediate step. We shall have LINE and MOVE commands store their informm‘ m[?r"
Wwhat we shall call our display file. We shall then use the information in the djs alno;] !
tO create the image. There are several reasons for using this tWo-step process. F?r:ty e
every display device has a frame buffer. Different display devices require differem‘ -
grams to drive them. By isolating the driving program in the second of the two Stfrg-
we achieve some measure of device independence. Second, it will make jt easy fOrI;S'
to change the position, size, and orientation of the image. These image transforméiiom
will be carried out during the second step. The techniques involved will be covered ip
Chapter 4. For now, we shall concentrate on the form of the display file. In Chapter 5
we shall learn how to structure the image and to carry out transformations on portions
of it. The display file will support this structuring.

The display file will contain the information necessary to construct the picture,
The information will be in the form of instructions such as *‘draw a line,”” or “‘move
the pen.”” Saving instructions such as these usually takes much less storage than saving
the picture itself. These instructions can be thought of as a program for creating the

image. Each instruction indicates a MOVE, or a LINE, action for the display device,

— . . e

We _shall write-a display-file interpreter ta convert these instructions into actual images.
e — B

(See Figure 2-11.)
z?’:r interpreter may be thought of as a machine which executes these inetru_c-
tions. The result of execution is a visual image. In some graphics systems there is, in
fact, a separate computer, called the display processor, which is located in the graphws
terminal and which is used just for this purpose. In other systems, the behavior of 4
display processor is simulated. Where there is a separate display processor, some car
must be taken when the display file is modified since the display processor may cur
rently be executing the instructions being changed.

Q m m FIGURE 2-10 o don.
i - Three calls of HOUSE, each with a different initial pen po

Scanned by CamScanner

PIARIES WMy g

e et s g
-~

(PSEUDO) /

DISPLAY INTERPRY 1R ‘ i

\

USER
PROGRAM

FIGURE 2-11
Display file and interpreter.

LQEIQ?EP‘%’TQ“ Interpreter serves as an interface betwe
and the display device.|If we write a graphics ‘pi‘;‘\gr}in'\ for
chances are that it will' not run on a different display. The portability of the program i
limited. If, on the other hand, we write a program which generates dis.pl;:y‘tilt (cu:li-'
all we need is an interpreter for each device which converts our “standard™ display in:
structions to the actions of the particular device. We think of the display device and its
interpreter as a machine upon which any standard program may run. The display-file
instructions may actually be saved in a file, either for display later or for transfer to
another machine. Such files of imaging instructions are sometimes called metafiles.

Yeen our praphics program
aparticular display device

NORMALIZED DEVICE COORDINATES (0 {0 1)

-
-

Different display devices may have different screen sizes as measured in pixels. If we
Wish our programs to be device-independent, we should specify the coordinates. in
some units other than pixels and then use the interpreter to convert thesé coordinates to
the appropriate pixel values for the particular display we are using. The device-inde-
pendent units are called the normalized q_evicexgqq{_gigat‘es-&

measures | unit wide and-I"unit high. The lower-left corer of the screen is the origin,
and the upper-right comer is the point (1, 1). The point (0.5, 0.5) is in the center of the
screen no matter what the physical dimensions or resolution of the actual display de-

vice may be. (See Figure 2-12.)

\The interpreter uses a simple linear formula to convert from the normalized-de--

vice coordinates to the actual device coordinates. Suppose that for the actual display
the index of the leftmost pixel is WIDTH-START and that there are WIDTH pixels in
“the horizontal direction. Suppose also that the bottommost pixel is HEIG.HT-STAR'.I‘
and the number of pixels in the vertical direction is HEIGHT. In the normah;ed CF)OI‘dI-
nates the screen is | unit wide, but in the actual coordinates it is WIDTH units wide so
the normalized x position should be multiplied by WIDTH/I to convert to actual screen
units. At position x, = O in normalized coordinates we should get x, = WIDTH-

START in actual screen coordinates, so the conversion formula should be

. MGl VOJJ-% l
ﬂ&‘ mare vadue 1

(0. 1 (.

FIGURE 2-12
Normalized device coordinates.

(0. 0) (1.0)

Scanned by CamScanner

n these units, the screen

T T T T L A T T Ay T D T T A N T S S T G T P 1, G I A T A A A T S

e e T AT % M S S S TR Fy L T TS T A I T S A T A

wh i B o A W]

% = WIDTH « x, + WIDTH.START

Simil;
Nilarly for the vertical direction

Ys = HEIGHT « y + HEIGHT.START

One prob e o=
COOrdinatespis t}:::nu:: (;itlllzg gp fthe f(')rmula to convert from normalized to device
the width is called (b d'. pl’ y‘sur‘ aces are often not square. The ratio of the height o
We can either use (h d-l.sp,d}f S aspccl. ratio. If we have a display which is not square,
numbers whict -c € display’s full height and width in the conversion formula or use
advamage ST (()lr.‘respond toa square'arca. If yve use the full dimensions, we take full
Soliare srmate }: l§play area, _but thg image will be stretched or squashed. If we use a
e ofthe display, the image is correctly proportioned, but some of the display
€a 1s wasted. If we use a Square area larger than the actual display, we may use al] of

the scree;n and have a properly proportioned image, but the image may not entirely fi
on the display.

DISPLAY-FILE STRUCTURE

Now let us consider the structure of the display file. Each display-file command con-
tains two parts, an operation code (opcode), which indicates what kind of command it s
(e.g., LINE or MOVE), and operands, which are the coordinates of a point (x, y). The
display file is made up of a series of these instructions. One possible method for stor-
ing these instructions is to use three separate arrays: one for the operation code (DF-
OP), one for the x coordinate (DF-X), and one for the y coordinate (DF-Y). To piece
together the seventh display-file instruction, we would get the seventh element from
each of the three arrays DF-OP[7], DF-X[7], and 'DF-Y[7]. The display file must be
large enough to hold all the commands needed to create our image.

We must assign meaning to the possible operation codes before we can proceed
to interpret them. At this point there are only two possible instructions to consider,
MOVE and LINE. We need to consider only absb_lute MOVE and LINE commands,
since relative corr'lma_nds can be converted to absolute commands before they are en-
tered into the display file. Let us define an opcode of 1_to mean a MOVE command
and an opcode of 2 tpc;néan a LINE command. A command to move to position X =
0.3and y = 0.7 would look Tike 1, 0.3, 0.7. The statements

DF-OP[3] « I;
DF-X[3] < 0.3;
DF-Y[3] < 0.7,

would store this instruction in the third display-file position. If DF-OP[4] had the value
2, DF-X[4] had the value 0.5, and DF-Y[4] had the value 0.8, then the display would
show a line segment from (0.3, 0.7) to (0.5, 0.8) when display-file instructions 3 and
4 were interpreted. (See Figure 2-13.) o

Let us develop the algorithms for inserting display-file instructions. Line seg-
ments require two endpoints for their specification, but we shall enter only one end-
point and assume that the other endpoint is the current pen position. We will therefore

Scéhnied? by CamScanner

- | efy1:nEF cgele 7 Mowyg || . |

Lfn\z__g‘

Ju.m{, Cuw_a. - 5’1 .}O -1 ;Rgpmz:simmmvgs 43
77 T 5 t Mk(m
pr-op DF-X DF-Y o - 2] l{/
1
—T > ~e b,
/‘(.5 8) j
I (.3,.7) 3@" p
1 | 03 | 07 MQ~g ‘}0 .
—
2 0.8
2 0.5 F@é!;,?g% ‘
Display file instructions Result

FIGURE 2-13 MPOuL A LL@ |
Display-file instructions.]' § = :
ime aleg voten

need variables DF-PEN-X and DF-PEN-Y to keep track of the current pen position. We
will need to know this position for the conversion of relative commands to absolute
commands. We shall also need a variable FREE to indicate where the next free (un-
used) cell of the display‘file is located. These variables, together with the display file
itself. are used by several different routines and must be maintained between accesses.
They are therefore presented as global variables.)

The first algorithm we will consider actually puts an.instruction into the display.

put> a1 LA

Aile.

2.1 Algorithm PUT-POINT(OP, X, Y) Place an instruction into the display file
Arguments OP, X, Y the instruction to be entered
Global , DF-OP DF-X, DF-Y the three display-file arrays
(+) FREE the position of the next free cell :
Constant ~ DFSIZE Tl;lnggthAQf the display-file arrays
= gt bic M

BEGIN
IF FREE > DFSIZE THEN RETURN ERROR ‘DISPLAY FILE FULL’;

B i s ——

DF-OP[FREE] « OP; l/a_a,LL_Q, FCU-LM\LLA .

DF-X[FREE] « X;
DF-Y[FREE] < Y,
FREE « FREE + I;
RETURN;

END;

Y A ATTTRAE LG Fa S e T YO A NS T I weum

ration code and the coordinates of the specified po-

This algorithm stores the ope .
REE to the next free cell is incremented so that

sition in the display file. The pointer F

it will be in the correct position for the next entry. . _
We also wish to access elements in the display file. We isolate the accessing

mechanism in a separate routine SO that any changes in the data structure used for the
display file will not affect the rest of our graphics package.

RS et Y L S T ™ ™ i AT e ™ T AT A T

POINT (NTH, OP, X, Y) Retrieve the NTH instruction from the

2.2 Algorithm GET-
Lnoleye v ,J,L'JL

display file o ‘
Arguments NTH the number of the desired instruction.
OF jon to be returned

OP, X, Y the instructi :
Global arrays DF-OP, DF-X, DF-Y the display file

Scanned by CamScanner

:}"

3
s 3 N
X ¢

BEGIN
OP « DF-OP[NTH]:
" X «— DF-X[NTH):
4- - Y < DEY[NTH]:

veler . RETURN:

END;

Our MOVE and LINE instructions must update the current pen position an
enter a command into the display file. If the update of the pen position is done firg
then the new pen position will serve as the operand for the display-file instruction, I
will prove convenient in later chapters to have a separate routine which takes the oper,.
tion code and the pen position and enters them into the display file as an instruction

2.3 Algorithm DISPLAY-FILE-ENTER(OP) Combine operation and position (o for,
an instruction and save it in the display file :
Argument OP the operation to be entered
Global DF-PEN-X., DF-PEN-Y the current pen position
BEGIN

PUT-POINT(OP, DF-PEN-X, DF-PEN-Y);

RETURN;
END:

Using DISPLAY-FILE-ENTER to place instructions in the display file, the abso-
lute MOVE routine becomes the following:

2.4 Algorithm MOVE-ABS-2(X, Y) User routine to save an instruction to move the pen
Arguments X, Y the point to which to move the pen
Global DF-PEN-X, DF-PEN-Y the current pen position
BEGIN
DF-PEN-X « X
DF-PEN-Y <Y,
DISPLAY-FILE-ENTER(1);
RETURN;
END:;

The point (DF-PEN-X, DF-PEN-Y) is keeping track of where we wish the pen to
go. By setting (DF-PEN-X, DF-PEN-Y) to (X, Y), we are saying the pen is to be at p>-
sition (X, Y).

The algorithm for entering a LINE command is similar.

2.5 Algorithm LINE-ABS-2(X, Y) User routine to save a command to draw a line
Arguments X, Y the point to which to draw the line
Global DF-PEN-X, DF-PEN-Y the current pen position
BEGIN
DF-PEN-X « X;
DF-PEN-Y <« Y:
DISPLAY-FILE-ENTER(2)
RETURN;
END:

Scanned by CamScanner

150-

en

0"

is the conversion from normalized device coor

| ewmel W RS- e e e

GRAPHICS PRIMITIVES 45

Again by changing DF-PEN-X and DF-PEN-Y we indicate that the pen will be
placed at (X, Y), but by entering an operation code of 2 instead of 1, we instruct the in-
terpreter to draw a line as the pen is moved.

We can also write algorithms for the relative commands.

2.6 Algorithm MOVE-REL-2(DX, DY) User routine to save a command to move the

pen

Arguments DX, DY the change in the pen position

Global DF-PEN-X. DF-PEN-Y the current pen position
BEGIN

DF-PEN-X «— DF-PEN-X + DX;
DF-PEN-Y < DF-PEN-Y + DY;
DISPLAY-FILE-ENTER(1);
RETURN;

END;

2.7 Algorithm LINE-REL-2(DX, DY) User routine to save a command to draw a line
Arguments DX, DY the change over which to draw a line
Global DF-PEN-X, DF-PEN-Y the current pen position
BEGIN
DF-PEN-X « DF-PEN-X + DX,
DF-PEN-Y « DF-PEN-Y + DY;
DISPLAY-FILE-ENTER(2);
RETURN;
END;

The relative LINE and MOVE routines act like the absolute routines in that they
tell where the pen is to be placed and how it is to get there. They differ in that the new

pen position is calculated as an offset to the old pen position.

DISPLAY-FILE ALGORITHMS

The above algorithms indicate how to enter instructions into the display file. The other
half of the problem is to analyze the display file and"perfpnp the commands:

Now let us consider algorithms for our display-file interpreter. The interpreter
will read instructions from a portion of the display file and carry out the appropriate
LINE and MOVE commands by calls on a vector-generating subroutine such as those

described in Chapter 1. _
The routine which actually causes the LINE or MOVE to be carried out on the

display can depend upon the nature of the display device apd upon its software. Below
are versions of these algorithms which may be used with a vector generator. The

DOMOVE routine has only to update the current pen position. The arithmeucmyolved
dinates to the actual screen coordinates.

2.8 Algorithm DOMOVE(X, Y) Perform a move of the Pen .
Arguments X, Y point to which to move the pen (normalized coordinates) .
Global FE‘ZAME-PEN-X, FRAME-PEN-Y the pen position (actual screen coordi-

nates)

Scanned by CamScanner

NW"\A%,(J CLQ(_Q/”LCM ‘20 ‘
CJWZQ’C L CL-(,_tL'_C_é Cay,

WIDTH, HEIGHT the screen dimensions
WIDTH-START, HEIGHT-START coordinates of the lou{er-left Comer
WIDTH-END., HEIGHT-END coordinates of the upper-right comer

46 cHarTER TWO

BEGIN
FRAME-PEN-X < MAX(WIDTH-START, MIN(WIDTH-END, X * WIDTH +

WIDTH-START));
FRAME-PEN-Y < MAX(HEIGHT-START, MIN(HEIGHT-END, Y * HEIGHT +

HEIGHT-START));

RETURN;
END;

In this algorithm we see the formula for converting the normalized c_gor_dipate
values of the arguments into actual screen coordinates. The MAX and MIN func.tlons
have been added to the formula as a safeguard. They prevent it from ever generating ,
value outside the bounds of the actual display. If (X, Y) were to correspond to a poin
outside the screen area, the MAX and MIN functions would *‘clamp’” the correspond:
ing screen coordinate position to the display boundary. In algorithm 2.8, it was as.
sumed that WIDTH-START was less than WIDTH-END, and HEIGHT-START less
than HEIGHT-END; however, this is not the case for some devices. In general, we use
the smallest boundary in the MAX test and the largest boundary in the MIN test.

The DOLINE algorithm updates the pen position and calls the Bresenham al-
gorithm (or some other vector generator) to place the line segment in the frame buffer,
It, too, performs a conversion from normalized device coordinates to the actual screen
coordinates. Since the Bresenham algorithm is used in this example, the coordinates
must be rounded to integer pixel positions.

2.9 Algorithm DOLINE(X, Y) This routine draws a line
Arguments X, Y point to which to draw the line (normalized coordinates)
Global FRAME-PEN-X, FRAME-PEN-Y the pen position (screen coordinates)
WIDTH, HEIGHT the screen dimensions
WIDTH-START, HEIGHT-START coordinates of the lower-left corner
WIDTH-END, HEIGHT-END coordinates of the upper-right corner
LINECHR the style of the line
Lccal X1, Y1 the’old endpoint of the line segment
BESIN
X1 « FRAME-PEN-X;
Yl « FRAME-PEN.Y:
FRAME-PEN-X Mi\VX(WIDTH-START, MIN(WIDTH-END, X * WIDTH +
FRAME.Pee IDTH-START));

Y < MAX(HEIGHT-START, MIN(HEIGHT-END, Y * HEIGHT +
" HEIGHT-START)):
ESENHAM(INT(X| + 0.5, INT(Y1 + 0.5),

NT(FRAME-PEN-X + 0.5), INT(FRAME-PEN.Y + 0.5).

LINECHR);
Now we can write rhs -
calls DOMOVE gnq pae, e

Ipreter, i : . G
E and DOLINE accorr the routine which €Xamines the display file and

rdin : . :
g to the InStructions that it discovers. It will

Scanned by CamScanner

GRAPHICS PRIMITIVES 47

prove useful in later chapters to be able to interpret just a portion of the display file. We

shall thcref‘ore pass as arguments to the interpreter the starting position START and
how many instructions to interpret COUNT. n 5

2.10 Algori
inslmctii n::thm INTERPRET(START, COUNT) Scan the display file performing the
Arguments START the starting index of the display-file scan
COUNT the number of instructions o be iﬁierbréted
Local NTH the display-file index
OP, X. Y, the display-file instruction
BEGIN
a loop to do all desired instructions
FOR NTH = STARTTO START + COUNT -1 DO
BEGIN
GET-POINT(NTH, OP, X, Y);
IF OP = 1 THEN DOMOVE(X, Y)
ELSE IF OP = 2 THEN DOLINE(X, Y)
ELSE RETURN ERROR ‘OP-CODE ERROR';
END; T
RETURN;
END:;

A loop steps through all the desired display-file instructions, retrieving them by
the GET-POINT routine. The algorithm identifies each instruction as being either a
MOVE or a LINE instruction by examining its opcode and calls the routine DOMOVE
or DOLINE to actually perform the appropriate action upon the display.

DISPLAY CONTROL

In order to show the picture described in the
things. First, the current display may have to.
be interpreted; and third, on some devices (such as

minals) an explicit action is required to $hovy the con . : Fort
" convenience of the user we shall combine these operations under a single routine. Be-

fore presenting the algorithm for this routine, however, we should say a :ttlZ.m?re
about clearing the display (or frame buffer). We may not want to clea; t eb nspaa:j)i
every time we interpret the display file. If the only changes to the PlCtUI‘C Iavfe eenu.te
ditions, then there is no need to clear and redraw the rest of the image. in act, qui

complex drawings may be generated a piece at a ti

to the image do require clearing and rc'draw1ng. Delet o age starting with 2
shifting its position, size, Or orientation—may require an

clear screen. We shall see how 10 perform these changes 1n Cha[;terbsedfi ::(:i rl;j(;r;l::dnzs
portant thing to note here is that the request for 2 Flear scnt-;eer:j Omneyau[omatica“y' -~
part of these changes. In these cases, screen clearing ¢an gf o o Chapter
the user should also be able to explicitly request an erasure oi the sereen, L home
we introduced a display-clearing routine whlc_h the us;r)ar?agn erasu,re sy
times the point at which the user's program discovers

display file, one might have to do three
be cleared; second, the display file must
line printers and standard CRT ter--
tents of the frame buffer. For the

me. Of course, some changes made
leting a portion of the drawing —or

Scanned by CamScanner

48 cuarTERTWO

occur before the desired time at which the actual Cl'earmg S.hl:) l:l]i (::l::; t?ui S:ra lfl lh an-
dle clearing of the frame by means of a flag (a variable wit 4 before interpreti alse)
We use a true value to indicate that the screen Sh(,’md be dez-lretructions marpbe"(;g e
display file and a false value to mean that tl?e display-file Ins e will bey recd rgw.n
“‘on top of "’ the old image. If the machine discovers that an erasu NS ed, j
sets the flag to true. If the user decides that ther.e shoul'd be a new » , : bet.s the
flag to true. Nothing happens to the display until t,h e display file 1S .rea]y © d © ;ntep
preted. At this point the erase flag is checked, and if true, the frame 1s cleared and the
flag is changed back to false.

2.11 Algorithm NEW-FRAME User routine to indicate that the frame buffer should b,
cleared before showing the display file
Global ERASE-FLAG a flag to indicate whether the frame should be cleared
BEGIN

ERASE-FLAG « TRUE;

B y
END; ,\

Now we wish to combine the erasing of the frame buffer, if needed, the interpre-

tation of the display file, and the displaying of the new frame buffer into a single
routine called MAKE-PICTURE-CURRENT.

212 Algorithm MAKE-PICTURE-CURRENT User routine to show the current dis-
play file

Global FREE the index of the next free display-file cell

_ERASE-FLAG indicates if frames should be cleared
BEGIN

IF ERASE-FLAG THEN
BEGIN
ERASE;
ERASE-FLAG « FALSE;
END;
IF FREE > | THEN INTERPRET(1, FREE — 1);
DISPLAY;
FREE « 1;
RETURN:
END;

The algori
be el dgis:];hn;'?m checks for an erasure, as we have discussed. It next checks 10
Next, any aclionsynelcisl: nmtcm: Wi it is not, the commands within it are interpreted:
0 ,]
of the DISPLAY routine ary to show the results of the Interpretation are taken by means

sult of cach command . Lf adgraphics display device which immediately shows the re-
becomes a *‘dummy’* do_:fm;i;hc" th‘_’ call of DISPLAY is unnecessary or DISPLAY
indicating an empty di-splay file iarg;“::f;cf;g?ltlz. the display-file index is reset to |

; e
T€ Toutine p .
tem. We have some globa] variable?ded to implem

. ent this stage of ou ‘g SyS-
by the following algorithm, which should . Sag r graphics SY

Scanned by CamScanner

‘:lErpz,
sing;,

't &

GRAPHICS PRIMITIVES 49

2.13 Algorithm INITIF{}V_I_,_I_Z_‘I’Q-}A Initialization of variables for line drawings

Global FREE the index of the next free display-file cell

BEGIN DF-PEN-X, DF-PEN-Y the display-file pen position
INITIALIZE-1;

FREE « I; \“
DF-PEN-X « 0; \59
DF-PEN-Y < 0; Y,
NEW-FRAME;

RETURN;
END;

TEXT

Another primitive operation is that of text output. Most graphics displays involve tex-
tual, as well as graphical, data. Labels, instructions, commands, values, messages.
and so on, may be presented with the image. The primitive command involved here is
the output of a character or a string of characters. While one usually has a command
available for output of an entire string, there may sometimes be only a command avail-
able for output of a single character. A procedure to apply such a primitive to an entire
string is not difficult to construct. The characters themselves may be drawn by either
the dot-matrix or the stroke method. Their patterns are often copied from memory into
the frame buffer or created by special character generation hardware, although
software subroutines using line segments are also to be found. The advantage of
hardware is speed and a saving of display-file memory. With sophisticated displays
there may be options which the user must specify. Among such options are the spacing
of the characters, the size of the characters, the ratio of their height to their width, the
slope of the character string, the orientation of the characters, and, possibly, which

font is to be used.
We will extend our interpreter to include the output of text. We will do this by ex-

tending the number of operation codes to include one code for each character. The
operand for an instruction will determine where the character will be placed on the
screen. We shall use as the opcode for a character the negative of its_@SQchha@f;t;rw
code. (See Figure 2-14.) Our _opcodes will range between =32 and —126-incl£151_v_e.
Using the ASCII character code should facilitate conversion between the instruction
and the character value for output in most systems. We shall exclude the ASCII codes
for control characters so that a valid code must be less than =31 (the codes 0 through
—31 will be used for line and polygon style changes). Character codings other than
ASCII can be used, provided that the codes can be mapped to value§ less than —3!.

A character command, then, has an opcode that specifies which character 1s to
be displayed and x, y operands which tell where on the screen tl.1at character shguld be
placed. A word or string of text is stored as a sequence of individual charactcf instruc-
tions. Since we save the position of each character, we have control over the character

- iti use
spacing within the string. Since we save y position as well as x position, we can ¢4

i i i i Ily.
our strings to be written vertically or diagona - , .
We have not introduced any mechanism for specifying the character oricntation.

~ ' 90-
Some display devices allow characters to be drawn at any angle. Others allow only

Scanned by CamScanner

s AN AN LA N AN &S

o

RSO, -
{o 126 are egpgiend oo

50 CHAPTER TWO 0 j\w@ i-u—(

'spaCC 32 8 56 P 80 h 104
" 57 Q 8l
34 : 58 R 82 i 196
35 . k 107
: : 59 S 83 108
36 < 60 T 84 : 109
% 37 = 61 U 85 m 110
& 38 > 62 v 86 o i
' 39 ? 63 W 87
12
() :0 @ 64 X 33 . :13
1 A 65 Y
. 42 B 66 z 90 . ”g
+ 43 C 67 (9l t 116
. 44 D 68 \ 91 " 117
. 45 E 69] 33 v 118
. 46 F 70 o 119
/ 47 G 71 5 32 xw 120
0 48 H 72 121
97 y
1 49 I 73 a 122
b 98 z
2 50 | 74 123
X 75 3 99 {
3 51 124
. P L 76 d 100 I
2 125
77 e 101 }
5 53 M 02 3 126
6 54 N 78] !
7 5 0 i £ 103
FIGURE 2-14

ASCII character codes.

le many (such as normal output devices) display only upright
device independence and to try to simplify things a little, we
shall require all characters within a string to be oriented in the same direction and, in
fact, will design our algorithms for a device which allows only upright characters.
Writing a string of text can be rather cumbersome if each character requires its own
procedure call. We shall therefore write a routine for placing entire strings of text into
the display file through a series of character commands. It will be up to this routine to
automatically shift the position of each character to achieve the desired spacing. The
spacing between characters will be given by global variables XCHRSP and YCHRSP.
Of course, we need a routine to set these spacing parameters to whatever values we de
sﬁig:_: The CORE and GKS graphics systems have rich selections of text formatting op-
erations; they allow changing the size, orientation, spacing, and font of the charactef
and also the direction of the line of text. We will not be that ambitious here. We shall
0';')’ COT_“fOl the character spacing and line direction. We shall determine the direction
OC Ht,:(l:{ gl;’e l;)f text frf)m th.e orientation 9f the characters. There is a command SET
4 P(DX, DY) in which [DX, DY] is a vector specifying the ‘‘UP”’ direction for
the characters, The text line then prints t Clor specifymng the LT, | dlfegl

202t hen prints to the *‘right’” of this direction. For our sy
tem, we will not try to cha h . — bk ol ;

Ty nge character orientation with respect to line direction, S0 2

SET-CHARU :
e P command looks a bit aWkward.. Nevertheless, we shall use it becaus

of its correspondence to graphics standards.

Spacing i irecti
acing In the direction of the text line can be changed by the SET

CHARSPACE(CH

width automat(icalll;l{'?'::%?;;g\mand"The system will space_over one characte!
This spacing is specified in units :?cChE D ot e Maicates &y aMi)h‘a.l«SpaCing‘
mean spacir)g an addition aracter size, so a CHARSPACE of 0.5 would
‘ cter (a total of 1.5 character widths betwee?

degree increments, whi
characters. To maintain

Scanned by CamScanner

| e

[PR

R R R P T T R R R R TR RO RS

{-,cflufﬂ)

F o Sh,wj)\t }LM oy 'Ld@w AU-?J’J' S"/;wb&\

GRAPHICS PRIMITIVES

width instead of normalized device coordinates, so a widely spaced line on one device
will look _]USt as widely spaced on every other device, even though the width of the
characters (in normalized device coordinates) may differ. Our problem is to convert the
CLIARUP and CHARSPACE specifications, and our knowledge about the size of a
characler into distances to step in the x and y direction between each character in the
string (XCHRSP, YCHRSP). (See Figure 2-15 and Figure 2-16.)

The calculation of step size is complicated by the fact that we are not rotating the
character symbols and that the width and height of a character are oftén unequal. If the
text string is to be printed horizontally, then we shall step by the character width. If
the string is to be pnnted vertically, then character height should be the default step
size. At other orientations, we wish to use some default step_size between the width
and height. To use as much of the width as we are steppln&honzontally and as much of
the height as we are stepping vertically, we calculate a default step size as

| (CHAR-WIDTH)(DY) | + | (CHAR-HEIGdT)(DX)I

DEFAULT-STEP =

2.1)

(OX* + DY) (diasgnl tontd)

Here DX and DY are from the CHARUP vector, and are pe[gend_i;c_ql_ar t_o the line direc-

tion; that is why they appear to be reversed.

This default step size can be increased by the user’s CHAR SEPARATION fac-

tor.
—

TRUE-STEP = DEFAULT-STEP (1 + CHAR- SEPARATION) (2.2)

ST)

I LFmally, we decompose the step size into horizontal and vemcal components

) Once again, since [DX, DY] is a vector perpendicular to the direction of the string, DY
will act as the x component and — DX will behave as the y compouent. ,

- XCHRSP = TRUE-STEP

S F. . !
}Wiﬁ YCHRSP = TRUE-STEP

l

DY

2 241/2

(DX + DY) (2.3)
-DX

(DX2 + DY2)1/2

This calculation is carried out a bit more efficiently in the following algorithm.
(You may notice that upon combining Equations 2.1, 2.2, and 2.3, the square root op-

eration drops out.)

Lo
“ CHAR-WIDTH

Aot

CHARUP

CHAR-SEPARATION

; :{YCHRSP

CHAR-

%

HEIGHT

FIGURE 2-15
Text parameters for orientable char-

acters.

Scanned by CamScanner

d4 CHAPTER TWO

CHAR-WIDTH

XCHRSP

YCHRSP:L

CHAR-SEPARATION

FIGURE 2-16
Text parameters for nonorientab|,
characters.

2.14 Algorithm SET-CHARUP(DX, DY) User routine to indicate in which direction 3
string should be printed '
Arguments DX, DY a vector for the up direction of the string
Global XCHRSP, YCHRSP spgc‘l;ng,be,t/ween character centers
CHAR-WIDTH, CHAR-HEIGHT the character size
CHAR-SEPARATION the proportion of character size separating characters

Local S, S1, S2 temporary variables used to hold partially completed calculations

Constant ROUNDOFF some small number greater than any round-off error)

BEGIN : S
S—DX12+DY12 .Dy2?)

IF S < ROUNDOFF THEN RETURN ERROR ‘NO CHARUP DIRECTION’;
S1 « ((CHAR-WIDTH * DY| + |CHAR-HEIGHT * DX|);
S2 <« S1 * (1 + CHAR- SEPARATION) / S;
XCHRSP « DY * S2;
YCHRSP « - DX * S2;
RETURN,;
END;

The SET-CHARSPACE routine should not only change the global CHAR-
SEPARATION value but also update the step size currently in use. In the arguments of
the call to SET-CHARUP, we again see the switch of X and y which comes from
specifying the ‘‘up’’ direction in terms of the parameters for.‘th‘e text line direction.

2.15 Algorithm SET-CHARSPACE(SPACE) User routine to set the spacing between
characters
Argument SPACE the fraction of the character size separating characters
Global CHAR-SEPARATION storage for the character spacing
XCHRSP, YCHRSP spacing between character centers

BEGIN '

CHAR-SEPARATION « SPACE;

SET-CHARUP(- YCHRSP, XCHRSP)

RETURN;
END;

Scanned by CamScanner

GRAPHICS PRIMITIVES §3

Now let’s write the algorithm to enter a string of text into the display file, begin-
ning at the current pen position.

7

St -
16 Alg(?rllhm TEXT(STRING) User routine to place instructions for printing a string
into the display file

Argument STRING the characters to be entered
Global DF-PEN-X, DF-PEN-Y the pen position
XCHRSP, YCHRSP the character spacing
Local LEN the length of the string.
X, Y the character position
I an index to count off the characters
CHR the character being saved
OP the character's operation-code
BEGIN
determine the length of the string
LEN < LENGTH(STRING)
save the pen position for restoration after string is entered
X « DF-PEN-X,
Y «— DF-PEN-Y;
enter the string
FORI = I TO LEN DO
BEGIN
consider the ith character of the string
CHR <« GETCHR(STRING, I);
form its character code
OP « - DECODE(CHR); 24 duvalie .
enter it into the display file
DISPLAY-FILE-ENTER(OP);
move the pen to the next character position
DF-PEN-X « DF-PEN-X + XCHRSP:.
DF-PEN-Y « DF-PEN-Y + YCHRSP;
END;
restore the pen to its original position
MOVE-ABS-2(X, Y);
RETURN;
END;

The routines LENGTH, GETCHR, and DECODE depend upon how strings are
represented on the particular system that we are using, and the algorithms for therp will
not be presented here. The LENGTH routine returns the number pf characters in the
string. The GETCHR routine returns the ith character in the string. The DECODE
routine converts the character to the ASCII code, if necessary.

We must now modify our interpreter to be able to handle these n

commands which we are entering into the display file.

ew character

2.17 Algorithm INTERPRET(START, COUNT) (Algorithm 2.10 revisited) Scan the

display file performing the instructions

Arguments START the starting index of t :
COUNT the number of instructions

he display-file scan
to be interpreted

SES |

Scanned by CamScanner

Hod 1o taund-s | Tewminade pk,))

we, o
54 cuarmerTwo (St“”“i‘/y loc Lo 11 12.13.14 Jy
Cdlu/v\i-}.> V‘

Local NTH the display-flle index
OP, X, Y the display-file instruction
BEGIN
a loop to do all desired instructions
FOR NTH = START TO START + COUNT- 1 DO

BEGIN
GET-POINT(NTH, OP, X, Y);

IF OP < -31 THEN DOCHAR(OP, X, Y)

ELSE IFOP = 1 THEN DOMOVE(X, Y)

ELSE IF OP = 2 THEN DOLINE(X, Y)

ELSE RETURN ERROR ‘OP-CODE ERROR’;

END,;
RETURN;
END;
The instructions for actually putting the character into the frame buffer have

been placed in the DOCHAR routine.

2.18 Algorithm DOCHAR(OP, X, Y) Place a character on the screen
‘OP indicates which character should be used

X. Y indicate the position on the screen

Global WIDTH, HEIGHT the screen dimensions
WIDTH-START, HEIGHT-START screen coordinates of lower-left corner

WIDTH-END, HEIGHT-END screen coordinates of upper-right corner

CHR the character to be displayed
X1, Y1 screen coordinates of the character

Arguments

L ocal

BEGIN

CHR « CODE(-OP);
X1 « MAX(WIDTH-START, MIN(WIDTH-END, X « WIDTH +

WIDTH-START));
Y] « MAX(HEIGHT-START, MIN(HEIGHT-END, Y * HEIGHT +

HEIGHT-START));
GENERATE-CHAR(X1. Y1, CHR);
RETURN; '

END:. -

Once again we have system-dependent routines, which are named CODE and
GENERATE-CHAR. CODE converts from ASCII to whatever form is convenient for
GENERATE-CHAR. GENERATE-CHAR generates a character on the screen or in the
frame buffer at position (X1, Y1).)

Again we have introduced some global variables which should be initialized
The following routine takes care of this.

é.ll9 Algorithm INITIALIZE-2B Initialization of character parameters
obal g}};AR-WIDTH. CHAR-HEIGHT the character size
AR-SEPARATION the proportion of character size to use for additional
character spacing

Scanned by CamScanner

N~

GRAPHICS PRIMITIVES S5

BEGIN
INITIALIZE-2A;

CHAR-WIDTH <« the width of a character in normalized coordinates;
CHAR-HEIGHT < the height of a character in normalized coordinates:

CHAR-SEPARATION « 0;

SET-CHARUP(0, 1);

RETURN; >/ I
A/

END; o @}w@“ Iy

THE LINE-STYLE PRIMITIVE O 1t, - 31 _Aine g:g (_E_

Many display devices offer a selection of line styles. Lines may be continuous, or they
may be dashed or dotted. One may be able to select the color of the line or its intensity
or thickness. It is desirable to be able to change the line style in the middle of the dis-
play process. We therefore need a display-file command for changing line style. When
the interpreter encounters such a command, the line style is changed and all sub-
sequent lines are drawn in this new style. Our display-file commands are composed of
three parts, the opcode and the two operands for the x and y coordinates. We can use a
special opcode to indicate change of line style (or color or intensity), but such a com-
mand would not require any operands. Some possible display-file organizations allow
different-sized instructions, but we shall take the simpler alternative of providing
dummy operands which are ignored. We will use codes between 0 and 15, inclusive,
for change of line-style commands. This allows up to 16 possible line styles. The ac-
tual identificatior of opcodes with line styles will depend upon the possible line styles
available. We shall, however, assume that a code of O corresponds to the normal
- straight line. This should be the default style when the system is initialized. Other line
styles should correspond to the codes -1, -2, and so on. For a line printer display such
as discussed in Chapter 1, the line style is the character that is placed in the frame buf-
fer. Changing the line style is a matter of changing this character. (See Figure 2-17.)
We will augment our interpreter to process commands for changing line style. To
do this, we will need two new routines, one to place the line-style commands into the
display file and another to actually make the change whenever such a command is dis-
covered by the interpreter.
While line-style opcodes in the display file are negative to distin
the MOVE and LINE opcodes, there is no reason to force the user to use negat.ive num-
bers in his specification. To do so would give the user one more pointless thing to re-

member. We therefore have the user specify the positive codes 1,2,..

la\re

guish them from

. for line styles

FIGURE 2-17
Changing line style.

Scanned by CamScanner

56

CHAPTER Two

and let the SET.L

INE 1 N o A
file. The dltorith STYLE algorithm enter corresponding negatives into the

m for setting the line style would look as follows: dlspla?
2.20 Algorithm SET—LINESTYLE(LSTYLE) User routine for chang

ing line .
Argument LSTYLE the user's line-style specification A

BEGIN
DISPLAYFILE-ENTER(I - LSTYLE); || - 2,
RETURN: A ——4 ¢ -3
END;

When the interpreter discovers a line-style command, it must perform 4
change. We isolate this system-dependent process in a separate routine to allow easy ine
terfacing with different display devices. .

2.21 Algorithm DOSTYLE(OP) Routine to change the line style
Argument OP indicates the desired line style
BEGIN
decode OP;
set the line style;
RETURN;
END;

If the vector generation algorithms of Chapter 1 are used for a line printer or
CRT with different characters representing different line styles, then algorithm 2.2]
would be

2.21A Algorithm DOSTYLE(OP) Routine to change the line style

Global LINECHR the line character used by the vector generator
BEGIN

LINECHR <« LINE-CODE(1 - OP);

RETURN,;
END;

where LINE-CODE converts from the integers 1, 2, ... to appropriate character codes,

for example ‘x’, ‘+7,
We must once again extend our interpreter so that it will now recognize line-style

operation codes.

2.22 Algorithm INTERPRET(START, COUNT) (Algorithm 2.17 revisited) Scan the
display file performing the instructions
Arguments START the starting index of the display-file scan
COUNT the number of instructions to be interpreted
Local NTH the display-file index
OP, X, Y the display-file instruction
BEGIN

a loop to do all desired instructions
FOR NTH = START TO START + COUNT -1 DO

Scanned by CamScanner

nter ¢
n2l

s

Sy

ﬂme

GRAPHICS PRIMITIVES 57

BEGIN
GET-POINT(NTH, OP, X, Y): ,
IF OP < -31 THEN DOCHAR(OP, X, Y)
ELSE IF OP < | THEN DOSTYLE(OP)
ELSE IF OP = 1 THEN DOMOVE(X, Y)
ELSE IF OP = 2 THEN DOLINE(X, Y)
ELSE RETURN ERROR ‘OP-CODE ERROR';

END;
RETURN;
END;

We shall also make a small change in the DISPLAY-FILE-ENTER algorithm so
that it will distinguish between instructions which use the coordinate information
(LINE and MOVE) and those which do not (STYLE). This distinction will prove use-
ful in later chapters, where we will not enter all of the line-drawing instructions but
will still wish to enter all changes of style.

2.23 Algorithm DISPLAY-FILE-ENTER(OP) (Algorithm 2.3 revisited) Combine op-
eration and position to form an instruction and save it in the display file
Argument OP the operation to be entered
Global DF-PEN-X, DF-PEN-Y the current pen position
BEGIN
IF OP < 1 AND OP > -32 THEN PUT-POINT(OP, 0, 0)
ELSE PUT-POINT(OP, DF-PEN-X. DF-PEN-Y);
RETURN;
END;

There is one more routine which is needed to complete this stage of our system.
We must supply initial or default values to our global variables. In addition to the pre-
vious initializations, we should now also set the initial line style.

2.24 Algorithm INITIALIZE-2 Initialization of variables for lines. characters, and
style
BEGIN
INITIALIZE-2B
DOSTYLE(O)
RETURN;
END;

AN APPLICATION

Let us suppose that we wanted a g
us outline how this might be done
ten. To begin, we can plot the horizontal
two lines, which may be created by a

ABS-2 to the other endpoint. (See Figure 2-18.)

raphics program (o draw a graph of some data. Lf’.t
using some of the algorithms which we have writ-
and vertical axes of the graph. These are just
MOVE-ABS-2 to one endpoint and a LINE-

Scanned by CamScanner

VICGURE 204
J Diawing two ares

MOVECANS 2002, 0.4),
LINE-ABS 20,2, 0.2,
LINE-ARS 2008, 0,2):;

The next step might be 1o Iabel the axes. ‘This can be done by a series of TEXT
commands, For example, suppose we wish 1o label the horizontal axis with the num.
bers | through 5. For ench number, we decide where it should be placed on the graph,
We issue 0 MOVE-ABS-2 16 place the pen at this position, followed by a TEXT com.
mand to write the numeral, (See Figure 2-19,)

MOVE-ABS-2(0.3, 0.15);
TEXTC 1),
MOVE-ABS-2(0.4, ().15);
TEXT("2');

We might also want to label each axis with a string indicating what is being plot-
ted. A MOVE-ABS-2 to the starting position followed by a TEXT command will do
this for us. (Sce Figure 2-20.,)

FIGURE 2-19
34 s Labeling an axis

Scanned by CamScanner

GRAPHICS PRIMITIVES 59

1 2 3 4 5 FIGURE 2-20
TIME IN SECONDS More labeling.

MOVE-ABS-2(0.35, 0.1);
TEXT('TIME IN SECONDS’);

For the vertical axis, it may be useful to change the CHAR-UP direction so that
the print line will be vertical. (See Figure 2-21.)

SET-CHARUP(-1, 0);
MOVE-ABS-2(0.1, 0.3);
TEXT(‘POSITION IN METERS’);

Now all that is left for us to do is to plot the data. At this point we might use
SET-LINESTYLE to change the style of the line so that our data curve looks different
from the axes.

We shall assume that the information to be displayed came into our plotting pack-
age as an array of data values or measurements. For each of these measurements we
may have to perform some arithmetic to calculate the corresponding position on our
display. If we use MOVE-ABS-2 to plot the first data point, and LINE-ABS-2 on the
remaining points, we shall get a sequence of line segments connecting the data values.
(See Figure 2-22.)

SET-LINE-STYLE(2);
MOVE-ABS-2(0.2, A[1] + 0.2);

POSITION IN METERS
w
1

|] 1 I 1

1 2 3 4 5 FIGURE 2-21
TIME IN SECONDS Labeling with a different CHAR-UP.

Scanned by CamScanner

60 CHAPTERTWO

.
=4 7 ~<
w ~” \
5 4 "
= ~o
Z 3t ~
z
Q
E 2t
7
g

l =

s FIGURE 2-22 |

| 2 sgooN Plotting the curve with a different line style.

TIME IN SECONDS

FORI = 2TO 6 DO
LINE-ABS-2(0.1 I + 0.1, A[I] + 0.2);

Plotting of all but the first data point can usually be'accomplis.h'ed by a loop
which gets the measurement, calculates the corresponding display position, and calls

LINE-ABS-2 to display it.

FURTHER READING

Introductory discussions of various imaging technologies may be found in [ALD84],
[BAL84], [HOB84], [HUB84], [JER77], [LEE84], [LUC78], [MCC84], [MIL84],
[PRE78], [SLO76], [SPR83], [WAT84], [ZAP75], and [ZUC84]. Use of magnetic
drum memory as a frame buffer was described in [OPH68], and the first example of
the core memory frame buffer is [NOL71]. A frame buffer is also described in
(KAJ75]. A display processor and display-file interpreter is described in [DOO84].
Use of a display file for a device-independent system and suggested primitives are pre-
sented in [NEW74]. A discussion of graphics primitives is given in [LUC76], and
those in the CORE system in [BER78] and [GRA79].

[ALD84] Aldersey-Williams, H “*Liquid C i i B 1]
+H., rystals in Flat Panel Displays,”’ Electr .
1L . 3557 (Lo, play ectronic Imaging, vol. 3, no
[BAL84] Baltazzi, E. S., **R, i i i " 1 j
S5 (1050, eprographic Imaging Techniques,”” Electronic Imaging, vol. 3, no. 12, pp. 53-
[BER?S(] Beyn:gcg)n, R. D...Bono, P R., and Foley, J. D., “‘Graphics Programming Using the CORE Sys-
[D0084e]mb ACM Computing Surveys, vol. 10, no. 4, pp. 389394 (1978)
oomink, D, J. Dalrymple, J. C., Ty i :
: 2 » 1. C., e Architectural Evolution of a High-P
[GRA7;3raphncs-Termmal s IEEE Computer Graphics and Applications, vol. 4 no. 4 o GONE
] Graphic Standards Planning Committee *‘Status R ' onoral vl D 4154 (198SH
posed Core System, "’ Computer Graphics ,vol 13 epgrt Tl enera oygy ology and teRp
) - v n . -] -
[HOBB84] Hobbs, 1. C., "*Computer Graphics Display Hardwoare 'pz‘ o L179 (1979),
L, no. 1, pp. 25-32 (198}, T

(HUB84] Hubbold, R. J., :C
s KoJ,, 0 . . .
127-133 (1984), mpter Graphics and Displays, ™ Co

(JER77) Jem, M., “Color Jet Plotter,

uter Graphics and Applications, vol.

nputer-Aided Design, vo]. 16, no. 3, pp.

" Computer Graphics, vol. 11, no. 1, pp. 18-3] (1977)

Scanned by CamScanner

