0, i N o i "
B e Z

. NTRODUCTION
*rs::séreu!!if it were made 0UL 0 g 16 0
- qutlines lacking fexture

chm&crs. The_ world might seem
uld be a world of stick figures and

f straight ‘ Ve TN , |
ure. mass, and solidity. How much more interesting is the world of
paterns, colors, and shading. Unfortunately, much of the early graphics dealt only

o is was because the available display devices (plotters, DVSTE,

alt only ‘with"l'iﬁcs'fan'd'

~ with line drawings, Th

1nd vector refresh displays) were line-drawing devices. Raster displays, however, can

o digly sold patterns and objects with no greater effort than that involved in showing
their oudlines. Coloring and shading are possible with raster technology. Thus with the

nscm X b e L i ;o - : ‘
. oise in populanity of raster displays has also come an increase in attention to surface

- side pixelg i be dev,

We Wish'to““

"

i “&‘s}}a" it i T System 10 inclyge 5 new

> 'hat polygo ‘ L raphic primiti
0 if 3 poirr - < YBONS are and graphic primitive, the
oL inside a polygon, 2?;:;]9 fepresent them. We shall leamn

Veloped, : ,
e g method for filling in all in-

Y-sided - °.r"epr'e” Sy R
Bure), A SO B Stippa g
AT * A Polypn ffacc Jc Sy ;
e mpfesem"as'c Surface Primitive : |
‘ Trled g a Numpe mf‘tlve_ 1S a polygon (a
5 ke b T of line se & moll"
€ segments oY

' Scanned by CamScanner

'“e?‘e.d end to end to form a closed figure. Altematively, it may be represented as the
T ‘."hm e pOI)'gon are connected. The line segments which make ur
the polygon Pou“%\ary i called sides or edges. The endpoints of the sides are called thpé
polygon verrices. The simplest polygon is the triangle, having three sides

tex points. (See Figure 3-1.) - g _ g three s__th_:s and three ver-

7 We can divide polygons into two classes: convex and concave. A convex polygon
is a polygon such that for any two points inside the polygon, all points on the line seg-
ment connecting them are also inside the polygon. A concave s _

, : - . polygon is one which i
not convex. A mangle 1s always convex. (See Figure 3-2.) YBON 18 one which 18

e —

. >
POLYGON REPRESENTATION i3 i S U
If we are to add le_ygons to our graphics system, we must first decide how to represent
them. Some graphics devices supply a polygon drawing primitive to directly image
polygon shapes. On such devices it is natural to save the polygon as a unit. Other de-
vices provide g/gnpczoid primitiicj Trapezoids are formed from two scan lines and tWo
line segments. (See Figure 3-3.) The trapezoids are drawn by stepping down the line
segments with two vector generators and, for each scan line, filling in all the pixels be-
tween them. Every polygon can be broken up into trapezoids by means similar to those
described below. In such a system, it would be natural to represent a polygon as 2
series of trapezoids. Many other graphics devices do not provide any polygon support
“at all, and it is left up to the software to break up the polygon into the lines or points
which can be imaged. In this case, it is again best to represent the polygon as a unit..
This is the approach we shall take. We shall store full polygons in our display file and
investigate the methods for imaging them using lines and points. : ‘
" What should a polygon look like in our display file? We might just place line
commands for each of the edges into the display file, but there are two deficiencies
with this scheme. First, we have no way of knowing which line commands out of all
* those in the display file should be grouped together to form the polygon graphical unit;
and second, we have not correctly positioned the pen for drawing the initial side. We-
can overcome these problems by prefacing the commands for _dm\ving the po}ygon
sides by a new command. This new command will tell us how many sides are in the
- _polygon, so we will know how many of the following 1in-e commands are part of t,hf: ’_
- polygon. Upon interpretation, this new command will act like a move to correctly posi-
~-tion the pen for drawing the first side. o : : _
Wt;:);ave not yet 'fsed-the operation codes 3 or' gr.eatc-:r. We can therefor;: uze fh:;: :
codes to indicate polygons. The value of the code will indicate the number of si es..

/\ P

FIGURE 3-1

g

Scanned by CamScan‘ner

e -

(‘uu.]\e ;‘ehbms

C aveXx ": ~s.-’:5

$

'FIGLRE 3 22

Convex and concave poiygoas.

refore be limited to polygons W ith no more sides than the maximum poss;

opcode. The X 2 and Y operands of the polvgon command will be the coordinates ofd.;

point where the first side to be drawn begins. Since polygons are closed curves, it wil]

also be the final endpoint of the last side to be drawn. Upon execution, the polvgon in.

sruction (opcode 3 or greater) will signal that the following instructions belong to
lvgon. but will otherwise behave as a move command. (See Figure 3

v

ill there

#

)

1

3-4.)

8

ENTERING POLYGONS

We can now consider algorithms for entering polygons into the display file. The infor-
mation required to specify the polygon is the number of sides and the coordinates of

the vertex points. Arrays can be used to pass the coordinates of all vertices to the

)
YN

Scanned by CamScanner

FIGURE 3.3
A polygon can be drawn as a seriec of 1ravamnii.

3 J— N
tJ Il .). !‘2

(0.3,06)

(QP; | "@R.’"Hf;/'iéfgt 31/ (]“.l. tL ,{... i /Lr -;"1 ::' ‘{::‘."
3 . E C.:ﬁ : ;
(neemdes, ab ity)

7C B Chnd -

ALY OO%S

3 #
¢ ¢
i+

(0.1,04),

0.1,01)
FIGURE 34

A polygon and its display-file entry.

routine. If we give abs

(See Figure 3-5.)

03,0.1) “qu‘fi.(. L4

"f_j'f.bi"t[u {,ﬁ .:)
[‘0‘5’ 0.4) ; g ("(4;&‘ : - f
DF-OP DF-X ' DF-Y :
Enal E;’“s ; o1 | o1}
Ao il ol { 2 | 03} 04 |
G-nal ':'erf! g PR SLIE IS R T IR RS
J t 2 03 ; 08 .| .} Jfé.,,:',f :
W A,L‘; 4-1_\4 ¢ ; ; i ! H) X e ‘ :’ 4 !
iy BB L L R ang
L b i gl b .

LA Coae ﬁ'r'r’\fﬁ-' .

N e

olute coordinates, the following algorithm may becm.piojyed.

3.1 Algorithm POLYGON-ABS-2(AX, AY, N) Entry of an absolute polygon into the

~ display file
Ar_g_uments

Global
Local
BEGIN

AX; AY arrays containing the vertices of the polygon

N the number of polygon sides
DF-PEN-X, DF-PEN-Y the current pen position
I for stepping through the polygon sides

" IFN < 3 THEN RETURN ERROR ‘POLYGON SIZE ERROR’;
enter the polygon instruction
DF-PEN-X « AX[NJ];

-DF-PEN-Y « AY[N];
DISPLAY-FILE-ENTER(N);
enter the instructions for the sides

FORI =

RETURN;

 END;

| TO N DO LINE-ABS-2(AX(l], AY[I]):

We might also wish to be able to construct polygons relative to the current pen ™

position. We would then understan

(AXI1LAYIN)

FIGURE 3-8

CO(AXII) L AY[3])

" (AX[21.AY12H Absolute polygon.

d the first point specified to be a relative move from

Scanned by CamScanner

e k) it i B S S

the curre 081 & ea ikl : .
urrent position, and subsequent points to be used in relative line comm.
the sides. (See Figure 3-6.) , “ommands g

3.2 Algorithm POLYGON-REL-2(AX, AY, N) Entry of a relative polypon ,
display file ' PR 1O the
Arguments AX, AY arrays containing the relative offsets of the vertices

N the number of polygon sides |
Global DF-PEN-X, DF-PEN-Y the current pen position

Local I for stepping through the polygon sides.
TMPX, TMPY Storage of the point at which the polygon is closed.
BEGIN

IFN < 3 THEN RETURN ERROR ‘POLYGON SIZE ERROR?;
DF-PEN-X « DF-PEN-X + AX[1];
DF-PEN-Y « DF-PEN-Y + AY[l];
save the starting point for closing the polygon
TMPX « DF-PEN-X;
TMPY « DF-PEN-Y;
enter the polygon instruction
DISPLAY-FILE-ENTER(N):
enter the instructions for the sides
FOR1 = 2 TO N DO LINE-REL-2(AX([I], AY[1]);
close the polygon
LINE-ABS-2(TMPX, TMPY);
RETURN;

END;

In the above algorithm, the polygon starting position must be calculated from the
specified offset and the current pen position. This location must be saved temporarily
so that it may be used in the final instruction, which closes the figure.

AN INSIDE TEST

H‘aving entered the commands in the display file, we can show outlined forms for poly-
gons by simply modifying the interpreter so that it treats command codes 3 and greater
as move commands. However, we might also wish to be able to show the polygm:; 3?
solid objects by setting the pixels inside the polygon as well as those on the boun df;
. Let us consider how we can determine whether or not a point 1s inside'of a POI)’_%iOon'
One method of doing this is to construct a line segment between the point in quest

FIGURE 3-6
LAX{3]. AY(31 Relative polygon-

Scanned by CamScanner

g0 °_,-i { 5 | "

\.\ LN o U NS dl (g B f’a‘-‘)_f_.. e t't 2 [145
and a point kKnown 10 be outside the polygon. It is easy 1o find a point outside the poly-
gon; one could, for example, pick a point with an X coordinate smaller than the small-
est x coordinate of the polygon’s vertices. One then counts how many intersections of
the line segment with the polygon boundary occur. If there are an odd number of inter-
sections, then the point in question is inside; an even number indicates that it is out-
side. This is called the even-odd method of determining polygon interior points. (See
Figure 3-7.) ‘ : ‘

When counting intersection points, one must be cautious when the point of inter-

section is also the vertex where two sides meet. To handle this case, we must look at
the other endpoints _of the two éegmems which meet at this vertex. If these points lie
on the same side of the constructed line, then the po’int in question counts as an even
number of intersections. If they lie on opposite sides of the constructed line, then the
point is counted as a single intersection. (See Figure 3-8.)

There is an alternative method for defining a polygon’s interior points called the
winding-nwnber method. Conceptually one can stretch a piece of elastic between the
point in question and a point on the polygon boundary. The end attached to the polygon
is slid along the boundary until it has made one complete circuit. We then examine the
point in question to see how many times the elastic has wound around it. If it has
wound at least once, then the point is inside. If there is no net winding, then the point.
s outside. Calculating the winding number for a point is not as difficult as the method
just described. We begin, as in the even-odd method, by picturing a line segment run-
ning from outside the polygon to the point in question and consider the polygon sides
which it crosses. However, in the winding-number method, instead of just counting the
intersections, we give each boundary line crossed a direction number, and we sum these
direction numbers. The direction number indicates the direction the polygon edge was
drawn relative to the line segment We constructed for the test. For example, to test a
point (X,, y,), let us consider a horizontal line segmenty = ¥, which runs from out-
side the polygon to (X5, Ya)- We find all of the sides which cross this line segment.

Now there are two ways for a side t0 Cross. The side could be drawn starting below the
(first y value less than the second y value). In this

line, cross it, and end above the line
he edge could start above the

case, we give a direction number of —1 to the side. Or t

el outsiole & fcnjéf/j;@*ﬂ
hon e - CrapleA— - EE—

1 - n’ ,,".
FIGURE 3-7 _ d w
Even-odd inside test.

> i f e
i) o~ f
] | £ L.‘ wal,

Scanned by CamScanner

©T WHAPTER THRER b ["' v ' !
ANl LAl Yeges » N
- 4 f
Ty £ A B | r‘/
i /"‘;’-','-*"‘T',“ g f ,’I
\‘ {‘J ’ VLA g {
& » - ; D 4
: A NG AR y -
Counts odg al s ML 1 “
\ g 1 ¥ ﬁ;
oD+ ¢
‘-‘ » -

Counts even

FIGURE 3-8
Count of verntex intersections,

line and finish below it (first y value greater than the second y value). This
glven a direction of 1. The sum of the direction numbers for the sides that cro. 4,
constructed horizontal line segment yields the winding number for the point in
tion. (See Figure 3-9.)

Using the winding number to define the interior points can yield different reits
from the even-odd method when a polygon is allowed to overlap itself. {See Figun
3-10.) The polygon-filling algorithm presented in this book is based on the even-i.
oisthad. T e B - ek Al :

POLYGON INTERFACING ALGORITHMS

Before we become too deeply involved in the details of filling a polygon, et v
the algorithm that is needed to interface polygons with the rest of our graphics sy
We shall be able to show polygons either filled or in outline. We shall therefor
provide the user with a method of indicating his preference. This is done by setuin:
global flag which can be checked at the time when the polygon is actus ally drawn

BIGURE &3 her 88 0F°
Calculating winding “mm s G
the direction numbers for In<

Scanned by CamScanner

Even-odd method Winding number method

FIGURE 3-10
Interior points for a polygon that overlaps itself.

3.3 Algorithm SET-FILL(ON-OFF) User routine to set a flag indicating that polygons
should be filled T | o
Argument ON-OFF the user’s fill setting
Global SOLID a flag which indicates filling of polygons
BEGIN ~—

SOLID « ON-OFF;

RETURN;
END;

Just as we have different line styles, we shall provide for different interior styles
for polygons. Fill styles may be implemented as different colors, different shades of
gray, or different filling patterns. We shall give the user a routine for selecting the de-
sired interior style. Style values between I and 16, inclusive, will be acceptable. We

map these values to opcodes between —16 and -31.

3.4 Algorithm SET-FILL-STYLE(STYLE) User routine to set the polygon interior
style A I

Argument STYLE the user’s style request

Constant FIRST-FILL-OP first fill op = -16

BEGIN s
DISPLAY-FILE-ENTER(FIRST-FILL-OP — (STYLE = 1)):

RETURN;
END:;

Fill styles are handled in the same manner as line styles. A cpdc»indiczuing the
desired style setting is placed in the display file. We can use negative integers as the
operation codes for both line and fill styles. In our syslcm.’(hc codes () through __—‘15
will be reserved for line styles and codes -16 through =31 will rgfcr o fill .s,lylc,x. Ihc:'
user again specifies a positive integer for the interior sly‘le, whngh IS c(gnvxcnleq o a
negative number between —16 and —31 before it is stored in the display file. What the

Scanned by CamScanner

M m N e P el ML

e T b T R L e T e e) . TN e e e e B . v

g Sad B

.
 » T e

= o TN

Lol 4%

-

W

o o 00 2

-
-

T A R e e G oy

'
5
i
4
§
I
§
i

s)'slcm oy .
ementet Or it might ¥ ((migh also §
ed
lg\;ng of even Chapier 2
PATTERN)' YLE ulgori(hm 0

The pOST _

_

styles -
ds upon h ﬁ”Lst::ISRare v
CHAWE'R"{RH (“ Slylc d pC nSi(valuC (FI .) to be
nfl an inte ameter which indicates tp,

with @ POETE L color O 1N T part
e §Y 14 cet an 1NC™

in ﬁ“mg\. n[h sCim li[\c- bc modlﬁed to mclude bOlh llne and
9 can Ut

vle settings: (ed) Routine 10 interpret change

imérior o | | o 3%
' p) (Algon
«hm DOSTY LEOF
1S Algorithm ‘
? \ ands ; ‘
i ﬂ\ﬂgg indicates the d_cmredlﬂ) lc: &
.’(\YPUT:;([“ FIRS'I'~FILL-OP first fill 0 | l
o ¥ fill style
on f1
e 1 d set polyg ‘
op=<F :
ngE Jocode op and set line style;
RETURN:
END.

also be extended to handle polygon com-

NTERPRET algorithm must .
o : covered, control 18 then transferred to the

"mands. When a polygon command is dis
DOPOLYGON command, which processes the polygon.

3.6 Algorithm INTERPRET(START, COUNT) (Algorithm 2.22 revisited) Scan the
display file performing the instructions
Arguments START the starting index of the display-file scan

COUNT the number of instructions to be interpreted
Local NTH the display-file index

OP, X. Y the displav-file ins .
BEGIN isplay-file instruction

4100y, 10.do all desired instructions

FORNTH = START
4 TO START + COUNT - | po

;E(T)})P‘(ZINT(NTH. OP X, Y):
2 u:pl EHEN QOCHAR(OP. X.,Y)
ok E)I)H“EN ’DOSTYLE(OP)
e 1;:(1) THEN DOMOVE(X Y)
i P = 2THEN DOLlI\}E(X, Y)

END: ELSE Dopg
RETURN: “‘\\LYGQN(OR '
o TR NP X, ¥, NTH);

: ¢ polypo
\Idcs it has g .

5 iy ¢
lhls m[ol_n Cate d

MOMatign “Tequesy there i
n : ed f 2 po .
g In g oth 1o Hleq Polygon and indicates how many

¢ FIL . Polygone _
which s
OMmang g reateq Ich will do the actual fill
aS a move,

Scanned by CamScanner

3.7 Algorithm DOPOLYGON(OP, X, Y, INDEX) Foutine 1o process & polygon com-
mand | [
“ Arguments OP X Y the display-file instruction
INDEX the position in the display file of the instruction

Global SOLID a flag to indicate if the polygon should be filled in
BEGIN

IF SOLID THEN FILL-POLYGON(INDEX ;

DOMOVE(X, Y);

RETURN;
END:

/SHLING POLYGONS

o

4

P

One way of filling polygons is to first draw the edges of the polygon in z blank frame
buffer. Then starting with some **seed’’ point known to be inside the polygon, we st
the intensity to the interior style and examine the neighboring pixels. We continue
set the pixel values in an increasing area until we encounter the boundary pixels. This
method 1¢ callcdwg_ﬂrx)dﬁll,because color flows from the seed pixel until reaching the
polygon boundary, like water flooding the interior of a container. The flood-fill method
can be quite useful in some cases. It will work with any closed shape in the frame buf-
fer. no matter how that shape originated. However, it requires 2 frame buffer free of
pixels with the polygon interior style, in order to avoid confusion. It also requires 2
seed pixel. _ —

We could draw solid polygons by considering every pixel on the screen, applying
our inside test, and setting those pixels which satisfied it. This would avoid the need
for a seed pixel, but the method would be rather costly. Many pixels can be 1m-
mediately eliminated by comparing them with the maximum and minimum boundary
points. We really need 10 consider only those pixels which lie within the smallest rec-
tangle which contains the polygon. If we first find the Jargest and smallest v values of
the polygon, we need to consider only points which lie between them. Let us suppose
that we start with the largest y value and work our way down, scanning from left to
right as we go, in the manner of a raster display. Our constructed test lines will be the
horizontal lines at the current y scanning value. Many problems in compuler graphics
can be approached a scan line at & time. Algorithms which take this approach are called
scan-line algorithms. Often we can take advantage of what we learned in processing one

S ext scan line. (See Figure 3-11.)

5can Tine 1o make the calculation easier for the n

We could draw the boundary of the polygon in a blank frame buffer and then
examine the pixels in the box around the polygon, scan line by scan line. Moving
across the scan line, when we encounter a pixel with the intensity of the boundary, we
enter the polygon. Subsequent pixels are given the interior intensity until we encounter
a second boundary pixel. The problems with this scheme are that we must start with a
frame buffer free of pixels with the polygon boundary intensity and we mysl be careful
about cases where two polygon edges meet at 4 single pixel. Wc_ can avoid thcs.c prob-
lems by determining the polygon boundary values directly from the polygon instruc-
tion, instead of from the frame buffer. Using the display-file instructions, we can deter-

Scanned by CamScanner

’ ' A ¢ P
Scwi' 0,0.,@ [wz./ll S.jagi |
uging LAt
A S~ % /ﬁm i ,/C ';',
‘ (sbant . dnd)
L calse
e R
/
G
’=
' FIGURE 3-11
: Filling along scan lines.

test a point, W€ do not have
gon side. We need to con-

ddling the test line. (See Figure 3-12.)
des should be tested if we first sort

an down the polygon, the order

dered will match the order in which they are stored.
lower y value, we can examine the sides being con-

!
/ sidered, in order to determine whether we have passed their lower endpoints. If we
l;:ve s;eppc: pa;t the lowest y value of a side, it may be removed from the set of sides
| being considered. Now for each y value we know exactly which polygon sides can b¢
i crossed. (See Figure 3-13.) ' ¢ PYE |
" ~ We maintain our list of sides so that all i i
: : ‘ the sides which are currently being
:;’i‘:zli;r;:ie::gube gfroAulg.crd together. We shall keep two poiﬁters to mark ’theyboundci
- greater or equal tp(; START-.IIEEE?SI?;?IESI: It)h.EDEGI\IIEI')A" esees stored With i inices
an END-EDGE should be considered. An

~ edge in the list before STAR '
! T-EDGE h
 hind END-EDGE will have been passed;ils digat s encountered. Those which lie be-

crossés the polygon boundary. To

¢ where the scan line ‘ '
ntersection of our scan line with every poly

lygon sides with endpoints stra
fy which polygon si
maximum y value. As we SC

min
10 compute the i
sider only the po

It will be easier to identi

" the sides in order of their
in which the sides must be consi
Each time we step down to a

0 ; F‘omlqcr only these sides

Scanned by CamScanner

" rorycons 81

Remove this xide. -
from consideration

(‘uhsidcl
this side

FIGURE 3-13
When the scan line passes the bottom endpoint of
a side, remove it from consideration. When the
scan Jine passes the top endpoint of a side, con-
sider the side,

Our task becomes setting those pixels on the horizontal scan line which lie inside
the polygon. It is really not necessary to examine every pixel on the horizontal line.
We can think of the polygon as breaking up a horizontal scan into pieces. (See Figure
3-14.) According to the even-odd definition of the polygon interior, the pieces alternate
light and dark. If we know the endpoints of the pieces—that is, the points where the
scan line crosses the polygon's sides—then we can use our vector generator (or equiva-
lent) to fill in the entire piece. We do not have to consider each pixel in the scan-line
segment individually. Suppose we compute the x values for all intersections of poly-

- gon sides with a given horizontal line, and then sort these x values. The smallest x-

value will be the left polygon boundary. At this point the polygon beglns The next x
- value indicates where the polygon ends. Therefore, a line segment drawn between
these values will fill in this portion of the polygon. We can pair up the sorted x values
in this manner for passage to our line-drawing routine. (See Figure 3-15.)

In summary, an algorithm for filling a solid polygon should begin by ordering
the polygon sides on the largest y value. It should begin with the largest y value and

scan down the polygon. For each y, it should determine which sides can be intersected |

and find the x values of these mtcrsccnon points. The x values are sorted., palred and
passed to a line-drawing routine. -

FIGURE 3-14 :
The polygon breaks the scan line into preces.

Scanned by CamScanner

UL P LT RSP R S sl RS W R ALY LI W L P e Y

o
J
/’/

i
!

7
Y e
g | })?‘ ({}J
(K o

FIGURE 3-15

‘ wing.
« values are paired and used for line drawing

1 i lygon i
The algorithm which performs the yx scan and fills in the polygon 1s calleg

. formation from the dis.
ate o1 ving the pOl)’gon shape 1n B
|:“J[‘.p()l,‘l'(l()N."]l h?tblglys tl):r;;ley vglue This is accomplished by means of the
slay file and sorting 1 M e e D sepeatna T
‘l()'\D-P()l YGON algorithm. The filling in of the polygon 1s : y 1€p ‘g e
e - : ine if additional polygon sides should be consid-
steps. The first step 15 10 determine 1f any : . . e e
ered for this scan line. The INCLUDE routine makes this deterrmpa 10n. S &01:1\1
step is to sort the X coordinates of the points where the polygon sides c_ross tyhe sxlﬁrf
line so that they may be easily paired. This is done by the XSORT routine. The third
step 1s to actually turn on the pixels between the polygon edges, which is done by
FILL-SCAN. Next, the current scan line is decremented; and finally. tlhe
UPDATE-X-VALUES routine determines the points of intersection of the polygon with
this new scan line, and removes from consideration any edges which have been pass-
ed. These steps are repeated until all polygon edges have been passed by the scanning
process.

; /38 Algorithm FILL-POLYGON(INDEX) Fills in a polygon
WX Arguments INDEX the display-file index of the instruction

“ Global YMAX an array of upper y coordinates for polygon sides
SCAN-DECREMENT the size of a scan-line decrement | =~ |- | ot/
Local EDGES the number of polygon sides considered) o)
SCAN the y value of the scan line . B st
f;/:fgfl)(iﬁ EN[)-EDGI% indicate which polygon sides are crossed bY the
BEGIN |

load global arrays with
| the polygon vertex inf [
LOAD—POLYGON(INDEX, EDGES); Ty

gh sides to consider

IFEDGES < 2 THE
; % N :
set scan line RETURN;

SQ{\T - YMAX(1);

niiahze starting 4 d ending ;

S:TAR'I‘-EDGE i :1: ending index values for sides considered
[‘.ND-EDGE |

Scanned by CamScanner

fill in polygon
pick up any new _sides to be included in this scan
INCLUDE(END-EDGE, EDGES. SCAN);
repeat the filling until all sides have been passed
WHILE END-EDGE # START-EDGE; DO
BEGIN
make sure the x values are in order
XSORT(START-EDGE, END-EDGE - 1);
fill in the scan line
FILL-SCAN(END-EDGE, START-EDGE. SCAN);
next scan line
SCAN « SCAN — SCAN-DECREMENT;
revise x values
UPDATE-X-VALUES(END-EDGE - 1, START-EDGE, SCAN);
and see if any new edges should be considered
INCLUDE(END-EDGE, EDGES, SCAN);
END;
RETURN;
END;

‘Now let's consider in more detail what we would like to know about each poly-
gon edge. We would like to know the largest and smallest y-coordinate values. The
largest y value indicates at which point in the sc‘anning;_grocess to include this edge.
The smallest y value will determine when the line has been passed and need no longer
be considered. We shall also need to store x-coordinate information so that we can de-
termine where the edge will intersect the scan line. For this purpose, the x value of the
endpoint with largest y value should be saved. Thus we save both x and y coordinates
of the endpoint which will first be encountered in the scanning process. Now as we
step down through successive scan lines, the point of intersection will shift in x, The
amount by which it shifts can be determined if we know the change in x for a change
in y along the edge, that is, if we know the reciprocal of the slope of the edge. These
four items (X-TOP. Y-TOP, Y-BOTTOM, INVERSE-SLOPE) are all that we need to
know about each side. (See Figure 3-16.)

We shall want to store this information for all nonhorizontal lines. Horizontal
lines can be ignored because they are parallel to the scan lines and cannot intersect
them. We shall want to store this information ordered according to Y-TOP, because this
is the order in which it will be accessed. The retrieval and storing of the edge informa-

(X-TOP, Y-TOP)

/N\'ERSE SLOPE

FIGURE 3-16
T=—Y-BOTTOM : Parameters stored for gach side of the polygon,

Scanned by CamScanner

84 APTER THREE "GO
o called LOAD-POLYGON. Ty,

e equal to the vertex 1n the opy,
srmalized coordinates 1o actyy .
ing the point 10 a pixe] MU,

hich is the same as FLU()R

il

utine which We Y
Faro
tion are perfonncd % one endpoint of the €dg
gty 8 & G el int is converted from n
polygon command. The Pf(J)' % 15.ad the effect of rognd
vices coordinates. We adq S BT INT function. W !
The y value is rounded right zmzll) e ounded at every scan line.
N X va uc 4 y el
for positive argumentls;ghgg algorithm nex! steps [hrough the dfspla) ﬁle‘. It retriey,
The LOAD-PO e GET-POINT routine. This 'vertex l?ec:(?mes the secqpg
A new virtes O r'neansd e (the first endpoint came from .the pm\'xgus S_ﬁCP). Horizq,
endpoint of a poly gg" ;u[ginform ation for nonhorizontal lines 1S saved in order by y),
gl(l)iggltisaéeR:rg?gih{e When all edges have been considered, the algorithm reyp,
- l . .
the number of edges actually saved. i
V49 Algorithm LOAD-POLYGON(EDGES) A routine to retrieve polygon side
g \i:fonnfxion from the displ;y file. Positions are converted to actual screen coordinaes
Arguments I the display-file index of the instruction
| EBGES for return of the number of sides s}_qred»
Global WIDTH-START. HEIGHT-START starting index of the screen

WIDTH width in pixels of the screen

HEIGHT height in pixels of the screen

X1, Y1, X2. Y2 edge endpoints in actual device coordinates

Local
I1 for stepping through the display file
K for stepping through the polygon sides
DUMMY for a dummy argument 3
SIDES the number of sides on the polygon
BEGIN
set starting point for a side : .
GET-POINT(l, SIDES, X1, Y1); l?c C,{;g;(_clld[L C ha
X1 < X1 + WIDTH + WIDTH-START + 0.5; L

b‘_/“ B i
) 4 y 4

141 B Mo

adjust y coordinate to nearest scan line
Y1 INT(Y1 « HEIGHT + HEIGHT-START + 0.5); [Crizz -
get index of first side command S N Ay 1
initialize an index for stori i

BOGES o). ng side data

a loop to get informatio |
n about '
FORK = 1TO SIDES DO Ak
BEGIN

get next vertex
g(}sT-P())(INT(Il. DUMMY, X2, Y2).
2* WIDTH + WIDTH-ST:ART + 0.8

Y2 < INT(Y?2
; , = HEIG
see if horizontal Jine BT+ HEIGHT-START + 0.5);

BEGIN

i ':‘”}L

Scanned by CamScanner

poLYGons 88

increment index for side data storage
EDGES «— EDGES + |;
old point is reset

Yl «¥Y2
X1 « X2,
END:

fle1Il + It
END;
set EDGES to be a count of the edges stored.
EDGES «— EDGES - I
RETURN;
END:

The POLY-INSERT algorithm is basically an in<eni0n sort. It determines the
maximum y value for the two endpoints and compares it with previously entered edges
to deten’mne where in the sequence the new edge belongs. It begins with the last ele-
ment, to see if it belongs at this end. If the new edge’s maximum v value is smaller -
than that of all previous edges, it is entered at this end. If not, the last edge is moved
down one position, opening a possible storage location in the next-to-the-last place.
This comparison with, and shifting of, the edges is continued until the-appropriate po-
sition for the new edge is found, at which point information for the new edﬁe IS in-
serted. The data is stored in four separate arrays (one for each type of information).
These arrays should be dimensioned to match the maximum number of sides a polygon
can have in the system (one entry for each side). We have named the arrays YMAX to
save Y-TOP, YMIN to save Y-BOTTOM, XA to save X-TOP, and DX to hold the
change in x for each scan decrement. For a constant scan decrement, there will be a
fixed change in the x-intersection value for each scan. We can find the amount that the
intersection point will shift by multiplying the rate‘of change in x for a change iny by
the scan decrement. The scan decrement is the distance between the scan lines actually

- being filled. Usually this will be 1, so that every scan line is filled, but by allowing
other values, we can achieve different fill styles. For example, a scan decrement of 2
would fill every other scan line. (See Figure 3-17.) We use the INT function to round
the x values to integer pixel positions in determining XA and DX. This is so the sides
of the polygon will match the boundary drawn with the Bresenham algorithm.

/(((X 3.10 Algorithm POLY-[NSERT (J, X1, Y1, X2, Y2) The ordered insertion of polygon
=" edge information -
Arguments J insertion index
X1,Yl, X2,Y2 cndpomts of the polygon side (y values rounded)
Global YMAX, YMIN, XA, DX arrays for storage of polygon edge mformanon
SCAN-DECREMENT step between filled scan.lmes
Local J1 for stepping through the stored edges
YM the maximum y value of the new edge
BEGIN
insertion sort into global arrays on maximum y
J1 L K
find the largest y

* Scanned by CamScanner

FIGURE 3-17
Using scan decrement for fill styles.

'YM — MAX(Y1, Y2);
find correct insertion point, moving items out of the way as we go
WHILE J1 # 1 AND YMAX{1 — 1) <YM DO
BEGIN : ‘
move up the insertion slot_
: : YMAX([J1] < YMAX([J1 = 1)i%%5
| B 7] YMIN[1] < YMINQT —o1J; e 2 LY | v
fost L XADL) < XADL = 1 ok T s i
DX[J1] < DX(J1 = 1): S@ucls hondia w70
' EN&(—“ 3 Vi : : cuo iy My, Salla
insert information about s
- YMAX[J1] < YM;
DX[J1] < (INT(X2) — INT(X1)) /(Y2 — Y1)
* see which end is on top
IFY! >'Y2THEN
BEGIN
~ YMIN[J1] < Y2;
- XA[J1] « INT(X1);
~ END -
{ELSE ' -
BEGIN
YMIN(J1] < Y1;
. XA[1] « INT(X2);
- END; P
e T ENDG RS

-y

idc }"..cz '

« (=/ SCAN-DECREMENT)

POk Thc Aec‘igc;_mforma_twn for the polygon has, been stored for our us¢ bu(;;DGE
not consider every edge with every scan line. We need 10 maintain the AR

Wit a“dEND'EDGEpolnters to delimit the edges of interest. (See Figure 3-18.)

Scanned by CamScanner

poryoons 87
YMAX XA DX YMIN
AT

4

L e

- — —f— — —— START-EDGE

Set of cdi’“ §
crossed by ’
) Y — —— = ———— —— — END-LDGF

gcan hine

e e e

FIGURE 3-18
Table entries for edges which cross
Table of edges the current scan line.

The algorithm we have called INCLUDE adds new edges to the group being con-
sidered. Because of the order in which we have stored the edges, the next edge to be
included will be the next edge in the array. To include the new edge, we only have to
ncrement the END-EDGE boundary. For each new scan line, the INCLUDE al-
gorithm _checks the largest y value for the next edge; if the scan has gone below this
value, then END-EDGE is incremented to include the edge.

_3.11 Algorithm INCLUDE(END-EDGE, FINAL-EDGE, SCAN) Include any edges
newly intersected by the scan line
Arguments END-EDGE index of the side being considered for inclusion
FINAL-EDGE index of last side
SCAN position of current scan line
Global YMAX, XA, DX arrays of edge information
SCAN-DECREMENT the size of a scan-line decrement

<
A\

BEGIN
WHILE END-EDGE < FINAL-EDGE AND YMAX[END-EDGE] = SCAN DO

include a new edge
END-EDGE « EDGE-END + 1;
RETURN;
END;

The edge information between START-EDGE and END-EDGE is kept ordered
on the x-intersection value. (See Figure 3-19.)

The task of maintaining this ordering belongs to the algorithm called XSORT.
The XSORT routine steps through the currently active edges. If the position is correct,
then nothing happens. If, however, the element is out of place, it is ‘‘bubbled up"’ to
its correct position by a series of exchanges with its neighbors. When a new edge is en-
tered, it may have to be shuffled down the array to place it in order, In subsequent
checks, however, the edges will almost always be in their correct positions. The excep-

tion is when polygon sides are allowed to cross.

Scanned by CamScanner

START-EDGI

END-EDGE

FIGURE 3-19
Table entries sorted on x.

/96& 3.12 Algorithm XSORT(START-EDGE, LAST-EDGE) Checking the order the »
/ _m'}E,SSELIQH
£ Arguments START-EDGE index of the first of the edges considered
LAST-EDGE index of the last edge whose order is to be checked
Global YMIN, XA, DX arrays of edge information
~ Local K, L for stepping through the edges
T temporary storage for the exchange
BEGIN
FOR K = START-EDGE TO LAST-EDGE DO
BEGIN
L < K;
WHILE L > START-EDGE AND XA[L] < XA[L — 1] DO
BEGIN
T < YMINIL];
YMIN[L] « YMIN[L - 1J;
YMIN[L — 1] «T,
T «— XA[L];
XA[L) <« XA[L — 1];
XA[L — 1] «T,
T « DX[L]J;
DX[L] « DX[L — 1];
DX[L — 1] « T,
L<L-1;
END;
END;
RETURN;
END:

)
Y

58

The next algorithm, FILL-SCAN, actually fills in a scan line. I conlﬁ"; 3.
which steps through all current intersection points, connecting pairs wit
ments. The actual line-segment drawing is done by FILLIN.

Scanned by CamScanner

IS¢ of

rotycons 89

,\‘;-\' 3.13 Algorithm FILL-SCAN(END-ED_(?F., START-EDGE, SCAN) Fill in the scan
FLL)L_AL(AP {(Valr vl
START-EDGE, END-EDGE indicates which edges are crossed by the scan
line
SCAN the position of the scan line
Global XA an array of edge intersection positions
NX the number of line segments to be drawn
J for stepping through the edges
K for stepping through line segments
BEGIN
NX « (END-EDGE -~ START-EDGE) / 2;
] « START-EDGE;
FOR K = 1 TO NX DO
BEGIN
FILLIN(XA[J]. XA[J + 1], SCAN);
Je<J+2;
END;
RETURN;
END:;

line
Argument

Local

The FILLIN routine may depend upon the type of display system being used. If
FILLIN uses some vector-generating routine provided by the display, FILLIN may
have to store the current line style, set the line style to the polygon interior style, move
to one of the endpoints, draw a line to the other endpoint, and reset the line style and
pen position to their original values. Alternatively, we can write a simple FILLIN al-
gorithm based on an assumed frame buffer (or some other method of setting individual
pixels), as were the vector generation algorithms of Chapter 1.

3.14 Algorithm FILLIN(X1, X2, Y) Fills in scan line Y from X1 to X2
Arguments X1, X2 end positions of the scan line to be filled
Y the scan line to be filled
Global FILLCHR intensity value to be used for the polygon
FRAME the two-dimensional frame buffer array
Local X for stepping across the scan line
BEGIN
IFX1 = X2 THEN RETURN;
FOR X = X1 TO X2 DO FRAME[X, Y] «— FILLCHR;
RETURN; |
END;

For each new scan line, we must examine the currently active edges to see if ony
have been passed. If the edge should still be considered, the intersection value for the
new scan line should be calculated: if it has been passed, the edge should be removed
from consideration. This is the job of the algorithm called UPDATE-X-VALUES. To
determine if an edge still crosses the scan line, the lowest y value is examined. To up-

Scanned by CamScanner

. b ¥ Y g Y ¥,)
ant step SIZ€ (determined 1 INCLUDE) 15 agqe,
thedconSt the i ormation for Prc"")!;” ed?“. 1S Moveq .
sideral d allows incremeny; ¥
dge from COMICET L ites the deleted edge an menting ..

ST-EDGE, START-EDGE, SCAN) Upg..

d the scan line

?r. DGE limits of current edge list

bal XA, DX, yMIN arrays of edge information
. 1 K'l }ndex of edge being considered for update
4 ' nhere to store the updated edge

BEGIN o6
K2 « LASTE
FOR K1 = LAST- ETO START-EDGE DO
BEGIN
check each edge
[F YMIN[K1] < SCAN THEN
BEGIN
the edge is still active sO update its X values
XA[K2] « XAKI] + DX[K1];
[FK1 # K2 THEN
BEGIN
, YMIN[K2] < YMIN[KI];
f;glcfﬁ) DX[K2] — DX[K1];
ey END;
decrement K2 so the edge won't get overwritten
K2« K2 - I;
END;
END;
START-EDGE « K2 + I:
RETURN;
END;
START-EDGE
Entry 10 be START-EDGE
removed <
END-EmE — =3
END-EDGE
HGURE 320 ‘ Befure

Scanned by CamScannelr;.

porygons 91

The above algorithms allow us to fill in the interiors of polygons efficiently. We
«hould note, however, that if we are not careful, the method used for determining the
polygon boundary may be-different from that used by the line generation algorithm to
outline the polygon. The interior may turn out to be a pixel wider than the edge, which
can be apparent at low resolution.

FILLING WITH A PATTERN

We mentioned that polygon fill styles might be patterns, Patterns are most easily im-
plemented on raster display devices. A pattern is a grid of pixel values which is repli-
cated like tiles to cover the polygon area. A pattern is often fixed, or registered, to the
imaging surface so that if two polygons are filled with the pattern and placed side by
side, the pattern will match at the boundary. We can imagine taking the pattern and rep-
licating it to cover the entire imaging surface, and then erasing it anywhere outside of
the polygons which use it. (See Figure 3-21.)

Assuming a frame buffer (or some other means of setting individual points), we
can show how patterns might be added to our graphics system. We can set up a table of
patterns and use the fill style to select one. We shall provide a routine for placing pat-
terns into the table. We shall also give a version of FILLIN which uses the table. Some
examples of 4 X 4 patterns are shown in Figure 3-22.

The pattern table can be composed of three arrays— PATTERN-X, PATTERN-Y,
and PATTERNS — where PATTERN-X and PATTERN-Y are arrays of numbers which

Replicated across the display

A patiern

/ A

k / FIGURE 3.21

Replication of a pattern.

Shown only within polygon boundaries

Scanned by CamScanner

W NN P Tl e e R U e W I SR o T LT e

Q2 CHAFTER THRE

FIGURE 3-22 |
Some 4 ‘X ‘4 patierns.

i » ' is an array of two-dimensional array
i ze of each pattern, and PATTERNS is an ' ! |
:vpt:cc'ttyaxtthcths; actual patigms. (One way to implement PATTERNS is to make it a three-

. ! atives offered by some lan-
dimensional array, but this may not be as'ﬂcxnblc as a]tcma:)llvcs s g’l b g
guages.) We place an individual pattern 1nto the pattern table Wi g al-
gorithm. 5
3.16 Algorithm SET-PATTERN-REPRESENTATION(PATTERN?INDEX, PAT-X,
PAT-Y, NEW-PATTERN) Enters a pattern into the pattern table
Arguments PATTERN-INDEX the place in the pattern table to save the pattern
PAT-X, PAT-Y the dimensions of the pattern
NEW-PATTERN the pattern, a two-dimensional array of intensity values
Global PATTERN-X, PATTERN-Y, PATTERNS the pattern table
BEGIN. =~ | TR Fio
- PATTERN-X[PATTERN-INDEX] « PAT:-X;
- PATTERN-Y[PATTERN-INDEX] « PATY; -
the following statement depends upon the implementation of PATTERNS, and may
;:m! the h;tgfymg of all the individual intensity values
ITER PATTERN-INDEX) « NEW-PAT B
! RETURN S /s e,) < NEW-PATTERN:
i3 of L WO S

Arguments X1, X2 Ah e Yo f')
R kS WAR <Al posmqns of the scan lina ta 1o o ‘
okl e scan e 0 b ited 0% filed
T AR attern table index « L} g &4
~ PATTERN-XPATTE dex of the pattern
b, TERN XU p X tern to use
 PRAME the two-dimen; ATTERNS the pattern table

Scanned by CamScanner

rFOLYGONS 93

Local X for stepping across the scan line
PX. PY for accessing the pattern
PATTERN-TO-USE the pattern to be used in filling
PAT-X, PAT-Y the x and y dimensions of the pattern

BEGIN
IFXI = X2 THEN RETURN:

PAT-X « PATTERN-X[FILL-PATTERN];
PAT-Y < PATTERN-Y[FILL-PATTERN]:
if a local array is used as shown in the following statement,
then the implementation should avoid copying of individual elements
PATTERN-TO-USE < PATTERNS[FILL-PATTERN]:
PX <« MOD(X]1, PAT-X) + I;
PY « MOD(Y, PAT-Y) + 1;
FOR X = X1 TO X2 DO
BEGIN
FRAME[X, Y] < PATTERN-TO-USE[PX, PY];
IF PX = PAT-X THEN PX « |
ELSE PX < PX + 1;
END;
RETURN;
END;

The MOD functions give the remainder after division of the first element by the
second. This is what causes the replication of the pattern. If we have a value X1 or Y
which is larger than the pattern size, the MOD function wraps PX and PY back into
values within the pattern, thereby repeating the pattern. The Is are added into this cal-
culation because we have assumed our arrays are dimensioned with starting index 1.
We set the local variables PAT-X, PAT-Y, and PA’I'TERN-TO-USE in order to remove
the address computation from the loop. Actually, it would be even better to make these
variables global and to set them in DOSTYLE (the only reason we did not do so is that
DOSTYLE is too system-dependent for a clean example).

On many devices there are only two pixel states, on or off. For these displays,
the frame buffers and pattern tables can be compactly implemented by using individual
bits to describe the pixel states. Pattern dimensions can be chosen to lie on word
boundaries, and the FILLIN algorithm can be made more efficient by dealing with en-

tire words of pixel values.

INITIALIZATION

To finish this chapter's algorithms, an initiali
values for filling and fill-style parameters. If fi
pattern table should be initialized to a default set of patterns.

zation routine is needed to set default
lling with patterns is possible, then the

3.18 Algorithm INITIALIZE-3 Routine to initialize the system

Local P for stepping through the pattern table
Constants MINIMUM-FILL-OP opcode for first fill style = —16
NUMBER-OF~PA’I'TERNS the size of the pattern table

Scanned by CamScanner

Y 1 e et S

: fault pattern
-y size of the de
AULT-PAT |

| F
.pAT-X. D |t pattern armay
DEFAULT 2o N a default P
- PATTE .
DEFAULT

94 CHAPTERTHREE -

BEGIN |
LIZE-2:)
%:EFA;LE(MINIMUM-FILL OP)

GET.FILL(FALSE);

ing loop 15 1N DO
‘;‘3 ﬂl‘fli‘gr IguMBER.oF.PATI‘ERNS FAULT-PAT-X, DEFAULT-PAT,

SET-PATT ERN-REPRESENTATION(P, DE
DEFAULT-PATI' ERN);

RETURN;

| END;

lled with patterns

S —
R o b A ey I

ANTIALIASING | ; e |
In Chapter 1 we mentioned a'tgchniqug _for s’moot}pngl th; {:ﬁ%ﬁd ?ste:S lrr(; ;le:?]eﬁ\;/hl;h
e 2 d by the quantization to finite-sized pixe s.‘ 'l . g p for the
s it is for li nd several antialiasing techniques which uge
edges of polygons just as it 1s for ines, a w4l 1
the shading of gray-level displays to reduce the effects have been developed. One
technique is to calculate what fraction of a pixel is actually covered by the polygon ang
how much is background. The pixel intensity displayed would then be the average of
the background and polygon intensities weighted by their relative areas.
: Another approach is to generate the scene at a higher resolution than that which
i will actually be used, and then to average the intensity values of neighboring pixels to
determine the intensity to be displayed. Increasing the resolution between four and
eight tirpgs gives good .results. Note that this need not be as much work as it seems.
?,;hge ::;;a]:;s;naan bet lncorpomteq as part of the pol)./gon-ﬁlling algorithm. Antialias-
Y be applied to the points on the edge (interior points will have the full

polygon intensity). It can be carried out scan I; -
: n line by scan lj ' i
sive amounts of memory, y ne, so we don't need exces

S G gy P S

i(] AN APPLICATION

e We constryct /
Pen position by ys: such a po])
sary AX and Ai e fhe POLYGON.R ygon with lower-

left co ! nt
armay valyes would be EL-2(aX, AY, 4) cor mer at the curre

Mmand. Then the neces

Scanned by CamScanner

rolyaons U8

dy

FIGURE 3-23
"’d;’J Constructing a solid bar from a polygon.

Here, DX will give the width of the polygon and DY will give its height. Now we can
fix DX at the width which we want our bar graph’s bars to have. All bars should have
the same width, but the height of each bar depends upon the input data. Each bar
might have a different height. We can see, however, that it is easy to change the bar
height; we need to change only the value of the DY parameter in the AY array. Thus by
poking the appropriate value into the AY array and calling the POLYGON-REL-2
routine, we can generate a bar with any height we choose. Now what we want to do is
to draw a series of bars, each at a different horizontal position and each with a height
representing the data value for that position. This is easy because we have used a rela-
tive polygon command. To position the bar, we need only move the pen to the correct
starting position before drawing the polygon. (See Figure 3-24.)

MOVE-ABS-2(X, Y);
POLYGON-REL-2(AX, AY, 4);

Now we can place these instructions within a loop. Each time through the loop,
we get one of the data values to be plotted. We increment X in order to position the pen
at the starting point for the next bar. We calculate the height of the bar from the data
value and put it into the AY array. And we call the MOVE and POLYGON algorithms

to actually draw the bar. Each time through the loop, another bar would be drawn until
the graph is complete. (See Figure 3-25.)

FIGURE 3-24 o
X, Y) A MOVE command will position a relative polygon.

Scanned by CamScanner

3.25 ' okl
il ga?:ﬂgph constructed by repeated use ol POLYGON
comand- ‘ :

. d and drawn sequentially, the
:] ars are equally spacet <o . . Ny

We might note that ::n[::xdbcan be replaced by the implicit relative move done
explicit MOVE-ABS-2 co : rih.

by the POLYGON-REL-2 algorithm.

' FURTHER READING 3 5
be found in [NEW80]. We rep-

i i indi inside tests may
A discussion of winding numbers and insi : ' '
resented polygons as a list of vertex coordinates; alternative rcpresent.anorfs are pre-

broke it down into individual

sented in [BUR77] and [FRA83]. To fill a polygon, we orok: 1
scan lines. This technique is called scan conversion and is discussed In [BAR73] an'd
[BAR74]. An alternative approach to filling regions such as polygons Is t0 draw their

border in the frame buffer and then, starting with a seed pixel within the polygon,
progressively examine each pixel, changing its color to the interior style until the-
boundary is encountered. This technique is called flood fill or seed fill and is discussed
in [LIE78). Instead of filling from a single seed, we can scan the area to be filled,
building regions. When two regions merge, we note their equivalence; then on a sec-

“ond pass we shade all regions associated with the interior [DIS82]. The decomposition -

of ;)olygons into trapezoids or triangles is described in [FOU84], [GAR78], [JAC80],
?;Ol[tléf&?iln Polygons can also be described as the differences of convex polygons
- An attempt to save the scan-converted polygons in the display file rather |

“than i : . ; ‘
> viccsl&i‘:hmr::f;;rlvls d(?SCl‘.lbed n [_SPR75] . Filling polygons on calligraphic de-
ines is discussed in [BRA79]. Polygon filling is also discussed

in [AGKS81],
1, [DUN83], [PAV78], [PAVSI], [POL86], and [SHAB0]. A discussion of

antialiasing of poly riatne _
! gons 1s given in [BAR79
$Tk wased -] and [CROS8I b
[GSpC-,g]_O“ proposed extensions to the CORE system]'“(f)hl;:::o ;zegoc;] p”.’:;zv?:
e €scri1 1

OlThe »
Edge Flag Algorithm— A Fij1 Method for

C and JOrdan‘ B W » NO, l. pp. 41-47 (1981)

Co"lnu‘mcan- i >y Jr'v “A Scan C .
ons onversio : .
and Jordap, B{'\’:ACM- n Algorithm with Reduced Storage Re”

vol |
v I, % 6, no. 11, pp, 676-682 (1973).

Display,”” ¢ .
ommunicqyi Sc 4
(BAR79] Barros, J.. R, ONS of the AC an-Conversio :
+J. Ruchs, |« M, vol. |17 o n Algorithms f, :

. 11.m0.3, pp 157 or a Cell Organized Rastef

C ; ' Genera
omputer Graphics, yo1 B, no. 2 Ing Smooth 3. o
.2, pp 260-269 “979)nocolor Line Drawings on Vidco Displays ¥

Raster Scan Displays,* /EEE

Scanned by CamScanner

