CHAPTER

TRANSFORMATIONS

INTRODUCTION

One of the major assets of computer graphics is the ease with which certain alterations

~ of the picture may be performed. The manager can alter the scale of the graphs in a re-
port. The architect can view a building from a different angle. The cartographer can
change the size of a chart. The animator can change the position of a character. These
changes are easy to perform because the graphic image has been coded as numbers and
stored within the computer. The numbers may be modified by mathematical operations
called rransformations . .

Transformations allow us to uniformly alter the entire picture. It is in fact often
easier to change the entire computer-drawn image than it is to alter only part of 1t. This
can provide a useful complement to hand drawing techniques, where it is usually easier
10 change a small portion of a drawing than it is to create an entirely new picture.

In this chapter we shall consider the geometric transformations of scaling, trans-
lation, and rotation. We shall see how they can be simply expressed in terms of matrix
multiplications, We shall introduce homogeneous coordinates in order to uniformly
treat translations and in anticipation of three-dimensional perspective transformations.
The algorithms presented in this chapter will describe two-dimensional scale, transla-

tion, and rotation routines.

TRICES

O .V 3 : . . v

rcuI Computer graphics images are generated from a series of line segments which are

eai;_TSCntcd by the coordinates of their endpoints. Certain changes in an image can be
ly made by performing mathematical operations on these coordinates. Before we

107

ML

Scanned by CamScanner

108 cuAPTER FOUR me of the mathemati: ,

vete
; ormatlon o '
consider sorme of the pOSSDIC tzraat:iifmullipl_ica"o?' be a two-dimensional array
tools we shall need, ““"‘ely":,?ll consider & matrix (0
For our purposes W¢

numbers. For example,.
: 1 0
0zl

are four different matrices. '
Suppose we define the matrix A to

, 1 10§
el e s o] M R
“56‘ 0 0.0 1

(4

be
1
A= '}"4
7

Then the element in the second row and third column would be A(2, 3) and woul

have the value 6. : R TP P
The matrix operation which concerns us most is that of multiplication. Matrix

multiplication is more complex than the simple product of two numbers; it involve:
simple products and sums of the matrix elements. Not every pair of matrices can be
| multiplied. We can multiply two matrices A and B together if the number of column;
' of the first matrix (A) is the same as the number of rows of the second matrix (B). For

example, if we chose the first matrix to be the matrix A defined in Equation 4.1 and
matrix B to be

sy’ i L P s wi"hav . ¢
1 etw i S YL L, o i 4 c the
matrix. Multiplyir s being multiplied ang e ar e Same number of rows as the
sulre o Pyngthe 3% 3 pape . C S3ME numbe
result C. GET § SR ety U‘lXA times the 3 2 mat
The elements of lhcpu e

triccsAande*th'- b (057 , are . Lo ;
o OoWing formiy 5 S BIYEN in tetms of the ‘elements of ma-

St .
£ T AGL) B, k)

For Our particular exmplc of C = AB AR, (4.3)

O %i ” (4.4)

Scanned by CamScanner

TharstOrMaTIONs 109
the element C(1, 1) is fm}"(' by multiplying each element of the first row of A by the
cormesponding element of the first column of B and adding these products together.

C(l, D= ACl, DB(L, 1) + A(l, 2)B(2, 1) 4 A(l,3)B(3, 1)
= (1) + (2)(=1) + (3)0) = —| (4.5)
The element C(3, 2) would be

C(3.2)= A, DB(1,2) + A3, 2)B(2, 2) + A3, 3)B(3, 2)

= (T)(0) + (8)(2) 4+ (9)(1) = 25 (4.6)
Performing this arithmetic for every element of C shows us that
«1 7
C= |[~-1 16 (4.7)
-1 25

Multiplication is associative. This means that if we have several matrices to multiply
together, it does not matter which we multiply first. In mathematical notation:

A(BC) = (AB)C (4.8)

This is a very useful property; it will allow us to combine several graphics transforma-
tions into a single transformation, thereby making our calculations more efficient.
There is a set of matrices with the property that when they multiply another ma-
trix, they reproduce that matrix. For this reason, the matrices in this set are called iden-
nty matrices. They are square matrices (same number of rows and columns) with all the
clements 0 except the elements of the main diagonal, which are all 1. For example,

1.0 0
][5 8] Jo1 o
0 01
and so on.
We can see that if
1 00
I~ {0 10 (4.9)
0 0 1
then
A = Al (4.10)
SCALING TRANSFORMATIONS

Now how does all this apply to graphics? Well, we can consider a point P, = [x, y'l]
as being a 1 x 2 matrix. If we multiply it by some 2 X 2 matrix T, we will obtain
another 1 X 2 matrix which we can interpret as another point

[XZ Y2] = P2 == PlT (411)

Scanned by CamScanner

ol
'!
i
i
‘

|
|
1]
3

e ————

CETI

LT T)

3 kel AT LN F'UURK

Thus, the matrix T gives a mapping between an original point P and a ney, POin,
P,. Remember that our image is stored as a list of endpoints. What wiil happey, if ;:‘
transform every point by means of multiplication by T and display the result? W, le"
this new image look like? The answer, of course, depcnd's upon what elements 4, ir:
matrix T. If, for example, matrix T were the identity matrix

T= (1) (1) , 4.1y
then the image would be unchanged.
If, however, we choose Tto be T,
Tl=’g (1)) _ (4.13)
then,
[x2 y21=[x1 yi1] g (l)l=[2xl il (4.14)

Every new x coordinate would be twice as large as the old value. Horizontal lines
would become twice as long on the new image. The new image would have the same
height, but would appear to be stretched to twice the width of the original. (See Figure
4-1.)

The transformation matrix

05 0

L2 200 1

4.15)

would shrink all x coordinates to one-half their original value. The image would have
the original height but would be squeezed to one-half the width.

\

()

Before

J

FIGURE 4-1

After Scaling x coordinates by 2.

Scanned by CamScanner

rransrormanons 111

Now, if we were to stretch the image to twice the width and then compress 1t to

one-hall the new wadth,

I"l (1’11")IIIA) .4 I(?)
we would expect to get the original image back agan. Let us check that this 1s so by
multiplying the two transformations T'y and T, together first, The associative property
for matrix multiplication allows us to write

P, = P\(T,T,) (4.17)

Multiplying the two transformations together combines them into a single transforma-

tion.

05 ol |1 0 _
0 1,"‘(0 1‘ (.15)

v oo R0
F118 ‘ 0 1
But this is just the expected identity matrix, which will not change an image.

We can make an image twice as tall with the same width by finding a transforma-
tion which just multiplies the y coordinate by 2. Such a transformation is given by

] O) (4.19)

Ty=|0 2

Multiplying an arbitrary point by this matrix shows that this is true. (See Figure 4-2.)

[x3 yo]=10[x1 y1] (1) (2) =[xy 2yi] - (4.20)

By applying both transformations T, and T,, we will make the image both twice
as wide and twice as tall. In other words, we would have a similar image, only twice

as big.

Before

FIGURE 4-2
After Scaling y coordinates by 2.

Scanned by CamScanner

Nl

D S T

L &

12 coarme s o241 hy 45 ddimah g o
; i P, ™ P:Tf.T" ey Lﬁﬁamasmyk

%y o RAINCES :
asformati®® U wice as 14EC

eng the (WO ¥ : 5 i
Again, by ’“”‘“‘pl'”?bl aking ¢ - 1‘m il 2 0!
Lon matnk for m : il 4 i - l o ali
trap<formation {2 01] e =l 21} x
P 0 (87| CORT I el
. = j sjons of the formn : : _
In general. mnsfoﬂm 6o . | (4.2
510 » | Yigd
g - led sealing mangformations.
_ ; M‘.zcmdmpmponmnofwmﬂgﬁ‘m“““al inate.
Ch?ngc g for the X coordinate and Sg'for lhc 1.¥ igin changes. Thi
5, 15 the u‘d(ﬁw le the —im;gg. every ;X}lﬂt CKW the mg’ VR 1%
- N position, A scale in x

Note that when we . -
means that not only the size of an IMage

' the image
3 factor greater than 1 will cause e o & “ .
?tywidcr. A scale in x by a factor less than | will shift the Image Wt

shift the image up and down as well as change its height.

i change but also ins n, A ‘
o shift to the right, along with making
he left. Ascale iny

will
SIN AND COS

The next transformation we would like to consider is that for rotation. To prepare for
the discussion of rotations we shall review some basic tngonometry. Suppose we have

a point P, = (x,, ¥,) and we rotate it about the origin by an angle 8 to get a new posi-

lion P, = (xy. yz). We wish to find a transformation which will change (x,, ¥,) into
(xy: y,). But, before we can check any transformation o se¢ if it is correct, we must
first know what (x,, y-) should be in terms of (x,, y,) and 6, To determine this we shall

need the trigonometric functions sine and cosine (abbreviated sin and cos). We can de-

w

Scanned by Carﬁécanner

TRANSFORMATIONS llj

fine sin and cos for an angle 8 in the following manner. Let us draw a line segment
from the origin at the angle 8 counterclockwise from the x axis, and suppose that the
fine segment we have drawn has length L. (See Figure 4-4.) '_

" The line segment will then have endpoints (0, 0) and (x, y) and length
Then, the ratio of the height of the (x, y) endpoint above the x axis (the y-coordinate

value) and the length of the segment will be the sine of the angle

VS
: i 4 (x:’. oo yl’)l/: : (424)

and the ratio of the distance td the right of the y axis (the X-coordinate value) and the
length of the segment will be the cosine of the angle
X
cos b = PR (4.25)
Note that if we draw a segment with length L = 1. then

sinf) =y and . cos 0 = x (4.26')

ROTATION

To determine the form for the rotation transformation matrix, consider the point (1, 0). If
we rotate this point counterclockwise by an angle 8. it becomes (cos 8, sin 8) (see Fig-

ure 4-5), so

[cosg sing]= ll Oi é gl= |a,bt (4.»27)

If we rotate the point (0, 1) counterclockwise by an angle 6, it becomes (-sin 0, cos B).
(See Figure 4-6.) '

a b '
[-sing cos@]= |0 1|c dI"C»dI (4.28)
y axis
: d :] FIGURE 4-4
(0,0 : X35 Definition of angle.

Scanned by CamScénner

114 cuarTek FOCE

sin 8

ey et
FIGURE 4-5
Rotating the point (1,0).

©.0 cos 8 |

c,and d needed to form the rota-

an see the values of a, b,
lockwise rotation of 6 about the

From these equations We C

tion matrix. The transformation matrix for a counterc
origin is
cos@ sin0
R = A
-sing cos 6 (4.29)

?CURE 46
Otating the point’ 0 i

i
Scanned by CamScanner

TRANSFORMATIONS - 115

A« an ,_\‘,1{‘,;\](\Upr\\\'c we \\'i\"hLd to rotate (]IL [)Oillt (..: " ;) C()Ull(elC]O‘CkWiSC b)’ an
L

\,:' L‘

‘COS% sin § 0.866 0.5 A
sinx cosx| |05 0866
209 the rotated point would be
0.866 0.5
2 =
. 3] i 0.866l '0,232 3.598| | (4.30)

We can rotate an entire line segment by rotating both the endpoints which specify it.
The sign of an angle determines the direction of rotation. We have defined the ro-
yion matrix so that a positive angle will rotate the image in a counterclockwise direc-
ron with respect to the axes. In order to rotate in the clockwise direction we use a
negative angle. so the rotation matrix for an angle 6 clockwise would be

o
or since
coé (-8) = cos O (4.33)
and
sin (—8) = —sin 6 (4.34)
this may be rewritten as
s

for clockwise rotations about the origin.

rm:s:. 3.598)
|
(2,3)
Ber Y
FIGURE 4-7
T —— Rotation of (2,3) by n/6.

Scanned by CamScanner

aaaaa

SRR

- -"'

LR LE L

= R e N S
-

B

T TR A I

% 3
\.t\v‘ A RS

\"ll . =

: S
16 CHAPTER ATE :
1 OUS CcOOR IN Chnt origin. If we had <o,
HOMOGENGELATION . point othe” ‘we - S I0 accomplish such ;
AND TRAN: 10 e about >0d on the seree™ " on was at the origin, thepn p,
o rot I ta ; Mol b
Suppo*® C-WISI?:: i il the ¢ moving the 1Mage back Where j
way of moving == d finally
: moVving 7 T giscusses , :

ation by ﬁrs:omion as we o5t . easily accomplished by adding
fobmg | anslarion e hifted. If we wish the imge,
helongs. . age 1S calle the picture shi i T ge

Moving the 1™ gb ich we want « coordinaté of every point. 10 moy,
each point ¢ amou:il ht, we would g tShee Figure 8.) |
shifted 2 units t0 the g coordinate (5¢ d up by (tx, ty), every

A y l uni(o a
: do“lr; general, in order t0 translate.

point (X;. yy) 1S ©P (4.36)
o - e a matrix, so it cannot he

Unfortunately, this Way of describing translation doe-s gL lication. Such a comb; L
I:nbined with other transformations by simple matrix multip ¢ : ' a;
i would be desirahle; tor example, we have seen that rotating about a pon'm other
uop lation, a rotation, and another translation. We

than the origin can be done by a trans . : :
would Tike to be able to combine these three transformations into a single transforma-

tion for the sake of efficiency and elegance. One way of doing this is to use homoge-
neous coordinates. In homogeneous coordinates we use 3 X 3 matrices instead of 2 X 2,
iniroducing an additional dummy coordinate w; points are specified by three numbers
mstead of two. The first homogeneous coordinate will be the product of x and w, the
second will be th : a1) "
i w“; & mp:c fefsil;C;Oftg atn_d lW and the third will just be w. A coordinate point
LN) i (xw, yw, w). The x and y coordinates can easily
red by dividing the first and second numb : '
use the extra number w until we consider th e b>.1 the third. We will not really
ree-dimensional perspective transforma-

Before

Af{er

Tmnslau(,n A

Scanned by CamScanner

P

TRANSFORMATIONS 117

In IWO dimensions its value is usually kept at 1 for simplicity. Still, we will dis-
ns.

fions- .1 its generality in anticipation of the three-dimensional transformations.
cuss “ln homogeneous coordinates our scaling matrix
8y i)
0 sy
.bccomCS
5 0 0
S= Sy 0 (4.37)
0 0 1
If we apply this to the point (xw, yw, w), we obtain
S 00
xw yw wl| 0 s, 0=|saw syyw w (4.38)
0 0 1
Dividing by the third number w gives
(8xX, s,y)
which is the correctly scaled point.
The counterclockwise rotation matrix
cos® sin6
—sin® cos@
becomes, using homogeneous coordinates,
g
cosg sing O]
R=|-sing cosg O (4.39)
0 0 1

Applying it to the point (x, y) with homogeneous coordinate (xw, yw, w) gives

cosg sinf O
bxw yw w]|-sing cosg 0| =
0 0 1
[(xw cos® —yw sinB) (xw sin6 +yw cos@) w] (4.40)

for the Correctly rotated point

(xcosB-ysinB, xsin® + ycos 8)

The homogeneous coordinate transformation matrix for a translation of t,, Y, .is

1 0 O
Ta'0 140 (4.41)
tx ty 1

Te -3
0 show that this is so, we apply the matrix

S

Scanned by CamScanner

R T

displays because it is the 0

' 5 int, but trans
ATION . , pew point, rans-

s TRANSFORM , a point)"eld_s . le. a distance
RDINATE rmatl()n to For examp ' €
00 ing trans© inate sySt€m>: . centimeters by
how applyiné change coordindt€ > asured 10 €€ y

used 10 e same dlS[an[iOn s the same a5 already de-

ppe ¢, when multiplied

. _res of the point, W ‘
13 measured 10 different coordi-

en the origins are not
display as being the ori-
correspond to pixel
places the 0, 0) pixel in the upper-left
This is sometimes done on al-
ed, and on raster
Ily scanned. To convert between these

d a scale of 1 in x but —1 iny to
screen dimension

formation, TEPT~
: cormations Wi

f the
: Jower-left corner O
hink of the R sctually

(L. Another example 1S 2
cdmer and numbers the scan

phanumeric printers because it is the order I
rder that they are actud

coordinates and the ones We have been using, W€ nee
reverse the scan-line order, and also a translation in y by the vertical

to move the origin to the proper COmer.
Rotations may also be used in coordinate mansformations, but are usually for

:nglcshof /2 (90 degrees). For example, a printer using 8.5 by 11 inch paper may
a:; u ;);;exns along the long edge and the x axis along the short edge. This is called
;c; n;“:he e Wed might prefer to orient the y axis along the short edge and the x axis
g edge (perhaps so that the orientation of the paper is a better fit to the

shape of a television’s dis g

4 i play). This is termed /g s

translation to reposition the origin in the lower—leﬁ?&eém.f r(;tanon yrfpand &
ill do this.

X! « .
Nilson WIDTH + WIDTH g
EIGHT + HEIGHTST/?\;; 5 |

. iM

We can see poy,
, that thi
translat ad ' '
Tk \.VIDTHSTAa ;‘C:l:db{{WlDTH for x ang ’ »
N Coordingteg ; EIGHT.g and HEIGHT ¢ '
_ is -START Th T for y, followed by
, ya

- 1he fy]
- ransformatjon matrix

WIDTH

Wipy ' 0

ol 1o e |
* START (1) (4.43)

Scanned by CamScar;ner

TRANSFORMATIONS 119

ROTATION ABOUT AN ARBITRARY POINT

Now Jet’s determine the transformation matrix for a counterclockwise rotation about
point (Xc- ye). (See Elgurc 4-9.) . _

We shall do this by three transformation steps. We shall translate the point (x,
vc) to the origin, rotate gbout the origin, and then translate the center of rotation back
“here it belongs. (See Figure 4-10.)

Matrix multiplication is not commutative. Multiplying A times B will not always
vield the same result as multiplying B times A. We must be careful to order theé ma-
in'c_es so that they correspond to the order of the transformations on the image. We shall

lace the coordinates of the point on the left and the transformation matrix on the right.
With this ordering, if an additional matrix product is introduced on the right (post-mul-
tiplication), then the corresponding transformation will be carried out after the original
iransformation. If an additional matrix product is introduced on the left of the original -
rransformation matrix (between it and the coordinates of the point), then the new trans-

n takes place prior to the original transformation. Multiplying on the left is

formatio
called pre-mudiplicanon. We use post-multiplication in the construction of our general
rotation.
The translation which moves (X¢, Y¢) to the origin is
1 ov #'0
-~k =Yg . 1
the rotation 1s
cosp sing O
R=|-sing cos® O (4.45)
0 0 1

and the translation to move the center point back to its correct position is

1 0 O
Th & e 0 (4.46)
Xe Ye 1
| 6 (x,y)
£, ¥)
FIGURE 4-9

v Rotation about an arbitrary point

e e i

Scanned by CamScanner

|

120 CHAPTER FOUR
' Ve
7
. -4
/
4 /
/ | ;
Jf. £ |
/
// f : E%
/ ~ X
Rotate Translate back
Translate
FIGURE 4-10 . '
rotation about an arbitrary point.

Three steps in the
ply

yw w] TI)R) T,)
sformation matrices together first to form g

mm a point, W€ would multi

((([xw

but we reassociate and multiply all the tran
overall transformation matrix -

To transfo

xw yw wi(T ((RT2))

1 0o 0 cosg sing O 1 0 O
T,RT,=| 0 1 0f]|-sing cos@ 0 o 1 O

-x¢ -¥¢ 1 0 0 1| |Xc Yc 1
1 0 0 cosg sing O

=1 0 1 0|]|-sing cosg O
-X¢ =¥ 1 X Yo 1
cos O .

=| -sing gme 0
X . ;] 0S 6
cCos@ + YosSmm@ + X¢ 'xcs¥“9‘yc6089+yc (1) (4.47)

This is the overall tra)
nsformation f :

c)- is erclockw ;
by a single translati matrix may also be formed by an initial i fooRt Hhe PO
on by the values in its third row itial totation of 0, followed

OTHER TRANSFORMATIONS

Scanned by CamScanner

121

TRANSFORMATIONS

T3

. 8] b eile wa 3 - oS
we will present only the 2 X 2 form for some of these transformations:

‘—1 0

0 1 reflection in the y axis (see Figure 4-11)

l
l reflection in the X axis (see Figure 4-12)
-1 0

0 -1 reflection in the origin (see Figure 4-13)

0 1
10 ‘ reflection in the line y = x (see Figure 4-14)

0 -1 :
-1 01 reflection in the liney = —x (see Figure 4-15)
1 a
0 1 y shear (see Figure 4-16)

1 0
b 1 x shear (see Figure 4-17)

The first three reflections are just scales with negative scale factors. The reflections in
the lines y = x and y = —x can be done by a scale followed by a rotation.

The shear transformations cause the image to slant. The y shear preserves all the
x-coordinate values but shifts the y value. The amount of change in the y value de-
pends upon the x position. This causes horizontal lines to transform into lines which
slope up or down. The x shear maintains the y coordinates, but changes the x values |
which causes vertical lines to tilt right or left. It is possible to form the shear transfor-
mations out of sequences of rotations and scales, although it is much easier to just
form the matrix directly. It is also possible to build rotation and some scaling transfor-
mations out of shear transformations.

Before _ | After
FIGURE 4-11

Reflection in the v axis,

Scanned by CamScanne}

. \\
A \.\
Af ter
Before v
FIGURE 4-12 '
Reflection in the X XIS
[NVERSE TRANSFORMATIONS

We have seen how to use transformations to map each point (X, y) m}° a new point (x',
y'). Sometimes, however, we are faced with the problem of undoing the. e-ffcct of a
wransformation; given the transformed point (x’, y'), we must find the original point
(x, y). An example occurs when the user indicates a particular position on a displayed
image. The display may show an object which has undergone a transformation. If we
want to know the corresponding point on the original object, then we must undo the
transformation.

Undoing a transformation appears to be a transformation itself. Given any point

f::,n y').tr\iave nﬁfedha way of calculating a new point (x, y). Is there perhaps a transforma
matrix which will do this? Often there is, and ; :
) » and it can be determined by marrix inver-

/ff
7
_\
—
S
K /
Bef,
FIGURE 4_,_: ore

Refection i 1.
In 2 e
the origip, After

i it 0 it L e 5

1
1
i
i
|
3
{

E |

1

Scanned by CamScanner

. 123
//
4 v &
.__—-—)- //) //
/ * /
4 7
% + v
/
% ,)
/ yd |
/ /
/ Ve
/ /
/ /
/ /
Before After
FIGURE 4-14

Reflection in the line y = X.

sion. The inverse of a matrix is another matrix such that when the two are multiplied to-
gether, the identity matrix results.
If the inverse of matrix Tis T~', then

TT' =T'T=1 (4.48)

To see that this 1S what we need, consider Equation 4.11 which transforms point P, to
yield point P,. If we multiply both sides of this equation by the inverse of transforma-
tion matrix T, we get

p,T! = P,TT = P,l = P, (4.49)

This shows that the inverse of T transforms P, back into P;.
This inverse of a matrix can be a handy thing to have, so we shall show how to
find it. We shall do so in terms of another matrix calculation called the determinant. The

\\ N
\\ \\
N\ TR h
! N
\\ \\
N\ L X
% | %L
N
: f :
X N\
N \\
\\ b
N\ N ?
. N

Before s
FIGURE 4-18
Retlection in the liney = -

Scanned by- CamScanner

.
W

-
-

Lt A

X

“7-

ol

P
L&

¥

pu FOUK

124 .-n‘m

O o~ ! / 'FIGURE 4-16
- , e : 'y shear. :
After »

hc elements of the matriy

petoré - » s from t
: IC”"md Iuc of lhe clement

ns't‘ nply the va

i X lsl

fofa
determinan natrix, ¢

ra \uu,k’ eler "cm ’ (4.50)

Fo dctm £ ‘
he determinant as d combination of the determinants
‘i A called the minors and are made by remoy-

ces are
The smaller matr . Call M;; the matrix formed by removing

from the £ l';l‘hcn e determmdm ofT is given by

For larger matr_iccs,
of smaller matrices.
ing 4 row and column
row 1 and column j from matrix

det TJ =)Ztij(—_l)‘ *Jdet M ' ‘ 4.51)

This says that we pick some row of the original matrix T and multiply each element in
the row by the determinant of the minor for that position, alternating signs. The sum of
these numbers is the full determinant.

The determinant of a 2 X 2 matrix is

tiy ti2

det
t2_1 {22

z.tlan - taty (4.52)

The determinan ofad x 3 matrix is

detT = -
(T t(tygtyy ~ L23l32) ~t,(

Lityy -t ;
33~ Inaly)) Tty —tyty,) (4.53)

B' 'U[t \\

Scanned by CamScanner

TRANSFORMATIONS 125

det

cow
0o a

0.} #44 0
(1) = a¢ - bd ' (4.54)

Now we can express the inverse of a matrix in terms of determinants.
(=)' " det M,
y o .
det T

3 (4.55)

where U; is an element of the inverse of matrix T. Note that the order of i and j is re-

versed on the minor. |
The inverse of the homogeneous coordinate transformation matrix is

2 d 0 ’ e ot .-d ! 0
invib e = -b a 0 (4.56)
& fol ae-bd | pr _ce cd-af ae-bd|

TRANSFORMATION ROUTINES

Now that we have seen the mathematics behind transformations, let's look at some al-
gorithms to actually perform them. We shall construct routines for translating, rotating,
and scaling. The routines that create the transformations will modify a homogeneous
coordinate transformation matrix. This matrix can then be applied to any point to ob-
tain the corresponding transformed point. While we use the notion of homogenéous
coordinates, we shall not actually store the third coordinate w; instead, we shall ar-
t w will always be 1. We can therefore just use |
he same reason, we shall not store the last
Id always contain 0, 0, 1 and
ave the

range our transformations so tha
whenever we need the coordinate w. For t
column of the transformation matrix. This column wou
since we know this, we can avoid actually storing these numbers. We shall s
3 x 3 homogeneous transformation matrix in the 3 X 2 array named H.

We begin with a routine to set the transformation matrix to the identity matrix.

This clears the transformation so that we can start fresh.

4.1 Algorithm IDENTITY-MATRIX (H) Routine to create the identity transformation
Argument H is a transformation array of 3 X 2 elements.
Local 1. J variables for stepping through the H array
BEGIN
FORI1 = 1TO 3 DO
FORJ = 1TO 2 DO
IFI = JTHEN H[I, J] « |
ELSE H(I, J} < 0;
RETURN;
END:

The next algorithm causes a scaling transformation. It has the effect of multiply-

ing the matrix H on the right by a scaling transformation matrix of

Scanned by CamScanner

N T DTN TN

Aah

LYWL L

]
2
.
i
5

o the multip“Cﬁ!im)
w‘, .

follahcon(ributit1g terms.
any l(i)ng with the nonzerg -8
ea ' ~
y, acA 1
i ump}y the trans- j
ne to POS[5 , - 1
A
i
|
A |

: END: :

RETURN;

gD lation matrix 1
-multiply H by the trans |
For translation TX, TY, we post muluply : |
1 0 O !
0v217 0 |
TX:«TY 1
Again we simplify the multiplication by neglecting zero terms. Since the third' colu?m
of the transformation matrix is always 0, 0, 1, the algorithm for translation is as fol- |
lows, v 4
o Mgorithm MULTIPLY.INTRANSLATION (TX. Ty, 11 b 4
$ ti-
pl)‘lhctmnsfonnalion‘matrix byatranslalio (TX, Ty, H) Routine to post-multi :
Arguments TX ranslation in the x direction | |
_ TY translation ip the y direction i _ 1
BEGIN 10N matrix : |
RETURN; 1
END: |
T2 rotatjop of A ‘
13 1
S countcrqock : !
y post'mlll[iply by |
~sin A A o }
0 C0sA |
0 4
0 1 .;i

Scanned by CamScanner

TRANSFORMATIONS 127

The algorithm tak;s the a'ng'le 4s an argument, calculates the sine and cosine, and then
performs the matrix multiplication for nonzero terms.

4.4 Algorithm MULTIPLY-IN-ROTATION(A, H) Routine to post-multiply the trans-
formation matrix by a rotation]

Arguments A angle of counterclockwise rotation
H a 3 X 2 transformation matrix
Local S. C the sine and cosine values
- I for stepping through the array
TEMP temporary storage of the first column
BEGIN
C «— COS(A),
S « SIN(A):
FORI = 1TO 3 DO
BEGIN
TEMP <« HII. 1] * C-H[I. 2] % S;
H(l, 2] < H[I, 1] xS + H[I. 2] * C;
HfI, 1) ¥ TEMP;
END:;
RETURN;
END;

The above routines serve to create a transformation matrix, but we still need a
routine to apply the resulting transformation. The following routine transforms single
point. The point coordinates are passed to the subroutine as arguments, and the trans-
formed point is returned in the same variables.

4.5 Algorithm DO-TRANSFORMATION(X, Y, H) Routine to transform a point
Arguments X, Y the coordinates of the point to be transformed
H a 3 x 2 transformation matrix

Local TEMP temporary storage for the new X value.
BEGIN '

TEMP « X = H[1. 1] + Y = H[2, 1] + H[3, 1k

Y — X « H[1.2] + Y * H[2, 2] + H[3,2];

X <« TEMP;

RETURN:
END;

To perform a transformation, we. must form the appropriate transformation ma-
trix and then apply it to the points in our display. There are several ways this might be
done. In our approach we shall deny the user access 10 the MULTIPLY-IN-SCALE.
MULTIPLY-IN-TRANSLATION, and MULTIPLY-IN-ROTATION: routines. The user
will therefore not be able to build up complex transformations by multiplying several
scales, translations. or rotations (if he wishes to do this, he will have to write his own
routines). Instead. the user will be allowed only one scale. one rotation, and one trans-
lation, 10 be‘applicd in that order. The transformations will be applied as the display
file is interpreted. The user can change the values of these transformations at any time,
but the image will be formed using the values in effect at the time the display file 1 -

Scanned by CamScanner

s for saving the transfo;.

ibe user I'Olltine
ing three alB N lay file.
¢ following interpret the display

orithms desc

terpreted. T time (0 1

(TX, TY) User routi
amount

for the translat

mation parameters until it 15
TE

thm TRANSLATELE

. An:f:: , TY the translation

Glob TRNX, TRNY storagé

ne to set the translation parameters

jon parameters

TRNX < TX
TRNY < TY;
CALL NEWFRAME:
RETURN;
END;

4.7 Algorithm SCALE(SX, SY) User routine to set the scaling parameters

Arguments SX, SY the scaling factors
Global SCLX, SCLY storage for the scale parameters
BEGIN
SCLX « SX;
SCLY « SY;
CALL NEWFRAME;
RETURN;
END;

4.8 Algorithm ROTATE(A) U i
ser routine to set the ro
Argument A the rotation angle i

Global ANG
il L a place to save the rotation angle

ANGL « A:
CALL NEWFRAM
E.
RETURN: .
END;

tation angle

— o A S ol s e atas Y B s, g e, :
- - L

Scanned by CamScanner

BEGIN
IDENTITY-MATRIX(IMAGE-XFORM);
MULTIPLY-IN-SCALE(SCLX, SCLY, IMAGE-XFORM); -
MULTIPLY-IN-ROTATION(ANGL, IMAGE-XFORM); _
MULTIPLY-IN-TRANSLATION(TRNX, TRNY, IMAGE-XFORM);

RETURN; _ -

END; '

To apply these transformations to a picture, we shall modify three of the al-
gornithms from previous chapters. We shall extend the MAKE-PICTURE-CURRENT
algorithm to include a call on BUILD-TRANSFORMATION. Thus the parameter set-

tings at the time the MAKE-PICTURE-CURRENT routine is executed will be the
values used for the transformation. _

4.10 Algorithm MAKE-PICTURE-CURRENT (Algorithm 2.12 revisited) User rou-
tine to show the current display file
Global FREE the index of the next free display-file cell
ERASE-FLAG indicates if frames should be cleared
BEGIN
IF ERASE-FLAG THEN
BEGIN
ERASE;
ERASE-FLAG « FALSE;
END;
BUILD-TRANSFORMATION;
IF FREE > | THEN INTERPRET(1, FREE —1);
DISPLAY; ‘
FREE « [;
RETURN;
END;

‘Each point retrieved from the display should be multiplied by the transformation
matrix, and the resulting product should be used. This can be accomplished by modify-
ing the INTERPRET and LOAD-POLYGON routines to call GET-TRANSFORMED-

'POINT instead of GET-POINT. (See Figure 4-19.)

4.11 Algorithm INTERPRET(START, COUNT) (Algorithm 3.6 revisited) Scan the
display file performing the instructions
Arguments START the starting index of the display-file scan
COUNT the number of instructions to be interpreted
Local NTH the display-file index
- OP, X, Y the display file instruction
BEGIN
a loop to do all desired instructions
FOR NTH = START TO START + COUNT - 1 DO
BEGIN
GET-TRANSFORMED-POINT(NTH, OP, X, Y);
IF OP < -31 THEN DOCHAR(OP, X, Y)

Scanned by CamScanner

.130 cnapTER FOUK

Figure 4-19
Display Picture generation with image (7,0,
' formation.

ELSE IF OP < | THEN DOSTYLE(OP)
ELSE IFOP = | THEN DOMOVE(X, Y)
ELSE IFOP = 2 THEN DOLINE(X, Y)

ELSE DOPOLYGON(OP., X.Y, NTH);
END;

RETURN:
END:

) (A modification of algorithm 3.9) A

GES fo » .
Global WIDTH ¢ ; €M of the number of Sides stored

WIDTH - ART, H'EIGHT-START,staning index of the screen
Theigh Of the screen) |

Local X1 'BhUin pixels of (e actual screep
* 26 12 edge endpoints jp, devi

ing th .
K for siepp ng BN the display ;)

ing through !
DUMMY f, a dUmg ' ::gs;lzflon sides

C¢ coordinates

BEGIN

S€l Starting pojiny for a g
a
GET-TRANSFORM e

Scanned by CamScanner

TRANSFORMATIONS 151

- get index of first side command
1+ 1
initialize an index for storing side data
_ EDGES « I;
a loop to get information about each side
FOR K = 1 TO SIDES DO
BEGIN
get next vertex
GET-TRANSFORMED-POINT(11, DUMMY, X2, Y2);
X2 « X2 * WIDTH + WIDTH-START + 0.5;
Y2 <~ INT(Y2 » HEIGHT + HEIGHT-START + 0.5):
. see if horizontal line
IFY! = Y2THEN X1 « X2
: ELSE
BEGIN
save data about side in order of largest y
POLY-INSERT(EDGES, X1, Y1, X2, Y2):
increment index for side data storage
EDGES « EDGES + 1;
old point is reset
Yl «<Y2:
X1 « X2;
END;
[+« L+ 1
END;
set EDGES to be a count of the edges stored.
EDGES «— EDGES - 1;
RETURN;
END;

The GET.-TRANSFORMED-POINT routine retrieves an instruction from the dis-
play file and applies the transformation to it.

4.13 Algorithm GET-TRANSFORMED-POINT(NTH, OP, X, Y) Retrieve and trans-
form the Nth instruction from the display file |
Argument NTH the index of the desired instruction
OP. X. Y the instruction to be returned : : ’

Global IMAGE-XFORM a3 X 2 array containing the image transformation
BEGIN

GET-POINT(NTH, OP, X, Y); _ e

IFOP > 0 OR OP < -31 THEN DO-TRANSFORMATION(X, Y. lMAGE-XFORM).

RETURN;
END:

TRANSFORMATIONS AND PATTERNS

In Chapter 3 we described how patterns might be usc?d to'ﬁll poi’ygons. _V‘V.e‘showeﬁ
how to implement patterns which are registered to the imaging surfacc..Thls s wr,m,t l_h
needed for patterns which give gray levels or simple textures such as stripes or weaves.

5yl

~ Scanned by lCamScahr{éf

132 CHAPTER FOUR here | would better if the pattern Coulg
| s . ' ‘
; rernative yse of P a'uerr} ace. THIS occurs W_hcn patterns arc useq

But there 15 21 a th the imaging su sent 3 picture directly as @ pixel pa[t“‘n)
vdwilfs o 1€ oc 1 : =1,
be move .. sometime’ “?[fhis ml")l)’ pe because the Shf?Pes in the picture
. (hat lherc no AlmCS at a", as Often 0c

attern wWe may want l‘

0

display pictures: Jtis?
isplay P ing lines and po_lygorgr \ may be
ters) . For this type of
o be able to change 1,
€

instead of usi acter

curved (for example: € :

curs with pictures cxtmcl;d fff:;:l F; - f also like t

o1 un on ‘ i ; . .

be able to MOYE it ﬂrOWc o ght like (0 rotate the picture or make 1t b;gger_ In othe,
scale and Oncm;t;.(;::; (0 apply 2 gmnsfo ation 0 the pa.ttem. (S.ce Figure 4-20.)

o il how ore ihis can be done VSO0 the image transformatioy

e Y ol resulting program will ‘bchave in the followin,

nd a patter for filling 1t- Now suppose that we

hall also SCale the pa[tem .

ate a polygon 4
POYE ale the polygon: We >
he image transformation to

apply an image trans :
looks the same except for S1Z€ f we use t
e with it, and if we use the image transforma
| be translated, t0o. The

m will rota
lygon, the pattern it 18
way we shall implement this is by extending th
mines the intensity value for each point in the po
 the intensity for a point (X, Y] could be found by loo

filled with wil
e FILLIN algorithm. FILLIN deter-

lygon. In Chapter 3 we showed how
king in a pattern table; but now

rotate the polygon
tion to translate the po

n the fil; ‘
Shouldbc‘ﬁ"f“g pattern is a picturc: i
formed with the polygo™

Scanned by CamScanner

VAL s An] P45 ’.5£

FILLIN must find the intensity value for the transformed point (12’ y'] =[x, yIH, .
where H is the image transformation and |(x, y} is in normalized device coordinates.
Given the point [x', ¥']. we need to find the point (x, y| and use it 1o lodk up the inten:
sity in the pattemn table. In effect, we are asking for the intensity of the onginal pattern
at the point which gets transformed into the point being imaged To find {x, y| from
(x’, y'), we need the inverse transformation. We can build the inverse transformation
from the inverses of the scale, rotation, and translation components,
The inverse of the scaling transformation of Equation 4.37 is

&0 0
=10 & 0 | (4.57)
0 0 1

For example, scaling by one-half undoes the effect of scaling by.lwo.
The inverse of the rotation matrix of Equation 4.39 is

cosg -sing 0 cos(-9) sin(-¢) O
R'=|sing cos@ O|=|-sin(-g) cos(-g) O (4.5%)
0 0 1 0 0 1

This says that we can undo the effect of a counterclockwise rotation by a rotation of the
same amount in the clockwise direction.
Finally, the inverse of the translation matrix of Equation 4.41 is

1 0. ¢
T/l 0 1 0 (4.59)
=t =ty 1

We undo the effect of a translation by translating the same amount in the opposite di-
rection.
Our image transformation is the product of a scale, a rotation, and a translation.
Its inverse can be built from the inverses of its components. However, when we take
something apart, we do it in the reverse sequence of when we put it together, and the
inverse of the image transformation H is the product of its components in reverse
order.

H' = (SRT)' =T'R"S" (4,60)

This is almost what we need for transforming the pattern. The image transformatjon is
applied to normalized device coordinates, but the points in FILLIN have been trans-
formed to the actual device coordinates; so in order to apply H', we should first con-
vert the point back to the normalized coordinates by applying the inverse of this coo_rdl-
nate transformation. Once we have applied the inverse of the image transformation,
We must convert the result back again to the actual device coordinates. This'may seem
like a lot of work, but actually it is not, because the coordinate transfom?auon matrix
(and its inverse) can be multiplied in with the inverse image transformation r.namx 50
that there is only a single net transformation which we must apply to each point.

Scan

r \ dinates 10 actual deviee 1§
! aliICd dt:wCC 1 (S, , the WIDTH and
0] A . .
134 CHAPTER o from no mroduct of %[;CR ond HE[GHT-STARI_ ‘5()
o s the 1905 905 TS is " yp wiDTH™> 't point of the polygon being
ordinzlelcs in EQU tiof pd Sla[ion|((jTrl; plicd to ¢2
co g d ot
lowe h sh
HEIG fol iion Wi
the full ;ransformé ! 5. Tn : ‘
filledis T Sn ON algorith™ so that it builds both
: ; ' form patterns
GFORMATIZE © © eded to transiors .
ten D;l" RA\i\c’rse mmsformatlon n
et nd the ! . - ithm 4.9) Routin
the image tmnsfomf"“ ’ 0 MATION (Revision of algor e
TRANSFORY® . 0 verse foe -
4.4 Algorith Slf) ation matriX and 1ts]\;anthC transformanon parametérs
(o build the image X, {aining the image transformat_lon
rray COF the inverse of the image

tra OX sC
NGL. SCLX. >-
Global - ;1 1 AGE.)‘;FORM g ; :oizid a3 X 2array for
. GE- X
ransformatio=

_XFORM):
TITY.MATRIX(IMAGE-* Sl
;\?SLTIPLY-IN-SCALE(SCLX. SCLY, IMAGE-XFORM)

' GL IMAGE-XFORM);
MULTlPLY-lN—ROTATION(AN . _ ;
MULTIPLY-IN-TRANSLATlON(TRNX, TRNY, IMAGE XFORM)

INVERSE-IMAGE-XFORM);

MATRIX

MULTIPLY-IN-TRANSLATION(=

INVERSE-IMAGE-XFORM);
MULTIPLY-IN-SCALE(1 / WIDTH, ! / HEIGHT, INVERSE-IMAGE-XFORM);

VULTIPLLINTRANSLATION(— TRNX, — TRNY. INVERSE-IMAGE-XFORM);
MULTIPLLIN-ROTATION(— ANGL, INVERSE-IMAGE-XFORM);
MULTIPLY.IN-SCALE(1 / SCLX. 1/ SCLY, INVERSE-IMAGE-XFORM);
MULTIPLY-IN-SCALE(WIDTH, HEIGHT. INVERSE-IMAGE-XFORM);
MULTIPLY-INTRANSLATION(WIDTH-START, HEIGHT-START,

INVERSE-IMAGE-XFORM);
RETURN;
END;

BEGIN

. Before presenting Vthe '
. modified FILLIN i
us - al) . :
€r can set to indicate whether or not he wants [f;?t:rn?’tc:e; s defn}e a flag which the
_ e transformed.

4.15 Algorithm SE
T-TRANSF
wh ORM.
A'rge:,:r polygon fill patterns should un: ATTERN(ON
ent ON-OFF the user's cho‘iCe ATR9: e i

Global XFORM-PA‘[TE

-OFF) User routine to indicate
age transformation :

8 10 indicate
XFORM-PATTERN . \ transformation of patterns
END:; :
NOW we y
- shall rey; '
att rev
Patterng used to ﬂ” pol;sgeothe F”__Ll \ algon[h g
ns i ‘ m to a]] ; : .
OW Image transformations on ¢

|
|
|
I
]

Scanned by CamScar;ner

TRANSFORMATIONS 135

4.16 Algorithm FILLIN(X1, X2, Y) (Revision of algorithm 3.17) Fills in scan lineY
from X1 to X2
Arguments X1, X2 end positions of the scan line to be filled
Y the scan line to be filled
Global FILL-PATTERN pattemn table index of the pattern to use
PATTERN-X, PATTERN-Y, PATTERNS the pattern table
FRAME the two-dimensional frame buffer array
XFORM-PATTERN a flag to indicate transformation of patterns
INVERSE-IMAGE-XFORM a 3 X 2 array for the inverse of the image
transformation ‘
Local X for stepping across the scan line
PX. PY for accessing the pattern
PATTERN-TO-USE the pattern to be used in filling
PAT-X, PAT-Y the x and y dimensions of the pattern

BEGIN
IF X1 = X2 THEN RETUR‘N;~

PAT-X « PATTERN-X[FILL-PATTERN];

PAT-Y « PATTERN-Y[FILL-PATTERN];

if a local array is used as shown in the following statement,

then the implementation should avoid copying of individual elements
PATTERN-TO-USE <« PATTERNS[FILL-PATTERN];

IF XFORM-PATTERN THEN

BEGIN

FOR X = X1TO X2 DO
BEGIN
PX « X,
PY «Y;
DO-TRANSFORMATION(PX, PY, INVERSE-IMAGE-XFORM);
PX <« MOD(INT(PX + 0.5), PAT-X) + I;
PY <« MOD(INT(PY + 0.5), PAT-Y) + I,
FRAME|X, Y] « PATTERN-TO-USE[PX, PY];

END:
D
ELSE
BEGIN

PX « MOD(XI, PAT-X) + 1;
PY « MOD(Y, PAT-Y) + I;
FOR X = X1 TO X2 DO
BEGIN
FRAME[X, Y] « PATTERN-TO-USE(PX, PY];
IF PX = PAT-X THEN PX « 1
ELSE PX « PX + I;
' END;
END;
RETURN:;
END;

i an bc re-
Note that for pattern sizes restricted to powers of 2, the MOD operation €&

Placed by a logical AND instruction, which is usually much faster.

Scanned by CamScanner |

136 cuarTER FOUR i |
d to include a check for transformatiop of tha

nde I . " g

The algorithm has ?C:Z:;J:d be done, then the inverse image lr'ansfonnmmn 3,
formato
pattern. If the rans

. 1o be filled. The result is rounded 10]_ the "eaifl“ Pixel, gl
Rl loach oL ENC determine the appropriate patierm eiement. Althougp, g 8
MOD operations are used 10 rtion of the algorithm and the portion written in ¢y, 4
may look differenf. Ih{s r_llc“ l;’: fact. if the transformation 1S the ldentlF)'. then the ¢
ter 3 are really quite S‘mlazji g rithm have exactly the same elffec_z - The difference is g

aid‘bottonr hatves of 176 ioe can keep track of our position in the pattern, apq
| i; th; unmgsggzgdt;:i‘flODopemions for every point. In the transformed cage -
thereby avoi

cannot do this. and the MOD operators are needed.

; ing pattern . e
_for[ha:ntil: shag;:frn F; tion of every pixel in the filled area can be quite nme-consummg'-:
is that the tran

The second is that transforming a pattemn inFroduces aliasing effect's.. When, trans.
formed, the pixel positions do not correqund dnr'ectly to lhefpattembposmtons. “},e mqsx :
guess the proper pixel intensity from ttge mtensnt.y value of a neard y pahzem elemen;,
This guess introduces errors. Antialiasing tec_hmqu.cs can be used at the expense of ‘_
more time. For example; we can set the pixel intensity to be a weighted average of the
nearby pattern element values.

INITIALIZATION

We need a routine which will initialize the parameters so that the user will not have 1o

set them unless he wishes to. The default parameter values should give the identity
transformation.

4.17 Algorithm INITIALIZE-4 Initialization routine
BEGIN

INITIALIZE-3;
CALL SCALE(1, 1):
CALL ROTATE(0):
CALL TRANSLATE(0, 0):
SEI‘-TRANSFORM-PA"I'I’ERN(FALSE);
- RETURN;
ND;

DISPLAY PROCEDURES

and MOVE routines

which multiply their arguments %
before calling the

system LINE-ABS-2 and MOVE

B
ta

Scanned by CamScénner

TRANSFORMATIONS 137

ABS-2 routines to actually do the drawing. A transformation matrix designed and

created by the user may pe as complex as necessary, involving many component trans-

formations. Routines written according to this prescription will transform point values

pefore they are entered into the display file. The system extension detailed in the above

algorithms, on the other hansi. operates on points as they are read from the display file.
_ Tmnsfonmtions may be carried out at both stages of the processing.
One situation in which multiple transformations are useful occurs when a picture
s made of a few basic components combined according to some hierarchical structure.
For example, we may have a routine which draws a flower petal. By combining petals
with different positions and orientations, flowers may be drawn. By combining flowers
with different sizes and positions, a flower bush may be created. Transformations of
several bushes can form a garden, and so on. (See Figure 4-21.)

Pictures with this structure lend themselves to a subprogram organization. A pro-

gram to draw a garden could do so by several calls on a subprogram which draws a
flower bush. The subprogram which draws the flower bush could do so by several calls
on a flower-drawing subprogram. The flower-drawing subprogram could use several
calls on the petal subprogram. Notice, however, that these subprogram calls are a little
more complicated than those of normal programming languages; they involve the es-
tablishment of a transformation matrix. An ordinary subprogram call (CALL PETAL)
would always produce the image with the same size and orientation. What is needed is
a call which sets up a transformation which is applied to all the points generated in the
subprogram before they are entered into the display file, for example,

CALL PETAL WITH SIZE(SX, SY), ANGLE(A), TRANSLATION(TX, TY).

These calls, which involve establishment of a transformation, are named display
procedure calls, and the subprograms which draw subpictures are known as display pro-
cedures. Because display procedure calls can be nested, there can be multiple transfor-

@

Petal
Flower

B
i * @W@%

Bush

- FIGURE 4-21
Hierarchical picture structure.

Scanned by CamScanner

38, quarmae.soge calls the FLOWER-BU 5y,

; EN program .
for example, that e G;\EO?VER-BUSH calls the FLOWER d“pi"‘}

i T s 1 av
display procedure with lra"§f°"“atl;?na;|y FLOWER calls the PET/:;L dlbp_ldj‘ proce.
procedure with m"Sf?nnauO;'h?,; he overall transformation ap;;llte_m::OaPO'"fsdgerjer.
E dure with transformation Ts. 'du’cg T,T. T We can see lh?l cap Ime 3 Bew displa,
ated in PETAL would be the pro trix is multiplied on the |,

jon ma
l 11 transformation , o .
i cuted, the overa : case where pre-multip|;.. 1
7 g szl” IS fi):; for that display procedure- Here;)& 2 4 Plica. 4
| by the transforma :

we have the identity matrix I. Wha, |
tion is appropriate. In the GARPEN]p.rolcizgu;;&l to give T,. When this, in turn, ¢cajj, |
FLOWER-BUSH is called, [h.ls is my l]lt}_’ lied in to give T2T. Finally, when PETAL j,
FLOWER, the T, transformation 15 mu lpesem' T,T,T,. What happens when PETAL
called, the third tran§fonnatlor:j xts a[l:sfop\iiER?.Wz would expect to have the overy
4 finishes and Comrplh'.s‘ zetu:g;ria:; for FLOWER, namely T, T,. Lik(ltwise, when cop.
"ans.forma“on WhI[SL(;WE%-BUSH from FLOWER, the transformation should be T
;;0; Shf;uggﬁi;?mtums to GARDEN, the overall transfqrmation should oncle agamA be

the identity 1. There must therefore be some way of saving the (?verall transformation
" before multiplying by the additional transformation for a new display procedure cal],

so that it may be restored when control returns from that dlsplay procedure. Whep
FLOWER calls PETAL, it saves the current overall transformation T,T,, multiplies i

by Ts to get the new overall transformation T;T,T), and transfers control to the
PETAL. When PETAL is finished and ready to return, it first restores the overall trans-
formation to the value that was saved, T,T,, and then returns control to FLOWER.
Each display procedure call must save the current overall transformation matrix. Be-
cause there can be nested calls, several transformation matrices may have to be stored
simultaneously. One possible data structure for storing these matrices is a stack. The
last item stored in a stack is the first item to be removed, so it matches the last-en-
tered-first-returned nature of subroutines.

In summary, then, a display procedure call involves the following:

mations. Suppose,

e

1. Saving the overall transformation matrix

::lulu;l)llymg the overall transformation matrix on the left by the transformation in
e call to form a new overal] transformation matrix

3. Tmnsfening control to the display procedure

Ar a di
eturn from a display procedure involves the following:

1. Restoring the overall tra

nsformation matr; ;
_ ‘ rix
2. Retumning control Bt from the value saved

ca}lli‘ng program
The user’s LINE
and MOV - |
do the following: F commands within the body of a display procedure should

1. Multiply point ¢o

Ordihat '
transfo S es by the ¢y A
rmed poin;. Irent overal] transformation matrix to get the

Scanned by CamScanner

—

=

. STV

Vi~
s T

TRANSFORMATIONS 139

3. Enter the transformed values into the display file via the system LINE-ABS-2 or
MOVE-ABS-2 commands.

AN APPLI CATION

Let's consider how our graphics system might be useful in producing animated films.
Animation is done by photographing a sequence of drawings, each shightly different
from the previous. For example, to show a person moving his arm, a series of draw-
ings is photographed, each drawing showing the arm at a different position. When the
images are displayed one after another by a movie projector, we perceive the arm as
moving through the sequence. (See Figure 4-22))

From the artist’s point of view, it is desirable to have only a small amount of mo-
tion occurring at any one time. The picture can then be constructed of a background
which does not change and a foreground which alters from frame to frame. The fore-
ground may be drawn upon a piece of clear plastic and then overlaid upon the back-
ground. If the portion of the image which changes is small, then the foreground image
which must be redrawn for each frame is small and will require less work. What may
be difficult for the human artist is changing the entire scene. For example, if one
wished to give the impression of moving into the scene, one might scale the back-
ground, making each frame slightly larger. While this sort of change is difficult for
the human artist, it 1s easy for the computer. It may therefore be beneficial to have
the computer generate the background scene, while the human artist superimposes the
foreground action.

Let's see how our graphics system could be used to generate the background.
First, we must construct the full background drawing by using the LINE and POLY-
GON commands of the previous chapters. Let us assume that this has been done and
that we have a routine which will enter appropriate instructions into the display file.
By repeatedly executing these commands, the background images for each photograph
may be generated. Suppose that the scene is a city street. To show a character moving
down the street, we may really want to keep the character centered and move the scen-
ery past him. This can be done by shifting our background image with the TRANS-
LATE(TX, TY) command. Before each display, we add a little more to TX. Each
frame will show the background shifted a little more to the right. This will give the im-
pression that our character has moved to the left. (See Figure 4-23.)

Or suppose that we wish to show our character approaching a building. We could
give this effect by having the building grow larger. It could be done by using the
SCALE(SX, SY) routine to make the building grow, and the TRANSLATE(TX, TY)

Kby e L ik

FIGURE 4-22
Animation of arm movement by a series of pictures, each slightly different from the previous.

Scanned by CamScanner

140 CHAPTER FOUR

FIGURE 4-23

Apparent movement by translation of the Back;r”.,” |
VU

ach frame, SX and SY are increased slightly to

(See Figure 4-24.)

ne to keep 1t centered. With e
arger.

routl :
the building appear a little |

FURTHER READING
nsforming patterns are found in [BRAB8O]. Transforming i,
ages is also considered in (CAT80]. Aliasing can be a major problem for transfr);n@
patterns. One ;_approach to the problem is to find all pattern elements which transf’o:q
to part of the displayed pixel and then to average their intensity values. A clever way :
ﬁ_“d the sum of the pattern element intensities is to store the progressive sums of mx
ls’u);}:'al:.?? in the pattern table so that the total intensity for a rectangular area is o'n“ehr
v the difference in th g
he values at the corners [CRO84]. A formal description of trans

Other techniques for tra

£
£

FIGURE 4.24

PParent mqy;
otion by scaling of the background
| v round.

Scanned by CamScanner

