—
i

INTRODUCTION

ge, but now we wish t
hip or th

Organize gy display fj)
€ our display fj)e ;
COmponent of the ove

0 apply them to L!j'f
€ backgroung, but not both).
€ 10 reflect thig subpict
_ into se

nts, each S€gment

ral| display We s i

! ' A all asg

ment. Ope such atr; ute ig visibilipy, 181 "
€ segment will noy

ure structure. We ©

corresponding 10 @ | :
. eg- |
ate a set of aftributes with each seg

'Sible S€gment wij] pa displayed, but an invisi
" . § . A% in o '- =ts s > we
can build 5 PiCture oyt of the sclectcdaslsz%c:lt::c:emngs oy e K
146

Scanned by CamScanner

secmenTs 147

' for e:t'amplc. in one display select structural and electrical information
‘s 8 puilding by making the first and second scgments visible and the third and fourth
egments invisible. In another display we could select structural and plumbing infor-
ion by making only the first and third segments visible. While all display informa-
be present in the machine, we can selectively show portions of it by designat-
ing which segments of the display file are to be interpreted. }
o Another artribute which can be associated with each segment is an image trans-
a. This will allow the independent scaling, rotaling.band saralsier ol cach
egment. For the spaceship, we could put the ship in one segment and the bazkground
mha different segment. We could then shift either of them by means of an image trans-
formation, while leaving the other unchanged. (See Figure 5-1.)

[n this chapter we shall consider segmentation of the display file. We shall lean
how lo create, close, rename, and delete segments. We shall also consider such dis-

play-file attributes as visibility and image transformation.

n We might.

i
nr
[

mncn
yon may

(om*.atio

THE SEGMENT TABLE

We shall begin our discussion by considering some of the information that must be as-
sociated with each segment and how this information might be organized. We must
give each segment its own unique name so that we can specify it. If we are to change
the visibility of a segment, we must have some way (o distinguish that segment from
all the others. When we refer to a display-file segment, we must know which display-
file instructions belong to it. This may be determined by knowing where the display-
file instructions for the segment begin and how many of them there are. For each seg-
ment, we shall need some way of associating its display-file position information and

its attribute information with its name. We need to organize this information so that
r its attributes, or given its name, we

given the segment name, we can look up or alte
In our system we shall do this

can interpret the corresponding display-file instructions.

) |

A |

.
— FIGURE 5-1

'3 nlav
e SR o Transformation of a poriion €1 the dispia)

Scanned by CamScanner

148 CHAPTER FIVE | . g
he name of the segment, §jg

gment name will be useq "
ning display-file starting |, '
while a third will indicage
ment, we would look fg

ent table. We shall us¢ @ qumb(;rd f:;:clsc

to hold segimeTy propcﬂlg Sa.r?ay contai
the index into these arrays. We shall have on o matiof
cations. A second array will hold scgr'l sy, the hird seg
visibility, and so on. To find out the $1Z€ 0%, 5%

i igure 5-2.) E
the third element in the s1ze arra)’"](s(;'crbff:lrned segment of the table, 2, to the secopq
The number 1 will refer to the I

11| have table entries (arrays) for h°ld_".’8. the dis.
named table entry, and so on: We shall h s and for attributes such as visibility ang
play-file starting position, for the scgmﬁn\tvzl ;;v;sh ot t0 show segment number 3, !
the image transformation parameters: 1 ity array t0 off. When we show our pic.
will set the corresponding entry in the VIS'dl [c);minc which segments are visible, For .'
wre. we shall consult the i\e;ﬁ;l}f)l:klﬁl;l?[s“;ta:ﬁng oint and size and pass this informa.
fi.:)cnh ;lls:]t;le‘ stfl:?L;;‘pﬁe)" file interpreter. The interpreter will therefore only interprer
oo ‘hich are visible. i 8
ose 'bre}ferr‘::e:rt :t:::Crhpossible schemes for implementing the segment table, many Wll‘h ;
<ubstantial advantages over the one which we have chosen here. We have selected t.'hls 3
design because it allows simple accessing. It does not require any new data-structuring
concepts, and its updating is straightforward. ;
We would like this extension to our graphics system 10 be compatible with our
previous programs, which did not specify any segments. Perhaps the easiest way todo
this is to say that when no segment name is specified, the instructions will be placed in
a special *‘'unnamed’’ segment. Information, such as display-file starting position and
segment size, must be stored for the unnamed segment just as it is for named seg-
ments. We shall do this by placing a special entry in the segment table for the unnamed

by forming a segm
ple arrays will serve
sent SI1Z€

SEGMENT SEGMENT- SEGMENT-

NAME START SIZE -~ VISIBILITY SCALE-X
0

.'.bWN._.

|
T

— 1

FIGURE 5.2
The segment table, , ' [

Scanned by Caméanner

seoments 149

segment In this implcmc.mmi(m' we have chosen to associate the unnamed segment
with table index 0. That is, the segment table arrays will be dimensioned with lower
bound 0 instead of 1. Thus SEGMENT-SIZE[1] will still be the number of instructions
of the segment with name 1, but SEGMENT-SIZE[0] will be the number of instruc-
tions in the unnamed segment.

SEGMENT CREATION

Let us consider the process of creating or opening a segment. When we create a seg-
ment, we are saying that all subsequent LINE, MOVE, TEXT, or POLYGON com-
mands will be members of this segment. We must give the segment a name so that we
can identify it. We might, for example, say that this is segment number 3. Then all fol-
lowing MOVE and LINE commands would belong to segment 3. We could then close
segment 3 and open another segment, say segment 5. The next MOVE and LINE com-
mands would belong to segment 5.

The first thing we do when we ereate a segment is—check to see whether some
other segment is still open. We cannot have two segments open at the same time be-
cause we would not know to which segment we should assign the drawing instruc-
tions. If there is a segment still open, we have an error. If no segment is currently
open, we should check to make sure that we have a valid segment name. If the seg-
ment name is correct, check to see whether there already exists a segment under this
name. If so, we again have an error. We initialize the items in the segment table under
our segment name to indicate that this is a fresh new segment. The first instruction be-
longing to this segment will be located at the next free storage area in the display file.
The current size of the segment is zero since we have not actually entered any instruc-
tions into it yet. The attributes are initialized to those of the unnamed segment, which
provides the default attribute values. Finally we indicate that there is now a segment
open (the one which we just created).

5.1 Algorithm CREATE-SEGMENT(SEGMENT-NAME) User routine o create
named segment
Argument SEGMENT-NAME the segment name
Global NOW-OPEN the segment currently open
FREE the index of the next free display-file cell
SEGMENT-START, SEGMENT-SIZE, VISIBILITY
ANGLE, SCALE-X, SCALE-Y, TRANSLATE-X, TRANSLATE-Y
arrays that make up the segment table
Constant NUMBER-OF-SEGMENTS size of the segment table
BEGIN
IF NOW-OPEN > 0 THEN RETURN ERROR "SEGMENT STILL OPEN’;
IF SEGMENT-NAME < 1 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS
THEN
RETURN ERROR ‘INVALID SEGMENT NAME";
IF SEGMENT-SIZE[SEGMENT-NAME] > 0 THEN
RETURN ERROR ‘SEGMENT ALREADY EXISTS';
SEGMENT-START(SEGMENT-NAME] « FREE;

Scanned by CamScanner

150 carnnd pa—

158

P A) k- 1 28

SEOMUNTSIZES GMEN] NM" lvmull Yo i
VISINILTTY[SEGMENTNAME] NaLEOL lad
ANGLE[SEGMUENTNAMUL S A-(M.L X[0): .
SCALL NISTGMENTNAMEEEECE), DT S
TRANSEATE XISEGMENT T . SLATEYIOL
‘\‘ti::l:: ft“‘, \':SI-,(BMI-NI N/\MI'»I' IRAN :
NOW.OPEN « SEGMEN1NAME: M
RETURN; e
END, 1

CLOSING A SEGMENT

D k\ l . l ‘.""
\

L chapters. NOW, ME LU T

; : a sepment. Onee ' ‘
octated with the open sepment, , . e necessary in elosing . ;
the segment, we should close it At this point, all that s "L;'.LT "'yl'”.l‘l':(:slhfg::g‘!c e,i
N \ h N - (.',) . IC' ' J
ment is to change the value of the NOW-OPEN variable, which it ¢of

the currently open segment, We must change it to something, 50 e ’*h“." setitto () ';:‘f
make the unnamed segment the one which is open. In our algorithm below we do t ,
by placing a 0 in the NOW-OPEN variable. We don’t want (0 have two unm.tmed Sepe
ments around because we shall only show one of them and the other would just was
storage. So we delete any unnamed segment instructions which may have been saved,
We initialize the unnamed segment to have no instructions, but to be ready to recei\}
them in the next free display-file location. | p

y of display-file instructions, ';
Jands which are entered are as.

?

1
5.2 Algorithm CLOSE-SEGMENT User routine to close the currently ope &Wﬁ ;
Global NOW-OPEN the name of the currently open segment W E5inViney
FREE the index of the next free display-file cell 0 9 a3
SEGMENT-START, SEGMENT-SIZE start and size of the segments

1
IF NOW-OPEN = 0 THEN RE > . e
DELETE-SEGMENT(0); TURN ERROR *NO SEGMENT OPEN'; |
SEGMENT-START(0] « FREE: VA
SEGMENTSIZE[0) - 0; wald S8
NOW-OPEN « 0. 9
RETURN;
END;

LN s}

BEGIN

DELETING A SEGMENT

1 Ve o
Scanned by CamScanner

seomenTs 151

§ an image which is very costly to generate. We -
s re-create with modifications) jgust on[ec s;em\:r?:ﬂif:ﬁe to’be at,).Ie o celete
. .play file. The method of doing this d Apalinisain bogriony
of the display e - 7= 4 epends upon the data structure used fo
(he display file. We have used e A Recovery of a block of storage in an arravq's b }:
simple and suaight'forward, but it is not as efficient as some other storage tec}\r:i u(:s
What We shall do is take all display-file instructions entered after the segment “(/lh' h
we are deleting Was closed. and o them up in the display file so that thev lie on (l;l
of the deleted segment. Thus we fill in the gap left by the deleted block and‘recover ag
equjvalent amount of storage at thf: end of the display file. (See Figure 5-3.)
We begin our segment deletion algorithm by checking to make sure that we have
2 valid segment name. If tbe name is correct, we next check that it is not open. Open
segments are still in use; if an attempt is made to delete an open segment, we shall
reat it as an error. We next check to see whether the size of the segment is 0. A seg-
ment with no instructions has nothing to remove from the display file, so no further
processing is necessary. We can now shift the instructions in the display file. We wish
to place instructions on top of the deleted segment. So our first relocated instruction
will be put on top of the first instruction of our deleted segment. We will get the in-
struction to be moved from the first location beyond the deleted segment. We shall
move through the display file, getting instructions and shifting them down until we
come to an unused display-file location. When we have completed moving the display-
file instructions, we can reset the index of the next free instruction to reflect the recov-
ered storage. Finally, we must adjust not only the display file but also the segment
wable. since the starting positions of segments created after the segment which was de-
leted will now have changed. We can do this by scanning the segment table and noting
any segments whose starting position lies beyond the starting position of the segment
which we deleted. We change the starting positions by subtracting the size of the de-

ment. We can set the size of the segment which we deleted to be 0 to indicate
a NEW-FRAME ac-

fion 0
(and perhaP

leted seg
that this segment no longer exists. If we delete a visible segment,

tion is required. These steps are detailed in the following algorithm:

Segment | Segment |
P Segment 3
S -
o 2 /// /// Segment 4
- Ve
Segment 3 e
///
Segment 4 -
_\‘/
Unused
Unused
FIGURE 5-3 .
b T IS . display file.
Belore After Deleting segment 2 from the dispiay

Scanned by CamScanner

182 CHAPTER FIVE
2.3 Algo
scgmcm
.-\rg.umem
GthJI

Constant
Local

BEGIN

rithm DELETE-SEG

SEGME

NOW~OPEN t

FREE the index © the nex’
DEF-OP. DF-X. F-Y the dlsp;;!'r Slzgﬁ:,y
SEGMENT-START. E

table arrays

NT-NAME the segment P
he currently © n s€§

0 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS

IF SEGMENT—NAME <

N
THEETL’RN ERROR 'INVALID SEGMENT N
|F SEGMENT-NAME = OW-OPEN AND SE
RETURN ERR ENT STILL OPEN';
IF SEGMEI\'T-SIZE[SEGMENT—NAME] — 0 THEN RETURN;
TART[SEGMENT-NAME];

PUT « SEGMENT-S
SIZE « SEGMENT-SIZE[SEGMENT-NAME];

GET « PUT + SIZE:
shift the display-file elements
WHILE GET < FREE DO

BEGIN
DF-OP[PUT) « DF-OP[GET];

DF-X[PUT] « DF-X[GET];
DF-Y[PUT] « DF-Y[GET];
PUT < PUT + I;
GET « GET + I
END; ’

recover the deleted stora

FREE « PUT: ¥

;gd;tle the segment table
=0TO NUMBER-OF-SEGMENTS DO

IF SEGMENT-S TART T
TART(I] > SEGMENT-START[SEGMENT-NAME] T
3] THEN

AME’;
GMENT-NAME # 0 THEN

SEGMENTST
-STARTI[I] «
sscusmst&[sscmE[;T-Nii%?dENoT ol = sl

IF VISIBILITY([SEGM

RETURN,;
END;

tialization. On
e - Une way of doj ..
15 independent of the d:;";ﬁ;hls is

ENT-
T-NAME] THEN NEW-FRAME:

PlCtely new ni

to delete 4] felcture and will also be useful fof ini- ¢

d for the diim]ems individually. This appro®” 4

tuctyre . P file. A somewhat mor effi |
f all

re is to g
S
imply set the size value of ?

Scanned by CamScanner

stoments 183
segments t0 0 and imtialﬁzc the free cell index FREE 10 be the ﬁl;\‘l cell in the displ
gmer o e ' e disple
file. We alSO. sel .ll‘l smvxrqu [?0-\1“_0"-‘ IQ L so that after initialization there will n(: l:Z
any garbage I these Io‘uanon.\ w!'nch might upset the DELETE-SEGMENT routi

o5 " DQ\S) Y routine.
#4 Algorithm DELETE-ALL-SEGMENTS User routine 1o dele
Global NOW-OPEN the segment currently open
FREE the index of the next available display-file cell
SEGMENT-SIZE the segment size array
SEGMENT-START the segment starting index array
Constant NUMBER-OF-SEGMENTS the size of the segment table

te all segments

Local I a vanable for stepping through the segment table
BEGIN
FOR I = 0 TO NUMBER-OF-SEGMENTS DO
BEGIN

SEGMENT-START(]] « 1;
SEGMENT-SIZE[]] « 0;
END;

NOW-OPEN <« 0;

FREE « I:

NEW-FRAME;

RETURN:

END;

RENAMING A SEGMENT

Another routine which is easy to implement and often useful is renaming a segment.
As an example of how it might be used, consider a display device with an independent
display processor. The display processor is continuously reading the display file and
showing its current contents. (We would not need a MAKE-PICTURE-CURRENT
routine for such a device because the picture is always current.) Now suppose we
wish to use this device to show an animated character moving on the display. This
would be done by presenting a sequence of images, each with a slightly different draw-
ing of the character. Assume we have a segment for the character. Then, for each new
image. we could delete the segment, re-create it with the altered character, and show
the result. The problem with this is that during the time after the first image is deleted
but before the second image is completed, only a partially completed character can be
seen. Since we may begin working on the next image as soon as the last one is com-
pleted, we may in fact be continually looking at only partially completed cl?a{'aclers.
To avoid this problem we should not delete a segment until a replacement for it is cfom-
Pleted. This means that both segments must exist in the display file at the same time.
We do this by building the new invisible image under some temporary segment name.
Whe"'i‘ is completed, we can delete the original image, make the replacement 1mage
Visible, and rename the new segment to become the old segment These steps can be
ePeated to achieve apparent motion. The idea of maintaining two images, one 0 show
4nd one 1o build or alter, is called double buffering. The renaming is carried out b)t QuF
RENAME-SEGMENT algorithm. The algorithm checks that the segment names af¢

Scanned by CamScanner

n. It also checks against using the name of 4, ,

not still opett: * segment table entri

hat they &0 If these conditions ar met, the S€g the old €s for (e

ready existing S " he new name position and the size of (e OIC Segment js ¢,
n y 4 .

f

. ENT-NAME-OLD
k ENT(SEGMENT" - ’

:3 Algorilh;l Al;ﬁ? ;l:;l\f’)sgil:lmutine to rename SEGMENT-NAME-OLD to be
NT- 3

SEGMENT-NAME-NEW D old name of segment
ame of segment
-SIZE, VISIBILITY, ANGLE, SCALE-X
NSLATE-Y the segment table arrays '

SCALE-Y, TR he size of the segment table

NUMBER-OF-SEGMENTS t

IF SEGMENT-NAME-OLD < 1 OR SEGMENT.NAM}IE\I-'I:SEX)/; 1 OR
SEGMENT-NAME-OLD > NUMBER-OF-SEGME
SEGMENT-NAME-NEW > NUMBER-OF-SEGMEI\'ITS THEN

RETURN ERROR ‘INVALID SEGMENT NAME";

IF SEGMENT-NAME-OLD = NOW-OPEN OR

SEGMENT-NAME-NEW = NOW-OPEN THEN

RETURN ERROR ‘SEGMENT STILL OPEN";

[F SEGMENT-SIZE[SEGMENT-NAME-NEW] # 0 THEN

RETURN ERROR ‘SEGMENT ALREADY EXISTS';
copy the old segment table entry into the new position
SEGMENT-START[SEGMENT-NAME-NEW]

«— SEGMENT-START[SEGMENT-NAME-OLD];
SEGMENT-SIZE[SEGMENT-NAME-NEW]

«— SEGMENT-SIZE[SEGMENT-NAME-OLD};
VISIBILITY[SEGMENT-NAME-NEW] « VISIBILITY[SEGMENT-NAME-OLD}:
ANGLE[SEGMENT-NAME-NEW] < ANGLE[SEGMENT-NAME-OLD]; ’
SCALE-X[SEGMENT-NAME-NEW] « SCALE-X[SEGMENT-NAME OLDI:
SCALE-Y[SEGMENT-NAME-NEW] « SCALE-Y[SEGMENT- -]
TRAN?E:LE-X[SEGMENT—NAME-NEW] NAME:OLD;

- SLATE-X(SEGMENT-

TRAN?;ATE-Y[SEGMENT-NANMTEI\.JQEA\S]' LD

—TRANSLATE-
delete the old scngZ[I[SEGMENT-NAME-OLD]2

SEGMENT-SIZE[SE
RETURN; [SEGMENT-NAME-OLD] «- 0;

END;

Constant
BEGIN

VISIBILITY

Scanned by CamScanner

secments 188

e user from any concern about global vanables and segment table representation. If
Wis 4 .

the

vsibility is being turned off, then a new-frame action is needed. (See Figure 5-4

<.)

.6 Algorithm SET-VISIBILITY(SEGMENT-NAME, ON-OFF) User routine to set

the visibilnty attnbute

Arguments SEGMENT-NAME the name of the segment

ON-OFF the new visibility setting
Global VISIBILITY the array of visibility flags

Constant
BEGIN

NUMBER-OF-SEGMENTS the size of the segment table

IF SEGMENT-NAME < 1 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS

THEN

RETURN ERROR *INVALID SEGMENT NAME";

VISIBILITY[SEGMENT-NAME] «— ON-OFF;
[F NOT ON-OFF THEN NEW-FRAME;

RETURN;
END:

IMAGE TRANSFORMATION

An image transformation is carried out on the contents of the display file. If we think
of the display file as containing the picture which we have constructed, then the image

Viubility off

| N
1

1/’— TPy) i

\ /|

\ / |
)

o

FIGURE 54
Changing the visibility atnbute

Scanned by CamScanner

156 CHAFTERFIVE) . . ,‘
me variety as 10 how that picture 1s displayed. This transfg,
es SO anet)

" the hardware which reads the display filg and Eenerage
d by ;mpters we shall see how other transformations May b,

iransformation provid
mation may be suppone'. -
the image. In the following

i . -creation process. : ! . . ‘ :
used in the ptcltjurk:ffo inepeach segment its own image transformation attributeg_ Lef
We would lIK =

der how this might be done. As we saw in the last chapter, our imf}ge
us now coqs: er no vecified by five numbers: X and y scale factors., a Totatjop
transformatoZ canybi‘ bF‘)lalion amounts. These are, then, five more attr!butes 10 be
angle, and x and y tr::n;n Chapter 4 we used global variables to ho.ld.the Image trap.
saved fpr each segmen&OW however, we shall use arrays so that individual Parameterg
formaies par;r}le:eef:éh of 'thc display-file segments. We shall have an array for each
may b: store el:l' as part of the segment table. Of course, the user must be able tq set
ttilgei?rmzzmun;nsfonnation parameters. Translation may be set by the following).

gonthm:

5.7 Algorithm SET-IMAGE-TRANSLATION(SEGMENT-NAME, TX, TY) User
routine to set the image translation for a segment
Arguments SEGMENT-NAME the segment being transformed
TX, TY the translation parameters
Global TRANSLATE-X, TRANSLATE-Y segment translation parameter table
Constant NUMBER-OF-SEGMENTS the size of the segment table
BEGIN

IF SEGMENT-NAME < | OR SEGMENT-NAME > NUMBER-OF-SEGMENTS
THEN

RETURN ERROR ‘INVALID SEGMENT NAME’;
TRANSLATE-X[SEGMENT-NAME] «—TX;
TRANSLATE-Y[SEGMEN'I‘-NAME] «~TY;

IF VISIBILITY[SEGM ENT-NAME] THEN NEW-FRAME:
RETURN; '

END;

The above algorithm sav
ment. Notice that a new-frame
ified happens to be visible,

es translation amounts fo

tran; r the SEGMENT-NAME seg-
action 1s called only if the

Segment which is being mod-

o

Scanned by CamScanner

SEGMENTS 187

7 u
j FIGURE 5.5
Changing the image transformation.
BEGIN
IF SEGMENT-NAME < 1 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS
THEN

RETURN ERROR ‘INVALID SEGMENT NAME":
SCALE-X[SEGMENT-NAME] « SX:
SCALE-Y[SEGMENT-NAME] « SY:
ANGLE[SEGMENT-NAME] < A:
TRANSLATE-X[SEGMENT-NAME] « TX:
TRANSLATE-Y[SEGMENT-NAME] « TY:

[F VISIBILITY[SEGMENT-NAME] THEN NEW-FRAME;
RETURN;
END;

REVISING PREVIOUS TRANSFORMATION

ROUTINES

We can modify the algorithms of Chapter 4 that set the image parameters to be compat-
ible with the segmented display file by making them correspond to the unnamed seg-
ment,

5.9 Algorithm TRANSLATE(TX, TY) (Upgrade of algorithm 4.6) Setting the transla-

tion parameters for the unnamed segment
Argument TX, TY the user translation specification _
Global TRANSLATE-X, TRANSLATE-Y arrays for translation part

of the segment table

BEGIN
TRANSLATE-X[0])« TX;
TRANSLATE-Y[0]« TY;
NEW-FRAME;

RETURN:

END:;

Scanned by CamScanner

. 4 7) Image scaling
f algorithm = g e

rade of algorithm 4.8)1

mage rotation

5.11 Algorit

Argumeﬂ(
Global

hm ROTATE(A) (Upg
A the angle of rotation

gle parameter table

ANGLE the segment-an

BEGIN
ANGLEIO)<~ A
NEW-FRAME:
RETURN:
END:
g the complete transformation matrix should now |

The algorithm for buildin
hick formation parameters should be used.

specify which segment’s image trans

5.12 Algorithm BUILD-TRANSFORMATION (SEGMENT-NAME) (Upgrade of

algorithm 4.14) Build the image transformation matrix
SEGMENT-NAME the segment which we are transforming

Argument

Global SCALE-X, SCALE-Y, ANGLE, TRANSLATE-X, TRANSLATE-Y
arrays for attribute part of the segment table
IMAGE-XFORM a 3 x 2 array containing the image transformation
INVERSE-IMAGE-XFORM a 3 x 2 array for the inverse of the image
transformation

BEGIN

-lrFHSEiGMENT—NAME < 0 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS

RETURN ERROR ‘INVALID SEG
MENT N %
IDENT]TY—MATRIX(IMAGE-XFORM)' o

MULTIPLY~1N-SCALE(SC
ALE-X[SEG -
NAME].[MAGE-XFORM); [S

MULTIPLY-IN-ROTATION
MULTIPLY.IN TRANSLATION s LOMENT-NAME], IMAGE-XFORM):

LATION
TRANSLATE-Y[SEGMEN (TRANSLATE-X[SEGMENT-NAME].

NAME],SCALE-Y[SEGMENT-

“IMAGE-XFOR M),

MULTIPLY.INTRAN
SLATION(-
lNVERSE~IMAGE-XFORI\:1;. WIDTH-START, ~ HEIGHT-START,

MULTIPLY-IN-sC
ALE(] /W
MULTIPLY-
~ Tl;%:ls\tT,\RTANSLATl T
E-Y(S
MULTIPLY-IN-ROTAT[IOEI\? MENT"NAME].INVEl:(s[SCUMENT.NAME].
XFORM); (= ANG E-IMAGE-XFORM);

LE[SE
GMENT-NAME| INVERSE.IMAGE-

Scanned by Camécanner

seoments 159

MULTIPLY-IN-SCALE(/SCALE-X[SEGM
NAMELINVERSE-IMAGE-XFORM)-
MULTIPLY-IN-SCALE(WIDTH, HEIGHT
MULTIPLY-IN-TRANSLATION(WIDT
INVERSE-IMAGE-XFORM):
RETURN;
END;

ENT-NAME.1/SCALE-Y(SEGMENT.

3 lNVl;RS!:-IMAGE‘XFORM);
H-START, HEIG} IT-START,

We shall also need an initialization routine for this chapter. At the start of
cessing, all segments should be empty. A call on DELETE-AI;L-SEGMEN’(I)"SPTO-
complishes this. The unnamed segment should always be visible, and this attribute CZ(;
be initialized here. At the start of the program, no named segments should be open, so
the NOW-OPEN variable is initialized to 0. ’

5.13 Algorithm INITIALIZE-5
Global VISIBILITY the segment visibility table
NOW-OPEN the currently open segment
BEGIN
INITIALIZE-4;
DELETE-ALL-SEGMENTS;
VISIBILITY[0] < TRUE;
NOW-OPEN « 0;
RETURN;
END;

SAVING AND SHOWING SEGMENTS

So far we have given a lot of algorithms for creating and storing information about seg-
ments in a segment table. We still have to attach this segment structure to the routines
for saving and for showing display-file instructions. (See Figure 5-6.)

The first routine we must alter is PUT-POINT. We must add to this routine a
statement which increments the size of the segment currently open every time a new

instruction is added to a display file.

5.14 Algorithm PUT-POINT(OP, X, Y) Extension of algorithm 2.1 to include updating
the segment table
Arguments OP, X, Y a display-file instruction
Global NOW-OPEN the segment currently open
SEGMENT-SIZE the segment size array
DF-OP, DF-X, DE-Y the three display-file arrays
FREE the position of the next free display-file cell

BEGIN
SEGMENT-SIZE[NOW-OPEN] < SEGMENT-SI
IF FREE > DFSIZE THEN RETURN ERROR ‘DI
DF-OP[FREE] « OP:
DF-X[FREE] « X:

ZE[NOW-OPEN] + I,
SPLAY FILE FULL';

Scanned by CamScanner

160 cuapTER AIVE SR
Gegment
table
User program Display
file
Interpreter
Visibility
chcck [)uplay
and 2| generator
image
transform

Picture generation with segments.

FREE « FREE + I;
RETURN;
END;

The second routine we must change is MAKE-PICTURE-CURRENT. This
routine contained an instruction to display the entire display file, beginning with in-

5.15 Algorithm MAKE-PICTURE. .
Global SEGMENT-STAR~ RSE CURRENT (Revision of algorithm 4.10)

WBIUTY the segment table
éocal a variable for ste ing (::::lngi t:,a[the display should be erased
onstant € Segment
IF ERASE-FLAG THEN |
'BEGIN
ERASE;

ERASE-FLAG « Fa[op.
END: "ALSE,

Scanned by CamScanner |

Nt S

cd’

i

seGMENTS 161

FOR 1 = 0 TO NUMBER-OF-SEGMENTS DO
IF SEGMENT-SIZE([]] # 0 AND VISIBILITY(I] THEN
BEGIN
BUILD-TRANSFORMATION(I);
lNTERPRET(SEGMENT—STA[iT[l]. SEGMENT-SIZE[]));
END: |
DISPLAY:
DELETE-SEGMENT(0);
RETURN;
END;

OTHER DISPLAY-FILE STRUCTURES

The necessary operations on the display file are insertion, when we construct a draw-
ing; selection, when we interpret and display; and deletion, when we are finished with
a segment. There are many possible data structures which might be used. We have cho-
sen a simple one, the array. While insertion, selection, and deletion are easy for an
array, deletion may not be very efficient. If we wish to remove an instruction at the be-
ginning of the display file, we must move all succeeding instructions. If the display
file is large, this could mean a lot of processing to recover only a small amount of
storage. One alternative data structure which might be used is the linked list. (See
Figure 5-8.)

In a linked list the instructions are not stored in order; rather a new field is added
to the instruction. This field, called the link or pointer, gives the location of the next in-
struction. We step through the instructions by following the chain of links. The instruc-
tion cells which have not yet been used are also linked to form a list of available space.

Segment table

=
///___ _
/|
/|
Display // /
file P /
’ /
/
\ﬁL.___‘
/ \§\\
~ ~<

~
- Display >\

~ ‘\
AN .
\
\
<-\L_:.<§
: O FIGURE 5-7 . '
The segment table indicates the poriions ©
the display fileused toconstruct the picture.

Tt~

TR TR T

T T a e

. Rt 2o ST s S e D sl it

G s e

i
(' ‘
f
8
{.
[
;

AT s

}
¥
;

Scanned by CamScanner

162 cuarmiknve : 3
op \ Y LINK '!
or X Y LINK w 7{ X ,
 —T] - — ;
W2 s] s), b
e fp i rmemiesrad "‘ 1
3 I l .,‘.-»»—-—-———‘—-‘: ,:
4 5 ~N ¥
5 2 5 5,.. 9 ‘
L 2 l s | O g
8 . 5 .,./ .

9| 2 7 5 7
R
19 Start 4
Start=3. !,
|
|
o af e 2 A | S| e—> 2|5 5] i

2 [7] 5] & 2 (0| 5|7
1
Start
FIGURE 5-8

The display file as a linked list (drawn three different ways),

LS it e I

When a new instruction is added to a display fi
available space, the correct instruction operation
cell is linked to the display-file list. Deletion of
remove a cell, we need only change (e point

le, a cell is obtained from the list of 2
code and operands are stored. and the :
cells from a linked list is very easy. To
er which points to that cell so that it 1‘

| Cate arbitrary ce||s.
A third scheme, which is between the arra

scheme. In this method the display file ig orga .

called pag‘es.'The Pages are linked to form a linked ljst of pages. Each segment begins
at the beginning of a page. If a segment ends at some point other than a page boundary: =

B

Y and linked list methods, is a pagi$ -
nized into a number of small ama)’

FIGURE 5.9
Deleting display-file instructions from a linked list,

Scanned by CamScanner

SEGMINTS 163

the remainder of that page is not ygeq. In this scheme, display-file instructions
then

Accessed within a page just as they were accessed in ap array. When the eng of a
can b.c_‘“.achcd~ a link is followed 10 find (he NEXt page. (See Figure 5-10.)
page 18 re ,rouping the instructions into Pages, we

By ﬁl we are still able to delete a se
\ol:j'cg; ;y,vailable pages provides a sourc
usé

this Sl fill it and that accessing is a bit more complex.
letely

In the above discussion, once a display-.filc segme
be altered. There is no way to replace display-fi
longet t cannot even be extended. While we have
the segmen stems might allow such operations (alth
iem, other sy whether modification commands should foljow the current attributes,
for m“la.nce'[le and character spacing, or those that were in effect in the original seg-
such as line S Ym of modification). When editing of the display file is allowed, a linked
ment at (heapoge much more natural than our array scheme. The extension of our array
R nlo);\siderf:d in Programming Problem 5-12.
sapetne B e many other possible storage schemes besides the three we have men-
. th\\:: hzrve tried to isolate access to the display file in the routines GET-?OINT
igne. OINT, although the segment deletion routine also depends on lh‘c display-
2 BUTEE We' have organized our program in this way so that different dl.splay-ﬁle
gle sl;’uCC‘:’er's might be employed with a minimum of alteration to the algorithms.
ata s

nt has been closed, it can no
le instruclions, and once closed,
built this restriction into our sys-
ough some questions may arise,

SOME RASTER TECHNIQUES

i i the display file or image transformation an reinterp Lo
N hi Chanf:)d works well for storage tube and vector refregh dlsplay§, u 1)S'
pncu'nre-. Tfhffzi:it for raster displays, where clearing and recomputing lh(;:- f?:;);fi]o\rlxaoufea
?(gf‘t;; l::nilre frame buffer can be costly. The Pri"‘f'ple l;leh.mdesff;vr:ze;r: developed
raster display is to change as little as possible. .SpeClal ;ec dr'];q;la while leaving the re-
for raster displays which allow altering a portion of the display

FIGURE 5. 10

Pages of display-file instructions.

Scanned by CamScanner

suppose We wished to make op,
. curfent status on all rcnlaining segments. Ins::g‘
and redrawing the c‘nli"'»" picture, We m'lght just redray, |
¢ invisible. only n lhI.S dmw:pg figes baCk.grollnd Valy
0 effect erases all lines which Were previously gr,,
¢ removed without clearing the entire] n
belonging to other segments if the Segmi,?y'
xample. points where a line from i, its
4 line from the visible chnw_nt.) 7His dflmage could be r:
paired by weinterpreting the segments whu‘:l;:'aw fusl-ll\l/l.;lblc. Again this can be done |
without first cleaning the frame buffer. (See Figure 2-% - _
Another frame butfer technique can sometimes b_e used for efficient translatio,
of an image. The image may be moved from one portion of th.e screen 10 a differe,
portion of the screen by simply copying those .pixels mvo‘lved in the image from op
position in the frame buffer to their new position. If the image is confined to a boy
then only those pixels within that box need be copied. Pixels outside can be left uﬂ:
changed. This could be much more efficient than setting all pixels in the frame buffe,
to their background value and recomputing the pixel settings for the translated image 1
(See Figure 5-12.) '
‘Thcm 1\ an operation called a RasterOp or bit block-transfer (BITBLT) which can
be quite useful in working with raster displays. The idea is to perform logic operations
on bn-add@sscd blocks of memory. The BITBLT works on subarrays of the frame buf
!ffrf. l; .‘f)le_rlon;:s s:mple operations on subarrays (such as turning all pixels on or-
off, shifting all values by a row .
ray) and for nne-bil-peyr-pi?e\l (;:a?l]cczo't:lu[Tf]f[::;sanciltcl?oplz:ngtl\]’ah;es 'from another subi
EXCLUSIVE-OR of pixel values in two sub;n-ra] FS the ogical ANI?, OR, or
BITBLT to copy a rectangular area of the displa tg - For'example, we might use 2
we might use the BITBLT to clear a portion of lz, o Ofhergreaion: tictscreen. Ot
of the display. We have already introduced

mandet of the

iible
ment jvsit | -
of clearing the frame bufter

wepment W hich we \\'ish' W mruk. |
ln; e setting ©f cach pinel. fhl.s' o
by the sepment. The segment “, ou |
l‘\us rechmque could Icu\x‘_g.up.\ in |‘nu».f 10
pinels with the invisible segment (fo

while maint
¢

shared
aible sepment CROSSes

A FIGURE s.;

€moving ap ;
mage by redrawing with the background

Scanned by Cam*Scanner

SEGMENTS 165

ﬂ
QO
O

Y
\

=
J—

r——

L=

==

O
O

\ j FIGURE 5-12
Alter only the pixels contained by the box.

this idea in connection with character generation. Pixel values for a character may be
copied into a subarray of the frame buffer from some fixed template. BITBLT
operations may be implemented in hardware so that they are very fast. (See Figure

5-13.)

AN APPLICATION

Let us suppose that a computer graphics display system is to be used to aid in the dock-
ing of a large ship. The relative position of the ship and the dock (measured by the
ship’s sensors) is to be presented graphically by showing an image of the ship and dock
as they might be seen from above. How might such a program be written in our sys-
tem? We can use our LINE and POLYGON commands to generate images for the dock
and for the ship. If the instructions for these images are placed in different display-file

A
3 FIGURE 5-13 .
—— 5 — ; rations on scenes.
AANDB A OR B A XORB Logical ope

Scanned by CamScanner

|
|
|
|
|

FIGURE 5-M4 . r |
Pyt Graphical display of ship's position duning docking

segments, then we can use the image transformation 10 position ezch indepers, ..

(See Figure 5-14.)

CREATE-SEGMENT(1):
draw the ship
CLOSE-SEGMENT,
CREATE-SEGMENT(2);
draw the dock
CLOSE-SEGMENT,

Now we need a loop to repeatedly update the ship’s position on the display. Tris
loop will obtain the position from the ship’s sensors and determine the rotztion z
translation parameters required. These parameters are used in the image transformatio
to place the ship and dock in their correct positions on the display. Of course, if =
ship's position has not altered since the last check, then no updating is necesszr, ¥z
can extend this program to handle docking at several ports-of-call by entering, in s2pz-
rate segments, the shape of the dock at each port. We then make the dock at the currz
port-of-call visible, while all the others are made invisible.

FURTHER READING

A segmented display file and the operations on it are described in [NEW74]. A sy5127
which builds pictures from subpictures composed of instances of segments is descrivz
if_l [JOS84]. An overview of several segmentation schemes is given in [FOL76]. 5%
cial hardware which supports BITBLT or RasterOp functions on & » § pixel squzres
described in [SPR83). Techniques for producing animation on different hardwze &

chitectures are described in [BAET9]. A bibli s
in [THASS). J ibliography on computer animation i5 2

[BAET9) Baecker, " Digita) Video Display Systems
no. 2. pp. 48-56 (1979).
(FOL76) Foley, J. D, "*Picture Namin

L. pp. 49-53 (1976,

and Dynamic Graphics,”* Computer Graphics. vol. I

p L 1) oo
¢ and Modification: An Overview,” Compuer Graphics. vol- 17

Scanned by CamScanner

