CHAPTER

WINDOWING
CLIPPING

INTRODUCTION

An architect may have a graphics program to draw an entire building but be interesteq
in only the ground floor. A businessman may have a map of sales for the entire nation
but be interested in only the northeast and southwest. An integrated circuit designer
may have a program for displaying an entire chip but be interested in only a few regis- -
ters. Often, the computer is used in design applications because it can easily and accu-
rately create, store, and modify very complex drawings. When drawings are too com-
plex, however, they become difficult to read. In such situations it is useful to display e
only those portions of the drawing that are of immediate interest. This gives the effect -
of lqoking at the image through a window, Furthermore, it is desirable to enlarge these
portions to take ful] advantage of the available display surface. The method for select- U

.

ing apd enlarging portions of a drawing is called windowing. The technique for not

to mean several different things, all related to partitionrf

ng of the display. A single consisten ition i s
3 t definition is used wit i her defi-
nitions are found in the literature and m hin this text, but ot -

_ ay be a source of confusion.)
transfcf:n:g:isozha\ilt:;, »\;tl: shall consider the ideas of windowing, clipping, and viewing
g vi'eWpons ‘a i forl readd o our gfaphfcs Package the routines for setting windOW’r%

moving lines which lie outsjqe the region we wish to displaj:

created. d'SPIa)'-ﬁle instruction as the instruction

172 ,
Scanned by CamScanner

WINDOW NG AND oG 178

THE VIEW[NG TRANSFORMATION
[t is ofte
ject mode
Spea_k Of th

o useful to think of two models of the item we are displaying,
| and there is the image of the object which appears ‘I»nn:;:l.”‘]" Illww is the ob
e object, we are ac.tunlly referring to a model of the Uh'm-(u tllxp.x;y When we
uter. The object model |s said to reside in object space. This nm'dvl ;(.""l‘(. .m lm.- Con
ject using the physical units of length. In the object space, lengths of ”‘I.n lﬂ' m the ob
asured in any units from light-years to angstroms, The Ivn,'-u.;, N ”uwni)l("'l‘nmy he
screen, howeven must be measured in screen coordinates (u;(- have nml::;":ljl ‘~”1| ”":
screen coordinates so that they range between 0 and 1), (See Figure 6-1,) alized the
We must have some Wiy of COIWL‘rIing from the object hl)u'cv uml‘l. ol measure
those of the image space (screen space). This can be done by the scaling lmw.lu'u;mim:
of Chaptet 4. By scaling, we can uniformly reduce the size of the object until |t di
mensions lie between 0 and 1. Very small objects can be enlarged until their overall di
mension is almost | unit. The physical dimensions of the object are scaled until they
are suitable for display. (See Figure 6-2.)
It may be, however, that the object is too complex to show in its entirety or that
we are particularly interested in just a portion of it. We would like to imagine a box
about a portion of the object. We would only display what is enclosed in the box. Such

a box is called a window. (See Figure 6-3.)
It might also happen that we do not wish to use the entire screen for display. We

would like to imagine a box on the screen and have the image confined to that box.
Such a box in the screen space is called a viewport. (See Figure 6-4.)

When the window is changed, we see a different part of the object shown at the
same position on the display. (See Figure 6-5.) If we change the viewport, W sce the
same part of the object drawn at a different place on the display. (See Figure 6-6.)

TN

meé

———— 2
=

e——12M—~
Object space

FIGURE 6-1) . . b as

(i3 2} In the object space. position is measored in physical Units 401

N . ot ‘'« given In non‘nalllcd screen
meters. In the image Space. position is give

Image space coordinates.

Scanned by CamScanner

AT

/48 0 0
x |0 148 0
o 0 I
/

FIGURE 6-2 ’ :
A scaling transformation will convert object coOrdinalc

J units to normalized screen coordinates.

In specifying both window and viewport, we have enough information to deter.
mine the translation and scaling transformations necessary‘ to map from the object
space to the image space. This can be done with the following three steps. First, the
object together with its window is translated until the lower-left corner of the window
is at the origin. Second, the object and window are scaled until the window has the di-
mensions of the viewport. In effect, this converts object and window into image and

-|
|
!
|
I
|
|
I

Window

+—3}-—-
B o & it

FIGURE 6-3
A window 1o view only part of an object.

Image space

Scanned by CamScanner

WINDOW Ny AND CLIPRING l-u;
| ING 7 &

Viewport

|
|
!

. FIGURE 6-4
k_“_____ A viewpon to define the part of the screen 1o be used
viewport. The final transformation step is another translation to move the view
its correct posttion on the screen. (See Figure 6-7.) ehparto
We are really trying to do two things. We are changing the window size b
come the size of the viewport (scaling) and we are posixim;ing it at the degim‘d lo t? e
on the screen (translating). The positioning is just moving the lower-left \comer EI‘I:SX]
window to the viewport's lower-left corner location. but we do this in two steps \\]'e
first move the comer to the onigin and second move it to the viewport come{logaiimf
We take two steps because while it is at the origin, we can perform the necessarv \‘C"ll;
ing without disturbing the comer’s position. -
The overall transformation which performs these three steps we shall call the
viewing fransformarnion. It creates a particular view of the object. (See Figure 6-8.)
Let us consider an example of a viewing transformation. If our \;indoxx' has left
and right boundaries of 3 and 5 and lower and upper boundaries of 0 and 4, then the

first translation matrix would be

L O
O~ O
- O O

Suppose the viewport is the upper-right quadrant of the screen with boundaries at
0.5and 1.0 for both x and y directions. The length of the'window is 3 — 3 = 2 in the

I" “““ -
|
H ,
— :
r— |)

™
)

\L J FIGURE 6-5
L Different windows, same Viewports.

Scanned by CamScanner

e
______ |

r '} I FIGURE 6-6
[T y

|

|

Same windows, differen i

e ————d ports.
Original object Translate
g b il
| |
I |
| |
| |
! |
L S
‘‘‘‘‘‘‘‘‘ 3|
|
|
|
|
|
l :
s |
cale Translate |
i
=" !
| | |
“““ 1 | l
' | | |
M | o ,
|

FIGURE 6.7
Steps in the viewing transformatjon

T S et e e am

ams 5

Scanned by CamScanner

[

i

T

FIGURE &8

Yl M
The viewing u

 diection. The length of the viewportis 1.0~ (5
0.25 In the v direction, we h
yrmation matnx will be

s Y .
0.82

ransic

WINDOWING AND CLIPPING

177

\'ewing transtonmation

f ot air——
Saale]«oJ

' |
r'-lf\\l.lh‘ -

adate

X
e ——-1

ansfonmation

| 0.5, s0 the x scale factor is
ave the factor 0.5/4 0.125, so the scaling

1 0 0
0O 1 0
0.5 0.5 1
The viewing transformation is then
toolfoas o o]t o of |o2s 0 o
010 0 0.125 O 0 1 Ol=(0 0.125 0| (6.1)
301110 0 1| {05 05 1 -025 0.5 1;
In general, the viewing transformation is
L0 of | (vXH-VXL) ol | 1 0 o
(WXH-WXL) | !‘
0 (VYH - VYL 0 1 0
- 1 0 0 (WYH - WYL) !
WXL -wyL 0 0 1| | VXL VYL 1
(VXH- VXL) 0 0
(WXH- WXL)
a (VYH- VYL) 0 (6.2)
0 (WYH- WYL)
; VYH-VYL) |
VXL- wxp (YXH-VXL) yyp - wyL d !
s (WXH -WXL) ¥ (WYH- WYL) |

Scanned by CamScanner

% .
v et

SR

pule thit V stands for VIEW iy g
r l}

(HAPTER AR
" jo the , |
and Y for a horizontal /s
. um,,‘"/ ‘-

m‘\‘ﬂlill!l}{

y , vertical houndary
e low boundary:
[the window dot . |
en the vic wihs transformation vil| Cae, B

1

the shape selected by the Witkduy |

. heef name

Ihe \.“‘m‘\l‘c\\-h}::t;::-‘pmilhm ol ¢ '

t.“'l.“"“h“ l\ houndary and 1. for 1 '

P ”'w hk: (it the height and \?‘""'“ 0
i\\st‘g-"t“l-*m| widih of the \‘w\\"pml. i

a3 the '::‘::m,;, of the unage 10 order 10 8¢

some L

s the viewport,
presented by the VieW|

1ot have the same Propon 5
"j"A
I' q

the shape

VIEWING 'I‘R.-\NSI"()RMAI ION
MPLEMENTATION ot P o B i |
IMPLE! g transtormation is specifying the size of the windey, wil
S\ LR : ' ' ! ' A
¢ 1.. rectangular shape parallel with the x and y aye, "

. | only specity the smallest and largest possible x values 4ng e |

| ‘ | N - T y | . 4 Yir Ut oo » .

domg this. l\\lg‘rl“‘:(possible y values. Our routine for specifying the size of the win
smallest and largest pos:) |

“will store these boundary values in gl()bul v:‘triublc§ e t.hal iy Wit be uvf‘”ablc
d.m\‘ 2 .‘\\:nw time to perform the transformaton. lecvfln.sc. we r{nust specify the -
:\:1:I:)Li:lrl:: m‘tihc viewport. The length of the viewport or 'wm;Jow n;] c‘:llhcr.thc X OF the
v dimension is determined by subtracting the lower boundary from the upper houndaq, X
' the lower boundary equal to the upper boundary for a wip. -

Note that we cannot have ' y |
Jdow because this would cause us to divide by zero when we try to determine the sca).
ing transformation. Algorithms for setting the viewport and window dimensions are

The first step of our vl
will confine vur window (o

given below.

6.1 Algorithm SET-VIEWPORT(XL, XH, YL, YH) User routine for specifying the
viewport
Arguments XL, XH the left and right viewport boundaries
YL, YH the bottom and top viewport boundaries
Global VXL-HOLD, VXH-HOLD, VYL-HOLD, VYH-HOLD
storage for the viewport boundaries
BEGIN
IFXL = XH OR YL = YH THEN RETURN ERROR ‘BAD VIEWPORT";
VXL-HOLD « XL:
VXH-HOLD « XH;
VYL-HOLD « YL;
VYH-HOLD « YH:
RETURN;
END;

YL, YH the bottom i
Global and top window boy dari
;Z))r(:;ﬂfOLD. W?(H-HOLD. WYL—HOLrIl) anWC;H-HOLD
BEGIN 8¢ lor the window boundaries '

IFXL = XHORYL > y ‘
WXL-HOLD « X[. H THEN RETURN ERROR ‘BAD WINDOW"

Scanned by CamScanner

WINDOWING anp CLrPING 179

WXH-HOLD « XH;
WYL-HOLD « YL;
WYH-HOLD « YH;
RETURN;

END:

[n our system we shall not change viewing parameters
é rs in

ment. Each segment 1s [re:'ued a§ .a snapshot of the object. The viewj
Jescribes how the camera is positioned. In this model i "8 transformation

: 'hile taki i 0 prohibi
ment of the camera W hile taking the picture. We shaj follow this ruje bP hlbl.[move-
s of viewing parameters, one set for the user 1o chang Y keeping two

X g " o : ¢ and a secon
he used in the windowing and clipping routines. Changing the Windo\:j, ?el to actually
N our system

hecomes a two-step process. First, the user changes his set of windo dvi
boundaries. Seconld, fhe userts values are copied into the variables actu::/llan cd by e
windowing and clipping routines. By performing this copying as part of)t/hused o ohe
creation process, we ensure that changes in the viewing parameters bein ue iiegmem-
occur in the middle of a segment. (See Figure 6-9.) ¢ ted canno

We should note that this restriction on changing viewing parameters is just a rul
for the particular viewing model we have chosen. There is no fundamental reJason whe
a system could not be written which would allow changing the view at any point; iz
fact, while the CORE graphic system matches our approach, the GKS system d'oes
allow change of the viewing transformation within segments.

We shall write an algorithm for copying the user’s specifications into the Sys-
tem's viewing parameters. This routine also calculates the window-to-viewport scale
factors.

6.3 Algorithm NEW-VIEW-2 Set the clipping and viewing parameters from the current
window and viewport specifications
Global WXL-HOLD, WYL-HOLD, WXH-HOLD, WYH-HOLD

the user's window parameters

VXL-HOLD, VYL-HOLD, VXH-HOLD, VYH-HOLD

the user’s viewport parameters

WXL, WYL, WXH, WYH, VXL, VYL, VXH, VYH

the current clipping parameters

WSX, WSY the window-to-viewport scale factors

Parameters Parame'ters
specified u_sed_m
by user viewing
—
WXL
ET-vipy VXL-HOLD WXL-HOLD VXL .
SETow i QINT VXH-HOLD WXH-HOLD VXKH = WXH L5 VIEWING-
"OON v VYL WYL TRANSFORMATIO!
. YL-HOLD WYL-HOLD YH WYH
VYH-HOLD WYH-HOLD v

NEW-VIEW-2
FIGURE 6-9
ANEw ' h in viewing.
FWVIEW action is required to make the user’s specification that which is used in viewing

Scanned by CamScanner

180 cuarrer six

BEGIN
WXL «— WXL-HOLD:

WYL «— WYL-HOLD:

WXH <« WXH-HOLD:

WYH <« WYH-HOLD:

VXL < VXL-HOLD:

VYL <« VYL-HOLD:

VXH < VXH-HOLD:

VYH < VYH-HOLD:

WSX « (VXH — VXL)/(WXH — WXL):
WSY « (VYH — VYL)/(WYH — WYL);
RETURN;

END:

We wish any given window setting to apply to an entire display-file Segment, W
can enforce this restriction by only allowing the above copying of parameters to gpy-
when a segment is created. We shall therefore modify our segment-creation roytjpa g,
reset the viewing transformation to match the latest user request.

 to

6.4 Algorithm CREATE-SEGMENT(SEGMENT-NAME) (Modification of
Algorithm 5.1) User routine to create a named segment

Argument SEGMENT-NAME the segment name

Global NOW-OPEN the segment currently open

FREE the index of the next free display-file cell .
SEGMENT-START, SEGMENT-SIZE, VISIBILITY ANGLE, SCALE-X,

SCALE-Y, TRANSLATE-X, TRANSLATE-Y the segment-table arrays
Constant NUMBER-OF-SEGMENTS size of the segment table '

BEGIN
IF NOW-OPEN > 0 THEN RETURN ERROR ‘SEGMENT STILL OPEN’:

IF SEGMENT-NAME < 1 OR SEGMENT-NAME > NUMBER-OF-SEGME
THEN
RETURN ERROR "INVALID SEGMENT NAME";
IF SEGMENT-SIZE[SEGMENT-NAME] > 0 THEN
RETURN ERROR ‘SEGMENT ALREADY EXISTS':
NEW-VIEW-2;
SEGMENT-START(SEGMENT-NAME]) « FREE;
SEGMENT-SIZE[SEGMENT-NAME] «0;
VISIBlLlTY[SEGMENT—NAME] < VISIBILITY[0];
ANGLE[SEGMENT—NAME] «— ANGLE[0];
SCALE-X[SEGMENT-NAME] « SCALE-X[0];
SCALE-Y[SEGMENT—NAME] < SCALE-Y[0];
TRANSLATE-X[SEGMENT—NAME] «—TRANSLATE-X][0];
TRANSLATE-Y[SEGMEN’I‘-NAME] < TRANSLATE-Y[0];
NOW-OPEN « SEGMENT-NAME;
RETURN;
END;

We wish to perform the following transformations. First, we wish to transl3
(hg lower x and y boundaries of the window. This moves the lower-left comer o'
window to the origin. Second, we wish 1o scale by the size of the viewport divide

Scanned by CamScanner

WINDOWING AND cLIPPING 181

the window. This changes the dimensions of the window to those of the

e size O ish to translate b
_ e wish to translate by the lower x and y boundary values of the

wport- Finally, ¥
vie 4. This moves the lower-left corner from the origin to the correct viewport posi-
‘,?ewp‘;e can form each of these transformation matrices as we did in Chapter 4 We
,on-mumply the matrices togelher to form a single transformation (Equation 6.2). and
(::n apply itto a general point. This yields the following viewing transformation al-
gori(hm:

6.5 Algorith
int

m VIEWING-TRANSFORM(OP, X, Y) Viewing transformation of a

Arguments OP. X, Y the instruction to be transformed
wXL. WYL, WSX, WSY, VXL, VYL window and viewport parameters

Global
Local X1, Y1 the transformed point

BEGIN |
X1 — (X — WXL) x WSX + VXL;

Y1« (Y — WYL) * WSY + VYL
pUT-POINT(OP. X1, Y1);
RETURN;

END;

Note that the above algo
nters the resulting instruction into the display fi

rithm not only performs the viewing transformation but
also € le. The display file will hold the
image space model.

CLIPPING

Now that we have seen how our picture may be correctly scaled and positioned, we
shall consider how to cut off the lines which are outside the window so that only the
lines within the window are displayed. This process is called clipping. In clipping we
examine each line of the display to determine whether or not it is completely inside the
window, lies completely outside the window, or Crosses a window boundary. If it is in-
side, the line is displayed; if it is outside, nothing is drawn. If it crosses the boundary,
we must determine the point of intersection and draw only the portion which lies in-

side. (See Figure 6-10.)

~.
N\ \\ ™
A yd

\
After

Scanned by CamScanner

104 CHAFTEN 51

Differem graphic elements may require different g‘lippingz lccl?niqucs, ’
ter, for example, may be cither entirely included or (-n!-,ntlcd depchmg on Whl‘lhe
not its center lies within the window. This technique will not work for lines, ang
methods used for lines will not work for polygons.

THE COHEN-SUTHERLAND OUTCODE
ALGORITHM

A popular method for clipping lines is the C.'ofwn-.S'u!lu'rlaml.()utc‘n(le (llg().rilfzfrt. o 38
gorithm quickly removes lines which lie entirely to one 3'(!0 of the clipping region
(both endpoints above, or below, or right, or left). "I he ulg‘onthm makes clever ygq of
bit operations (outcodes) to perform this Fct.l cfﬁcncnfl.y. ch'pcn} endpoints are egeh
given 4-bit binary codes. The high-order bit is set to 1if the point is above the Windog.
the next bit is set to 1 if the point is below the window; th<.: third and fourth bits
cate night and left of the window, respectively. The lines which fqnn ic window py, 0%
dary divide the plane into nine regions with the outcodes shown'm Flg}xre 6-11.

If the line is entirely within the window, then both endpqmts will have OUlcods
0000. Segments with this property are accepted (segment ST In Figure .6-12), If "
line segment lies entirely on one side of the window (say cnt.nrely above it), then b
endpoints will have a 1 in the outcode bit position for that side (the first bj will be |
for both endpoints). We can check to see if the line is entirely on one side of the wip.
dow by taking the logical AND of the outcodes for the two endpoints. If the result of
the AND operation is nonzero, then the line segment may be rejected. Thus one test de-
cides if the line segment is entirely above, or entirely below, or entirely to the right,
entirely to the left of the window, For example, segments AB and CD in Figure
would be quickly removed.

The difficult cases occur whe

n a line crosses one or more of the lines which cone
tain the clipping boundary (such as

segments EF and IJ). For these cases, the point

1001 1000 1010

6oL 0000 0010

0101 0100 0110
FIGURE 6-11

Outcodes for the plane.

Scanned by CamScanner

WINDOWING

AND CLippiNG 183

- W T "N

- -
- oW =
- -

\

FIGURE 6-12
Testing and dviding line segments.

intersection between the line segment and clipping boundary lines may be used to
break up the line segment. The resulting pieces may be tested for acceptance or rejec-
tion. Segment EF may be broken into EG and GF, where EG lies above and GF lies to
the right, so both would be rejected. Segment 1J might be divided into IK and KJ. IK
can be rejected because it lies to the left, but KJ must be further divided. Forming KL
and LJ, we see that KL may be rejected as lying above but LJ must still be divided into
LM and MJ. LM is contained and accepted, while MJ is to the right and rejected. At
worst, the intersections with all four boundary lines will be calculated in order to clip
the line.

The following is a brief outline of the algorithm (the details are left as an exer-
cise): First, we compute the outcodes for the two endpoints (p, and p,) of the segment.
Next, we enter a loop. Within the loop we check to see if both outcodes are zero; if so,
“e enter the segment into the display file, exit the loop, and return. If the outcodes are
not both zero, then we perform the logical AND function and check for a nonzero re-
Sult. If this test is nonzero, then we reject the line, exit the loop, and return. If neither
Of these tests is satisfied, we must subdivide the line segment and repeat the loop. l;
om0 By s 2, exchange the points pyand p nd ko ek EoCE U
i th:zle‘m bn. in the outcode of p,. If it is .the hlgh-grQer bit, therl; 'tmosition A
divig e With the top boundary of the window. If it is the next r: tpthe rigt’n d left

uns 3!0"8 the bottom boundary. The other two .bllS mc.hcate‘ tha L calews
anes should be used. Replace the point p, with the intersection po

e its outcoge. Repeat the loop.

Scahned by Car'né‘c’é

a

ﬁ

nner

184 cuarrer iy

THE SUTHERI.AND-HODGMAN ALGORITHM 2
The Cohen-Sutherland algorithm works well for lines, but we would like @ e
Which may be used with polygons as well. Our clipping routines will he baseq .
method discovered by Sutherland and Hodgman The method unbundle, the elinn
test to clip against each of the four boundaries ndividually. The 1dea bep; he
gonthm is that we can casily chip a line segment against any one of the wip Do
aries. We can then perform the complete chipping by clipping against each of 'jf";,f
boundanies in tum. Rt

To clip at a boundary, we step through the drawing instructions As we o

cach new endpoint, we decide whether it belongs to a line which crosses the by o
If it does. the point of intersection is determined and is passed on 10 the next pau
Then each point is examined to see whether it lies within the boundary. [f S0, it i al
passed to the next routine. In this procedure, all line-segment endpoints lying
the boundary and all points where lines intersect the boundary are passed on wh
points lving outside the boundary are filtered out. (See Figure 6-13.) o
We can think of the process as clipping the entire figure against each .
boundary before moving on to the next boundary. (See Figure 6-14.) Howe 1, 50
our clipping process steps sequentially through the figure-drawing instructic s, :
possible to begin clipping on a second boundary before the clipping of the entin figy
against the first boundary is completed. In fact, each point may be run through alj
clipping routines and entered into the display file before the next point is consig _,_;;
Algorithms for clipping a figure against each of the four window boundaries a

given below. They all follow the same outline. They first check o see if the new ma
is the first point of a polygon, and if so, they save it. This is used in closing polygg
and is discussed below, They examine the new point and last point to see w her th
line segment with these endpoints crosses the boundary. The algorithms are called fo
each new point. We can picture this as pen movements. We start with the pen at some
location (the last point, which is stored for each clipping boundary in the XS
and YS) and ask to move it 1o some new position (the new point, X and Y). e clip
ping routine examines this path to see if it encounters the clipping boundary. If it ¢

u
- R

}
&

—_— Jl'i
Filter out
Pass these these points
points

Clipping FIGURE 6-13
boundary Clipping agalnst an edge.

hor' A

Scanned by CamScanner

!
g oy
- L

WINDOWING AND CLIPPING 185

Clip left

A\
N

N/
N

Clip right

/\
R\
N/

Clip bottom

R\
N/

Clip top

FIGURE 6-14
Clipping against all four window boundaries.

mmand, corresponding to the clipped

the pen is moved only to the boundary; a new €0 nd _
e the window to inside the window or

point, is entered. If the side is drawn from outsid 4 other-
the command is for character drawing, then we introduce 2 MOVE command:

Vise, the command is the same as the original. This means that if our figure passes oul-
Side of the window boundary, the pen will move along the boundary to the point whe;e
the figure-reenters the window region. The algorithms update the last point to blef t~ €
fu.nc_m Point and check the current point to see whether it is inside the window. 1hai(:t‘
iSlS alnstruclion is also entered. When we say a commanfj is "ent?red. v}:e [r]r;elemrou“ne
is {)hes:d On to the next routine. For the first three clipping ﬂlgor;_‘h"i‘s- Ialegorithm il
dlly ¢ gorithm for clipping along the next boundary. The last clipp E
lers commands into the display file. (See Figure 6-15.)

Scanned by CamScanner

186 cHapTER sIX

Clipping
—={ Clipleft —>{ Clip right
Clip bottom »= Clip top
—_—— Viewing transform — FIG 615
The clipping process.

6.6 Algorithm CLIP-LEFT(OP, X, Y) Routine for clipping against the left bounda

Arguments OP, X, Y a display-file instruction
Global WXL window left boundary
XS. YS arrays containing the last point drawn
NEEDFIRST array of indicators for saving the first command
FIRSTOP. FIRSTX, FIRSTY arrays for saving the first command
CLOSING indicates the stage in polygon
BEGIN
IF PFLAG AND NEEDFIRST[1] THEN
BEGIN
FIRSTOP[1] « OP:
FIRSTX[1] « X:
FIRSTY[1] «Y;
NEEDFIRST(1] « FALSE:
END
Case of drawing from outside in
ELSEIF X = WXL AND XS[1] < WXL THEN
CLIPRIGHT(L WXL, (Y ~ YS(1)) « (WXL — X)/ (X - XS[1]) +¥)
Case of drawing from inside out
ELSEIFX < WXL AND Xs[1) > wxL THEN
IFOP > 0 THEN
CLIP—RIGHT(OP. WXL, (Y - YS[1]) « (WXL — X)/
(X = XS[1)) +)
ELSE
CLIP—RIGHT(I. WXL, (Y - YS[1)) x (WXL - X)/

el X XS .
Remember point 1o serve (1) + vy,

X§(1] < X;
YS[1] < Y:

rve a i
s onelof the endpoints of pext line segment

Scanned by CamScanner

WINDOWING AND C1ippinG 187

Case of point inside
EX'= wXL AND CLOSING # I THEN CLIP-RIGHT(OP. X, Y);

RETURNL
END:
The calculation which occurs inside the calls to CLIP-RIGHT in the abov
C ¢

oe s the determination of the y coordinate of the point where the line intersect
SCCLS

couti o e e
boundary. The x coordinate of this pointis the window boundary position

the window

Algorithm CLIP-RIGHT(OP, X, Y) Routine for clipping against the right bound-

6.7

ary

Arguments OP. X. Y a display-file instruction

Global WXH window right boundary
XS. YS arrays containing the last point drawn
NEEDFIRST array of indicators for saving the first command
FIRSTOP. FIRSTX. FIRSTY arrays for saving the first command
CLOSING indicates the stage in polygon

BEGIN

IF PFLAG AND NEEDFIRST[2] THEN
BEGIN

FIRSTOP[2] « OP:
FIRSTX[2] <« X:
FIRSTY[2] < Y.
NEEDFIRST(2] « FALSE:
END
ELSE IF X = WXH AND XS[2] > WXH THEN
CLIP-BOTTOM(1, WXH. (Y - YS[2])* (WXH — X)/ (X — XS[2)) +Y)
ELSE IF X = WXH AND X§[2] < WXH THEN -
IF OP > 0 THEN
CLIP-BOTTOM(OP. WXH, (Y — YS[2]) * (WXH — X)/
(X — XS[(2) +Y)
ELSE
CLIP-BOTTOM(1, WXH, (Y — YS[2]) * (WXH — X)/
(X — XS[2]) + Y)
XS[2] « X;
YS[2] <Y,
IF X < WXH AND CLOSING # 2 THEN CLIP-BOTTOM(OP, X, Y);
RETURN;
END;
6.8 Algorithm CLIP-BOTTOM(OP, X, Y) Routine for clipping against the lower |
boundary
Arguments OP, X, Y a display-file instruction
Global WYL window lower boundary
XS. YS arrays containing the last point drawn
NEEDFIRST array of indicators for saving the first command |
FIRSTOP, FIRSTX. FIRSTY arrays for saving the first command |
KEGTN CLOSING indicates the stage in polygon i
IF PFLAG AND NEEDFIRST(3] THEN l
| |

Scanned by CamScanner

L AR SRR

L

188 CHAPTER SIX

BEGIN
FIRSTOP[3) < OP:

FIRSTX([3] « X:
FIRSTY[3] < Y: _
NEEDFIRST(3] « FALSE:

END
THEN
ELSE IFY = WYL AND YS[3] < WYL
CLIP-TOP(1, (X — XS[3)) * WYL — Y) /(Y = YSI3D) + X, Wy,
S[3] > WYL THEN

ELSEIFY = WYLANDY

IF OP > 0 THEN
CLIP-TOP(OP. (X — XS[3])) * (WYL = Y)/
(Y - YS[3D + X, WYL)

ELSE
CLIP-TOP(l, (X — XS[3)) =

(Y = YS[3D + X, WYL).

(WYL - Y)/

XS[3] « X;

YS[3] < Y;

IFY = WYL AND CLOSING # 3 THEN CLIP-TOP(OP, X, Y);
RETURN;

END;
6.9 Algorithm CLIP-TOP(OP, X, Y) Routine for clipping against the upper boun

Arguments OP, X, Y a display-file instruction
WYH window upper boundary

Global
XS, YS arrays containing the last point drawn
NEEDFIRST array of indicators for saving the first command
FIRSTOP, FIRSTX, FIRSTY arrays for saving the first command
CLOSING indicates the stage in polygon

BEGIN

IF PFLAG AND NEEDFIRST([4] THEN
BEGIN

FIRSTOP(4] « OP;
FIRSTX[4] « X;
FIRSTY[4] < Y;
NEEDFIRST[4] <« FALSE;
END
ELSE IFY < WYH AND YS[4] > WYH THEN
SAVE-CLIPPED-POINT(1, (X — XS[4))
X, WYH)
ELSEIFY = WYH AND YS[4) < WYH THEN
IFOP > 0 THEN
SAVE-CLIPPED-POINT(OP, (X — XS[4]) * (WYH = Y)/
(Y - YS[4]) + X, WYH)
ELSE
SAVE-CLIPPED-POINT(, (X — XS[4]) * (WYH = Y)/
(Y - YS[4]) + X, WYH);

* (WYH - Y)/(Y — YS(4]

YS[4] - Y; .
IFY = WYH AND CLOSING # 4 THEN SAVE-CLIPPED-POINT(OP. X. ¥

RETURN;
END;

Scanned by CamScanner

WALHA R, At L tppinie, 189

The SAVI-,'.('I.H’I’I;I) POINT routine 14 used o enter the commands into the dis-

e, It will be desenbed below,
[k through an example to see how these routines operate, Consider the

play fi
Let's wa
window and sequence of
(2. 2) and auempt 1o draw the lines 10 (4,2), (4, 4), (2, 4), and back 1

" v 4 y ! y ok 0

the pcn at X _
2.2 The XS and Y.S‘ array vlu!t!c«. will be mitalized to the current position XS[i] = 2
and ysli] = 2- The CLIP-LEFT routine is entered with the point X = 4,Y = 2, and
the work begins. T!IL‘ CLIP-LEFT routine will compare the segment ,,;”“) ?) (;,
(4, 2) against the window boundary WXL = 1. The segment will not require C.l'ip;)in;r

XS[1] is setto 4 and YS[1] is set again at 2, This point is then pa--,ncd

at this boundary.
0 the CLIP-RIGHT routine. It compares the segment against the window boundary
wXH = 3. The third IF statement in this algorithm discovers that clipping is required

and passes the point X = 3. Y = 2o the CLIP-BOTTOM routine, The XS[2] and
ys[2) values arc cet 10 4 and 2, respectively. The CLIP-BOTTOM and CLIP-TOP
routines do not have 1o clip but just pass along the point and remember the (3, 2) posi-
tion in their XS. YS array elements. The command to draw the line from (2, 2)to (3, 2)
is entered into the display file by SAVE-CLIPPED-POINT, The next line segment is
seen by CLIP-LEFT as going from (4, 2) to (4, 4). Since this does not cross the left
boundary, the point (4, 4) is passed along and remembered, The CLIP-RIGHT routine
will also consider the line from (4. 2) to (4, 4). Since both points are outside the right
window boundary, this routine will not pass along the point to CLIP-BOTTOM. It will
only remember the point (4, 4) as its current pen position. The next point is (2, 4).
Again the CLIP-LEFT routine will remember the (2, 4) position in the XS[1], YS[1]
array elements and pass the point to clip right. In CLIP-RIGHT the second IF state-
ment will realize that this line crosses from outside the right boundary to inside. It will
send a command to MOVE to the point (3, 4) to the CLIP-BOTTOM routine. It re-
members the point (2, 4) and finally passes a LINE command to this point. The first of
these two calls to CLIP-BOTTOM is for the move from (3, 2) to (3, 4). This does not
cross the bottom boundary, so the routine remembers the current position (3, 4) and
passes the move command to CLIP-TOP. The CLIP-TOP routine will clip this com-
mand at (3, 3) and enter this move into the display file. It will set its current position to
(3, 4). Now back to the second call to CLIP-BOTTOM by CLIP-RIGHT. This is a line

line sepments .
" ts shown an Figure 616, Suppose we start with

2,4) = (4, 4)
(1,3) prosemms , . (3.3)
(2.2) — 4.2
. ; F[GURE 6-16
Y Window 3,1 A clipping example.

Scanned by CamScanner

190 CHAPTER SIN

CLIP-BOTTOM will remember this point and p,

. P SS ¢ ::~

: -member the point, but will not

TOP CLIP-TOP will also rem _ U pass g
commang N \letift;?iecause the line from (3. 4) to (2, 4) is above the Windoy, g
command any

-LEFT routine. It passes the comp, g
e . 1 (2. 2) to the CLIP : > and g
E{l[\p l:leG give :‘;i g:)':as(ses it to CLIP-BOTTOM, which passes it in tum (g CLip,

2, 4) to (2, 2). The

: he segment from (2, seconq |
CLIP-TOP routine sees :
'srt(:a):rr;le?r‘: in the routine forwards a command to MOVE to the point (2, 3) to th, dig.

he command to draw a line to the pojn 2 9
' final IF statement sends t)
'EI)'ll?; tfgle;t:::l i::s been a line from (2, 2) t0 (3,2),amove t0 (3, 3). amove to (3, 3

and a line back to (2. 2).

command to the point (2. 4).

¥

A
4

i 9

THE CLIPPING OF POLYGONS

We would like our clipping routine to hgndle polygons aqs well as lu.le segments, Whai
will happen if a polygon crosses our wnndc?w'boundary. Our cllppmg_ routine will ra. -
move some of the polygon’s sides, and it will insert a move command !nstegd of a ling
command along the window boundary. This changc in the n}lngber of sides in the poly-
gon must be reflected in our initial polygon-drawing ope‘ratlon C.Ode' W(? will consider
and to be an invisible side since it occupies one instruction and moves

the move comm _ ovess
the pen just as a line-drawing command. Because of the change in the number of sides, -

we cannot know what polygon command to enter (if any at all) unti.l the entirf:z polygon
has been clipped. We will therefore not enter polygon instructions into the dl.Splay file
immediately. Instead, we shall store them in a temporary area. When all sides havg A
been clipped, we can count how many sides remain, form an appropriate polygon com-
mand, and then enter this new command (along with the instructions that were saved:
for the sides) into the display file. The instructions which survive the clipping routines =
are therefore treated in two different ways. Instructions which do not belong to a poly=
gon are given a viewing transformation and placed in the display file, while insmg- 3
tions which are part of a polygon are placed in a temporary storage buffer. This deci= =
sion is made in the algorithm SAVE-CLIPPED-POINT based on a flag PFLAG which-\
indicates polygon processing. The algorithm also keeps track of how many polygon .
sides have been saved. (See Figure 6-17.) 1

6.10 Algorithm SAVE-CLIPPED-POINT(OP, X, Y) Saves clipped polygons in theT ==
buffer and sends lines and characters to the display file 8
Arguments OP, X, Y a display-file instruction

Global COUNT-OUT a counter of number of sides on clipped polygon

PFLAG indicates if a polygon is being clipped
BEGIN

IF PFLAG THEN
BEGIN

COUNT-OUT « COUNT-OUT + 1 3
PUT-IN-T(OP, X, Y, COUNT-OUT):

END A
ELSE VIEWING TRANSFORM(OP, X. Y); |
RETURN: ‘
END; -

Scanned by CamScaner

w .
INDOWING AND CLIFPING 191

Is it

Yes
a polygon
)

(/
PUT-IN-T VIEWING-TRANSFORM

Sayes sides in
display file

Saves sides in
T buffer

¢ FIGURE 6-17
SAVE-CLIPPED-POINT.

We have called the arrays providin

g temporary storage for pol
YT. They mysr be large enough to hold the maximum number OI:" pi%;ESnII;d)iT' ;ﬁd
above algorithm uses the routine PUT-IN-T to save instructions in these arrays ’lfl-le af

gorithm for PUT-IN-T is as follows:

6.11 Algorithm PUT-IN-T(OP, X Y, INDEX i
v X, Y,) Save an instruction i
Arguments OP, X, Y the instruction to be stored Friom i e T bUtet
INDEX the position at which to store it
Global IT, XT, YT arrays for temporary storage of polygon sides

BEGIN
IT[INDEX] « OP;
XT[INDEX] « X;
YT[INDEX] <Y,
RETURN;

END;

unts how many sides
considered, we need
llustrated in Figure

clipping routine which co
dered. When all sides are

closing problem is i
Its in a starting point above the bottom

boundary. Now clipping this se-
olygon which is not closed

d intersection points are

\ For polygons, we have an overall
of the original polygon have been consi
to make sure that the polygon is closed. The
6-18. Clipping against the left boundary resu
boundary and an ending point which is below this
quence of points against the bottom boundary results in a p
because there is no command to move across the boundary, an
only calculated when the boundary is crossed.

To fix this problem we require each clipping staget
ton. (See Figure 6-19.) To do this each clipping stage st _
ceives from the polygon. This is done by the first IF statement 1n €act
6.6 through 6.9. The NEEDFIRST flag is used to tell if the instruction

o close its version of the poly-

ores the first instruction it re-
ach of algorithms
is the first.

J

Scanned by CamScanner

-

s

.'-{Q:«"\“

192 CHAPTER SIX

Fm——— 1
| | 3
| | §
| el
| &
I l‘l!
/7N b= g k.
/ ' g
/ 3
0
Chpping all sides . . . b
oy
4
¥
/4 ;
/ 3 4
/ t
/ |
// : 4
/ .
... gives unclosed polygon .
kD
/ .
/ " a‘.-th
// R-_) k"‘ A
/
/ FIGURE 6-18

Correct Closing the polygon.

After all commands have been sent we set the CLOSING variable and output the ave
instruction to each clipping stage. This causes each stage to check the edge be
the last point of the polygon and the first point for intersection with the clipping
dary. If it does intersect, the intersection point is entered which completes the pol
For this final check we want to enter the intersection point, but we do not want to
the first point of the polygon a second time. This is what the CLOSING variable
It prevents the reentry of the first point when closing the polygon. After closi
polygon, the final number of sides of the clipped polygon is checked to see whe
is greater than 3. If it is less than 3, then the polygon has collapsed or has been cl
away and no entry at all should be made. If the new polygon has an acceptable numoe
of sides, then we must update the polygon command to reflect this. We must also entef
the x and y coordinates of this command so that we begin drawing the polygon

point where drawing of the sides will terminate. All of this is done by the algorit
CLIP-POLYGON-EDGE. | A

{5

12 . Algorithm CLIP'POLYGON'EDGE(OR X, Y) Close and enter a clipped POY°
gon into the display file .

Arguments OP, X,Ya display-file instruction ;
i 1

Scanned by CaScanner

WINDOWING AND cLIPPING 193

i \ CLIP-LEFT receives the onginal polygon
!
]
\ i
o
It 1 clipped and closed

1o send these points to
CLIP-RIGHT.

\2

* \ which forwards them
|

/ 1o CLIP-BOTTOM.
-——P'— -

Clipping and closing yields A \
I

this polygon for CLIP-TOP,

/\ which is then saved.

:4._/

FIGURE 6-19
Each clipping stage closes its polygon.

Global PFLAG indicates that a polygon is being drawn
ining to be processed

COUNT-IN the number of sides rema . .
COUNT-OUT the number of sides (0 be entered in the display i€
/ lygon
IT. XT. YT temporary storage armays for.a po
NEEDFIRST array of indicators for saving fhe first command ;
FIRSTOP. FIRSTX. FIRSTY arrays for saving the first comman

CLOSING indicates the stage in pol?'gon
Local I for stepping through the polygon sides

BEGIN
COUNT-IN « COUNT-IN — L
CLIP-LEFT(OP. X. Y):

Scanned by CamScanner

194 CHAPTER SIX
I[F COUNT-IN # 0 THEN RETURN:
close the clipped polygon

CLOSING < It CLIP-LEFT(FIRSTOP(1]. FIRSTX(I].
IFNOT NEEDFIRST[I]THEN] lRSTYlll)‘

CLOSING < 2 N CLIP-RIGHT(FIRSTOP(2]. FIRSTX|2]
ST(2) THE .

[F NOT NEEDFIR

FIRSTY(2)):

CLO(S)ITNSEED3F:|RST[3J THEN CLIP-BOTTOM(FIRSTOP(3], FIRSTX(3).

IFN :

FIRSTY(3)):

1Go— 3 Y
ﬁ'L SSITI\SEEDFIRSTM THEN CLIP-TOP(FIRSTOP(4]. FIRSTX[4]. FIRsTY ()

CLOSING « 0t

IF COUNT-OUT < 3 THEN RETURN:

E he polygon into the display file | |
:'Té:\lrI;([_)}?TRANSFORM(COUNT-OUT. XT[COUNT-OUT]. YT[COUI\T-OL'T],._

FOR1 = | TO COUNT-OUT DO VIEWING-TRANSFORMUT(I]. XT(1]. YT(1},:

RETURN:
END:

We must catch and handle polygon commands so that when a polygon is discov
ered. it is entered into the temporary file. Counters are set for the number of sides to be
expected and the number of sides of the result. Last-point variables for each of the clip
ping routines are initialized, and a flag is set s0 that future calls to the clipping routine
will be recognized as polygon sides. This is done by the algorithm CLIP. This is the
top-level clipping routine. Basically, it decides between handling polygons and hans

dling other graphics primitives.

6.13 Algorithm CLIP(OP, X, Y) Top-level clipping routine
Arguments OP, X, Y the instruction being clipped
Global PFLAG indicates that a polygon is being processed
COUNT-IN number of polygon sides still to be input
COUNT-OUT number of clipped polygon sides stored
XS, YS arrays for saving the last point drawn
Local I for initializing the four clipping routines
BEGIN
IF PFLAG THEN CLIP-POLYGON-EDGE(OP, X, Y)
ELSE IF OP > 2 THEN
BEGIN
PFLAG « TRUE;
COUNT-IN « QP:
COUNT-OUT « 0;
FORI = 1TO4 DO
BEGIN

Scanned by CamScanner

END

YS(I] «Y:

END;

ELSE CLIP-LEFT(OP. X, Y):

RETURN:
END:

\DDING CLIPPING TO THE SYSTEM

CLIP algorithm will clip, transform, and save drawin
T]he We have only to include it as part of the display-ﬁ
(tjl e!lhis we modify our DISPLAY-FILE-ENTER routi

0 x J

WINDOWING AND cLIppiNg 195

g instructions in the display
le instruction storage process. To
ne. This routine will now get the

t object-space pen position and place it on the display file through the clipping
cur:;:e transforming it to image space dimensions in the process. (See Figure 6-20.)
routine,

6.14 Algorithm DISPLAY-FILE-ENTER(OP) (Modification of algon’lhm 2.23) Com-
bi.ne operation and position to form an instruction and save it in the display file
Argument OP the operation to be entered N

Global DF-PEN-X, DF-PEN-Y the current pen position

BEGIN

IFOP < 1 AND OP > —32 THEN PUT-POINT(OP, 0, 0)
ELSE CLIP(OP, DF-PEN-X, DF-PEN-Y);

RETURN:;
END:

e - ; aries of

We would also like to have an initialization routine which sets thz-botl:sd that is

the viewport and window to be the same as our normalized screen co%r 1.nz:vp0,n [ms,

ev) . i and vie)
from 0 to 1 in both the x and y directions. This makes the window

i se it.
formation transparent for the user who does not wish to u

- User program

Windowing
and
clipping

Display
file

Intrepreter

l'l(,L'RE 6-20
Addmg windowing to the system.

ﬁ

Scanned by CamScanner

196 cuapTER SIN

6.15 Algorithm INITIALIZE-6 _
Jygon processing flag v E
Y& fined by clipping boundaries

Global PFLAG po : .
XS. YS position of the pens con ‘ !
of indicators for saving the first command

NEEDFIRST amay .
s the stage 1n polygon

CLOSING indicate 1 pe o

Local [for initialization of the four clipping routines

BEGIN 3

INITIALIZE-S r
1.0. 0.0, 1.0Y:

SET—\"]E\\'PORT(0.0.
SET-\‘-"I.\'DOW(0.0. 1
NEW-VIEW-2:

FORI = 1t04 DO

BEGIN
NEEDFIRST(I] < FALSE:

XS] < 0:
YS[I]} « 0: 7
END: 3
CLOSING «0: d
PFLAG «— FALSE:
RETURN:
END:

.0.0.0. 1.0);

GENERALIZED CLIPPING
We have used four separate clipping routines, one for each boundary. But these ',
" routines are almost identical. They differ only in their test for determining whethera

point is inside or outside the boundary. It is possible to write these routines in a more
general form, so that they will be exactly identical and information about the boundary

is passed to the routines through their parameters. In a recursive language this would =
mean that instead of having four separate routines, only one routine would be needed. ©
This routine would be entered four times (recursively), each time with a different =
b(?undary specified by its parameters. Furthermore, the routine can be generalized 0 q
chp. alon:g any line (not just horizontal and vertical boundaries). This form of the al- 1
gf)nthm is not limited to clipping along rectangular windows parallel to the axis. Clip-
ping along arbitrary lines means that the window sides may be at any angle, and by
cqrsnvely calling the clipping algorithm as many times as needed (not just four), the =
window can have more than four sides. The generalized algorithm in a recursive 1an° =

guage can be used to clip along an arbitrary convex polygon. (See Figure 6-21.

< > FIGURE 6-21 :
' A window with six clipping boundanes:

Scanned by CamScanner

WINDOWING AND CLIPPING 97

pOSITION RELATIVE TO

A line divides a planc. into two half planes. Let us consider briefly a half-
determine on which side of a line a point lies. Suppose we have
points (x;» Yo and (X2, ¥,). Recall from Chapter 1 that if a thirg

line, then

plane test to
a line specified by the
point (X, y) is on the

(X = %) (Y1 = y2) = (y - y)) (x, — X,) (6.3)

If the left-hand side does not equal the right-hand side, then the point is not on the line.
If the left expression is greater than the right

(=X 51 = ¥2) >y =~ ¥ (%) = xy) (6.4)
then the point lies on one side; if it is less

X =x) @y —y2 < (y — y2) (x, — X2) (6.5)

then the point lies on the other side. (See Figure 6-22.) The choice of which of the two
sides corresponds to the ‘‘greater than'’ case depends upon which of the two line*

points is named (X, yy)-
As an example, consider the line containing points (x;,y,) = (1, 2) and (x5, y,) =

(4, 5). The point (x, y) = (3, 4) is on the line because
B-492-5=@-50-4 (6.6)

The point (2, 5) is in the half plane above and to the left of the line
R2-42-55>6-50-4) (6.7)

all points (x, y) which result in

is identificati ints (X,, ¥;) and (X3, ¥2),
For this identification of the points (X, ¥, 2 o left of the line.

the left-hand side greater than the right-hand side are ab

v
I
N

FIGURE 6-22

. s int lies.
Boundary Deciding on which side of a line a poin |

Scanned by CamScanner

reR——

198 CHAPTERSIX

s below and right. As W€ can easily verify, it results ip, th B
€ “leS fe
Y

The point (4, 3) i

than” relation
@ 42) S (Baiy DLy D

This test may be used in a clipping al
side an arbitrary boundary line.

Other forms of the test are possible. We saw that another form of the |y A

onisrx + 8y ¥ 15 0 (Equation 1.6). Substituting the (x, y) coordinates Ofee ual

de of this expression will also give a pz:)sp'?-inl:

1 1ve o

not on the line into the left-hand si
number for one side of the line and a negative number for the other side. Furthery, .
Ore' Y

we found in Equation 1.30 that for proper normalization of 1, s, and t, the magn; :
this expression is the distance of the point from the line. ude of

. . . ' (6'8)7 .
gorithm to determine if a point lies insjde .

MULTIPLE WINDOWING

Some systems allow the use of mulniple windowinthhat is, a first image is created |,
€
—— y

Mwnwmm Then, windows are applied to thi;
ge. Further windowing tram‘be donl

“first image 10 create asecond ima

s . . . AR e TR ~ruui -

_until the desired picture 15 created / Every application of a window transformation z>>
a-.-. .

lows the user to slice up a portion of the pi ition 1

‘ : .) picture and reposition it on the sc

multiple windowing gives the user freedom to rearrange components of ttr;en3nus
The same e.ffect may be achieved, however, by applying a number of singl o
wransformations to the object. (See Figure 6-23.) gle-window]

O

~
Iy,

o) FIGURE 6.23

Multiple windowing.

Scanned by CamScanner

WINDOWING AND CLIpPING 199

\x APPLICATION

5 important application Qf computer graphics is the des;
ﬂ‘;:ae miniature g‘om.p()ncnl.\ may be Pl’(—’_dll“‘d by photographic techniques from Jarge
,.\;ing.\‘ of their CI.I’CUIIF):.. T'he dr.?wmgs describe the areas of the CnnduclinL'
i‘jmwnducling. :mq lll.sgl:lllng Fllzllcruzlls, Ccrt;fin patterns or geometries of these m;;:
wrials produce the individual (.hodc.s and lmﬁnslslors. A single integrated circuit may
:al\c tens of thousa‘nds of transistors. Producing a correct drawing for such a complex
ructure Can be quite a lusl.(. and compl.n_cr gfillpth\ 1s an invaluable aid, There 15 usu-
ﬂ\ a great deal of regularity and repetition wuh_in the circuit structure. Our ability to
gémjuce a pattern by repeated ca_lls upon a smglc Image-generating subroutine s
belpful here. Funhe@urc. lh'c graphics program Wthh. draws the circuit may be part of

, larger program which provudc.s some checks of the circuit’s correctness.

" The full drawing of the circuit may be 1 to 2 meters square. If this is reduced to
the size of the designer's terminal, the detail will be too fine and too complex to be
gseful (if it can be displayed at all). What is needed is a clipping window which dis-
plays only the portion of the circuit which the designer is currently working on. A call
on our SET-WINDOW routine will provide this. If the designer should need to look at
wo separate portions of the circuit at the same time, the display surface may be sepa-
red into two viewports and the portions of the circuit selected by two windows. The
designer could specify one window-viewport pair, open a display-file segment, draw
the circuit (clipping away all but the portion of interest), close the segment, and then
repeat the process for the second portion of the circuit to be displayed. (See Figure

6-24.)

gn of integrated circyjrs.

SET-WINDOW(20.0, 30.0, 40.0, 50.0);
SET-VIEWPORT(0.2, 0.8, 0.6, 1.0);
CREATE-SEGMENT(1);
DRAW-CIRCUIT,

CLOSE-SEGMENT,
SET-WINDOW(20.0, 30.0, 10.0, 20.0);
SET-VIEWPORT(0.2, 0.8, 0.0, 0.4);

/—v‘< < en e o g g —
y] J
/ v d i \
! — IR W, o i
5% IMTPNE S '
SR e B N E ¥ R @2

’!

| FIGURE 6-24 '
Use of windows and viewpo

integrated circuit.

portions of an

s to examine (WO

Scanned by CamScanner

200 CHAPTER SIX

CREATE-SEGMENT(?.);

DRAW-CIRCUIT,
CLOSE-SEGMENT.

RTHER READING .
W -thods for lines may be found in [CYR78], [LiAg3), (L]
1€ ithm is also presented in [FOLg Ag_“].

. -Sutherland algor il , .
and [ROG8S). The Cohen erland algorithm is given in [WHIB6]. The Sutherla]m'
nd

. X -Suth
plementahorll (:,t;,'t:;,;](:ghepnrcss:med in [SUT74]. .The 'SUtherland-ngman algory, .
I-Iodgr’;?;‘ c‘:)gvex clipping region; it also results in a single polygon, even when ; di?
:(()l: |into several independent polygons might ‘s?em. morcl:) ant\uNrélI 7¢n a'l.ema:ive " ;
ping method which overcomes these problems 1s given)’b :]. Itis Possibi, ,
find the intersection between a line segment z.md a clipping boundary by repeatey
ves. This is particularly useful on systems which 4, o

o ent Into hal : . .
viding the segm method based on this technique is given ip [SPR68]

support fast division. A clipping ven i
A f)hpeoretical discussion and algorithms for the general problem of deciding if 5 Point

inside. outside, or on the boundary of a shape are presented in ‘[LEE77] and [TILs)
The problem of finding the intersection of two polygons is also considereq i,
[ORO82], [YAM72], and [WEI80]. A formal description of transformations and clip-

ping in a hierarchical picture structure is given in [MAL78].

Some other clipping I

[CYR78] Cyrus, M., Beck, J., ‘‘Generalized Two and Three-Dimensional Clipping,”" Computers gni

Graphics, vol. 3, no. 1, pp. 23-28 (1978).
[FOL82] Foley, J. D., Van Dam, A., Fundamentals of Interactive Computer Graphics, Addison-Wesley, Rezd-

ing, Mass., pp. 146-149 (1982).
[LEE77] Lee, D. T., Preparata, E P., ‘‘Location of a Point in a Planar Subdivision and Its Applications,”

SIAM Journal on Computing, vol. 6, no. 3, pp. 594-606 (1977).
[LIA83] Liang, Y., Barsky, B. A., “‘An Analysis and Algorithm for Polygon Clipping,’” Communications of

the ACM, vol. 26, no. 11, pp. 868-877 (1983).
(LIA84] Liang, Y., Barsky, B. A., “‘A New Concept and Method for Line Clipping,’* ACM Transactions o1

Graphics, vol. 3, no. 1, pp. 1-22 (1984).
[MAL78] Maligren, W. R., Shaw, A. C., *‘Graphical Transformations and Hierarchic Picture Structres:”
Computer Graphics and Image Processing, vol. 8, no. 2, pp. 237-258 (1978).
[NEW75] Newman, W. M., “‘Instance Rectangles and Picture Structure,”’ Proceedings of the Conferenct "
foﬁ'gé'?f Graphics, Pattern Recognition, & Data Siructures, pp. 297-301, IEEE Cat. No. TSCHO
¢ .
[ORO82] O'Rourke, J., Chen, C., Olson, T., Naddor, D., *‘A New Linear Algorithm for Intersecting CO"
B Svc; Polygons,”” Computer Graphics and Image Processing, vol. 19, no. 4, pp. 384-391 (198%?'
] Rogers, D. F, Rybak, L. M., A Note on an Efficient General Line-Clipping Algorithm.

Computer Graphics and Applicati
pplications, vol. 5, no. 1, pp. 82-86 (1985). 76
[SPR68(119$g;())ull, R. F, Sutherland, 1. E., “A Clipping Divider,”” AFIPS FJCC, vol. 33. PP L
(SUT74) Sutherland, I. E. 4 o of 81"
-1 E., Hodgman, G. W, “‘Reentrant Polygon Clipping,”" Communicafions
vol. 17, no. 1, pp. 3242 (1974). PHEoR ClPEas AT (9
s

TIL80] Ti “ ‘ :
[]p m‘:;;::{sl?: IIZ‘E Set Mefnbershlp Classifications: A Unified Approach to Geometr® Infé
[WEI??) Weiler, K E Transactions on Computers, vol. C-29, no. 10, pp. 874-883 (1980)-
Graphice. v Atherton, P., *‘Hidden Surface Removal Using Polygon Area Sorung:
raphics, vol. 11, no. 2, pp. 214-227 (1977),

ult!

Scanned by CamScanner

