CHAPTER

SEVEN

INTERACTION

INTRODUCTION

Computer graphics gives us added dimensions for communication between the user
and the machine. Data about size, shape, position, and orientation can be presented to
the user in a natural manner. Complex organizations and relationships can be conveyed
clearly to the user. But communication should be a two-way process. It is desirable to
allow the user to respond to this information. The most common form of computer out-
put is a string of characters printed on the page or on the surface of a CRT terminal.
The corresponding form of input is also a stream of characters coming from a
keyboard. Computer graphics extends the form of output to include two-dimensional
lmages,. lines, polygons, arcs, colors, and intensities. The graphic display can show
the positions of objects and the relationships between objects. We might ask what is
;z;:POF;T(;Dﬁale form of inpl_lt for a user’s response to these: images. First consider_what
Select 5 pZSrI:iOnsles a user might W.lSh to make to sth a dlspla'y. The user may wish to
Py, He maCliVa_lrhobJect on the d!spl?y. He may W|sr_1 to specify a position on the dis-
i )(’)b‘c:st to alter an object’s orientation, size, or location. He may wish to
Quite uﬂnaturalj f(;r (::to the d|s'play. We find the usual keyboard charac_ter input to bg
Males of o o eie .functlons. The user does not wish to determine [hC'COOI'dl-
Machine ¢ decima] ;e a'ltl\./e to some reference sys.tem an_d then enter fh_em mtq the
lereste ltis aui 1gits; he would mu.ch rather just pomt. to the position he is in-
line SeBments oy 1 ward_ to create a firawnng by typing coordinates of the endpoints of
U prefer 1o be a);llypmg Instructions for moving the imaginary pen. Most users
me ¢ been g € to take a rea) pen and move it across the screen. Some effective
2 enlike Stylus an :;’ellqped for the input of graphic information. A user might move
- He may "altach"eames appear on the display as if real pen and ink were being
portion of an image to the stylus and reposition it by moving |

205 !

Scanned by CamScanner



206 CHAFTER SEVEN - ht be altered by pushing levers Or twisting dia k
r]m ed by just pointing at it. In this chapter v, oA
ec

s. Scale 21 be ¢ 10 graphical informatioy, ;.. "4l
the §tylu f the display ™ low the user O respond o grap b o b Onin,
ces which 211 er some of the techniques whi Y b€ employeq .

' e e H .
consider th e hall also Consld between man and machine. Y

ural manner: & tion h

v
ol

ve been developed to enat?le the user to interact i, lh
devices can be separatgd into t\.avo classes, locators | .

devices which give position mformz.mon. The computer typie
o ar(:ocator the coordinates for a point. Using a locator we cap indi.

screen. Selector devices are used to select a particular graphicy)
k a particular item but provide no information about whep

HARDWARE
are devices ha
r. These

selectors. Locat
cally receives from a
cate a position on the scr
object. A selector may pic

L creen. A
at item is located on the s _ _ B
" Let us first consider some locator devices. One example of a locator is a pair of

thumbwheels such as are found on the Tektroni.x 4010 graphics tel_'minal. These are 0
potentiometers mounted on the keyboard, which _the lfser can adjust. (.)n.e potentiome-
ter is used for the x direction, the other for the y direction. Analog-to-digital converters
change the potentiometer setting into a digital value which the computer can read. ‘
potentiometer settings may be read whenever desired. The two potentiometer readings
together form the coordinates of a point. To be useful, this scheme must also present
the user with information as to which point the thumbwheels are specifying. Some
ﬁeib:;letcrir:lec[:xli;rrn ils:1 nejded.h'l'his may be in thfa form' of _a spe.cial screen cursor, th‘
al;o be done by app:ier :;1 Zrzsicrhfn at th:c point which is be.mg. mdicated‘. It mig

irs which cross at the indicated point. As @

thumbwhee] i i
iy ;el ns.tgme.d. tl?e marker or cross hair moves across the screen to show the
Ich position is being read. (See Figure 7-1 )
Another locator device is a joystick '

pair of thumbwheels_ However, they have

A joystick has two potentiometers, just as a
been attached to a single lever. Moving

v
& LT3 S A ——
4 »
Computer

—
AD
— 2

L.
Scanned by CamScanner



INTERACTION 207

- ard OF back changes the 5““{"3 on one Pt‘lcn‘limnc(cr. Moving it left or right
jeve! tf‘l : ctting on the other potentiometer. Thus with a Joystick both x- and y-COoOr-
':‘;msilinns can be s‘m%ll,“,".\F ‘0u:~|.' .1!&;}1\] by the mation of a single lever. The
cler selings arc P!\“-l‘ 5:‘“’"“ “““_“f'“e '}“"‘“Cr as they are for thumbwheels.
imv.slit‘“ may mftfnl o (')lm‘I}. 'Zt !})‘ S();m'o\r{ \\k l‘lcn n.‘lcascd. T\'hcmus thumbwheels
A q.[ heir last position untit € l.mg:f.. . Joy \\lll(. S are mcxpcns.l\'c and are quite com-
man & lays where only rough positioning is needed. (See Figure 7-2.)

~ator devices use sw_i(ches attached to wheels instead of potentiometers.
. wheels are tumed, the switches produce pulses which may be counted. The
As the jicates how much a wheel has rotated. This mechanism is often found in mice
ok balls. A mouse 1S a palm_—sized box with a bi.lll on the bottom connected to
W heels for the X and y d!mcnons. As.lhc mouse is pushed across a surface, the
‘\ULh.;- are turned, providing distance and direction information. This can then be used
“hcl‘[:r‘the position of a cursor on the screen. A mouse may also come with one or
::‘;» buttons which may be sensed. A track ball is essentially a mouse turned upside
down. The ball which turns the whe.els 1S lftrge and 1s moved directly by the operator.
(See Figure 7-3.) There are also mice which use photocells rather than wheels and
switches to sense position. An optical mouse is moved across a surface which contains
3 special grid pattern. Photocells in the bottom of the mouse sense the movement
xcross the grid and produce pulses to report the motion.

If we had a paper drawing or a blueprint which we wished to enter into the
machine, we would find that the joystick was not very useful. Although the joystick
could indicate a position on the screen, it could not match the screen position to the
corresponding blueprint position. For applications such as tracing we need a device
called a digitizer, or a tablet. A tablet is composed of a flat surface and a penlike stylus
or windowlike tablet cursor. (See Figure 7-4.) The tablet is able to sense the position of
the stylus or tablet cursor on the surface. A number of different physical principles have
been employed for the sensing of the stylus. Most do not require actual contact be-
tween the stylus and the tablet surface, so that a drawing or blueprint might be placed
Upon the surface and the stylus used to trace it. A feedback mechanism on the screen is

G

FIGURE 7-2
Joystick.

Scanned by CamScanner




FIGURE 7-3

Mouse Trackball Mouse and track ball.

tablet as it is for a joystick because the user can look 4 ,
he is indicating. Nevertheless, if tablet entries are to pe
n the screen, then some form of feedback, such asa

not as necessary for a graphics
the tablet to see what position
coordinated with items already 0

screen cursor, is useful. ’
The user may not wish to have every stylus position entered into the machine,

Some of the time he may be moving the stylus about in order to position it for the next
entry. It is therefore desirable to have some means of turning the tablet off and on, so
that the computer can only read coordinate values when the user is ready. A convenient
way of doing this is to build a switch into the tip of the stylus which turns on only
when the stylus is pressed down. The user can then lift the stylus, position it, and press
down to enter a point. |

An example of a selector device is a light pen. A light pen is composed of @
photocell mounted in a penlike case. (See Figure 7-5.) This pen may be pointed at thé
screen on a refresh display. The pen will send a pulse whenever the phosphor below i
is illuminated. While the image on a refresh display may appear to be stable, it is I8
fact blinking on and off faster than the eye can detect. This blinking is not too f2
however, for the light pen. The light pen can easily determine the time 2l which thé

-

“— Stylus
Tablet
O
FIGURE 74
Cursor Tablet.

Scanned by CamScanner



PSIEpas ryn l"'}

-~ FIGURE, 7.5
g Light pen

[lh""l’“"r i's illuminated, Since l?l('t(' " unly one clectron beam on the refresh display,
only one line M’;!lllCII’l can be drawn at a time and no two segments are drawn simul-
rancously. When the light pen fRnses the phosphor beneath it being illurninated, it can
interrupt the display PrOCessor’s interpreting of the display file. The processor's instruc-
ion register tells which display-file instruction is currently being drawn. Once this in-
formation 18 extracted, the processor is allowed to continue its display. Thus the light
n tells us which display-file instruction wis being exccuted in order to illuminate the
phosphor at which it was pointing. By determining which part of the picture contained
the instruction that triggered the light pen, the machine can discover which object the
user is indicating. It is often possible to turn the interrupt mechanism on or off during
the display process and thereby select or deselect objects on the display for sensing by
the light pen.
A light pen is an example of an event-driven device. Unlike a locator, which can

be sampled at any time, the processor must wait on the light pen until it encounters an
illuminated phosphor on the screen. The computer must wait for this to happen before
it can obtain the desired information. A keyboard is a morc familiar example of an
event-driven device. The machine must wait for a key to be pressed before it can deter-
mine what character the user wishes to send. Buttons and switches may also be avail-
able as input devices. Again, these are event-driven devices. Handling of event-driven
ficviccs can be conducted in two different ways. The first is to enter a polling loop, that
is, a loop which checks the status of the device until an event is indicated. When an
event occurs, the loop is exited with the results of the event. (See Figure 7-6.) Reading
of terminal input is often handled this way in high-level languages. A disadvantage of

this scheme is that the processor is essentially idle while it is waiting for an event. This
would be disastrous on a device where the processor is also needed to maintain the dis-

play,
a An alternative approach is to enable an interrupt which is sent by the device when
thee\/cm occurs, An interrupt is an electrical signal which causes the processor to brt_:ak
ruurnormal execution sequence and transfer control to a special interrupt-handling
Othelrnc' By using the interrupt mechanism, the processor s free to carry out some
Proce 0‘,":""_llon while it is waiting for an event to take place. When the event (?ccu:]s,
cvic::‘)mg Is interrupted and the device which caused it is serviced. After servicing the
y Pri ’ , )
~ Processing can continue. (See Figure 7 -7.)

c ' -
l-'mcm’f" approach to event handling allows han
Imes other than when the processor is expecting

may

dling of events which
ne is

k them. Suppose that 0

Scanned by CamScanner



-~
Ll b B
an vl
o “,
Hay
ARl Sy N
\\\u. U
Yer
Gl tata
FIGURE 7.6
A polling loop,
.....v-,J,,, Starl
Disable
—— Interrupta
save Current
. state of
machine
l — Get data
Transfer of
control whenever
an interrupt

occurs *
L_T_____ Restore state
of machine

recnable

interrupts
-
: ‘l\- Return
. " FIGURE 7.7
Main Program j An interrup! peheimy
‘ Interrupy handler input data.
210 ‘

Scanned by CamScanner



INTERACTION 211

-

ey which prosents 2 display and then requests a keyboard input from the

-~

A i user might anbicipate the comrect keyboard input and enter iy before
oE 1 finished provessing and presenting the display. If polling techniques are
e SN : . ~» ~2rrg ~ 4 .

e ¥ e could be lost because the computer is not ready for it. An interrupt

aes t@pUt &
WU b N ] S v ¢ ~ s .
"\,,.,_. oo the other hand. would temporanly stop processing and store the input so
< e N evaminad at the appropniate time. The processing of events is broken

Aal N
~""V

g When events oocur, the associated information is entered onto an evenr
Bl -

--.-.r Qeversl vents could oocur tv_fon: the program is ready for them, but they
il be stored and would therefore be accessible. When information from an
"‘_‘:,‘;..»‘._.;_ device is finally needed. the event queue is searched to see what events
1»::-\“. If an appropniate event has occurred., the information is removed from
17 mo event has accurred and the queue is empty, a polling loop can still be

;‘,: :-gI.‘e 44 -~ aa

: oo eoeanadly chack the status of the event queue, instead of checking the

o2

-y

#rLICANS WO

.-
- .- » " A ~ -
'y P e 1E B e
s of IEIVICHR! GEVICES.
Ml )

We m—2v Anve more than one event-driven device causing interrupts. Input data
. Famemy d2vices may have different sizes or forms. We may wish, therefore, not

Ceed e

< imformanon directly 1n @ queue. but in some other location. We can use the

R ES S SRR S ey

susge ety T save 2 Spointer which tells us where to find the information for the
Asocher aliemmanve is to have a separate specialized queue for each class of de-

Sesiong e mformation about an event is a two-step operation. The first step is
© sumine the gueue 1o determine whether the event occurred. The second step is to
= iy imformztion which may have been stored when the event transpired. Thus

wa e o =

2= frw <=z 15 10 gwmit the event. whereas the second is to get the results.

INFUT DEVICE-HANDLING ALGORITHMS

< zEm we are dealing with an area which depends heavily on the particular
:-'“‘_":2 Zevices zvzilzble. The graphics standards achieve device independence by
TECing what rowmines should be available and what they should do (but not how
=51 & ). 2 wser can then depend on these features being available. The system acts
© & Ziaos berwesn 2 device-independent user program and the particular devices
© 4% The “insides™ of the interface routines will depend on the devices, but the

i atac

% ®hch the wser sees will always look the same. This is great for the user

- o=
e A A -
.- S awade &

“==11o7 s, because we cannot just give an algorithm. Each particular input d.e-
“ "3z i own version of the algorithm. This will make the routines of this

PR 2 Bt e s . . ' I .
ami o D072 nebulous than previous routines. Nevertheless, we can state in g€n
timy .. "2 We want our algorithms to do. All graphic input may be simulated
‘5 ::'3 ‘:5«1‘5 dc_n'cc if necessary. o, . )
g e ~* £yboard simulation, the internal form of the routines is substantially al
‘:‘_r-:‘ "2 of the general case. This is because of two factors. First, input from a

- - . ’,:i' %; - .. - .VCn.
g, bVl language appears to be a sampled. rather than ever ‘ljn In
“fay " READ may be done at any time and will always return some vaue.

o Clsing | . . i . ; vice,
2 1S suspended until the input is obtained. So, like a sampled ‘de
nt-driven device, the

Y
iz
- <Ta P
information has been

| =
AD . “AD QCcurs, a2 value is returned. To act as an €Ve
£y gi“:'t:.: RO 1" "
uid have to return whether or not some new

h

Scanned by CamScanner



212  CHAPTER SEVEN

is is just not the case for most high-leye) lan

e fact that we can assume that there g on| goua “

¢ worry about problems such as whay ¢, A
W

placed in an input buffer. But .th :
The second area of difference ist
tual device and, therefore, need no

at the same time. . _ |
two cvf;ltts OCCC(‘:; sider the general forms of routines to handle input device
us

consider five classes of devices. Th.c .ﬁrst iS tr:je ﬁu;onnd.s’l;h:i:?:r(r)rr: :s an Cyent-qriy,
device that sends an interrupt when 1L 1S prease f device is the pick f;‘}lo" ?lhe:r than g,
fact that it has been pressed. The second _C'ass 0 ev:lce Is the pick. The pick s 1y pifieg
by a light pen. Itis an event-driven device Wh.lCh selects so/r:(: portlop of the disp
The third class is the keyboard, and the fourtl} .ls the (ocator. ocatqr is a Sampled‘f
vice that returns the coordinates of some position. Finally, we shall include 4 4 k.
which, like a locator, is a sampled device, but which returns 'only one value, A
might be a dial or knob which can be set by the user. There is nothing to preven; ys.
tem from having several buttons, light pens, keyboards, !oca.1t0r5, or valuators
fore, to specify a particular piece of hardware we have to indicate not only its class by
also which member of that class the device happens to be.

We assume that some mechanism is available for turning these devices logica]

We "'-

each device. When a device is disabled, its inputs, if any, are ignored. The user
therefore, enable the device before it may be used.

4 create a flag for each class. The setting of the flags will determine whether or not »
4 ticular class is enabled. We can give nuinerical names to the various classes to aid
their specification. (See Table 7-1.) The disable routine, then, takes as its argumenl
class number, performs whatever actions are needed to turn this class of device
cally off, and sets the corresponding device flag to false. The enable routine similaf

takes a class number, performs any necessary actions to turn the devices logically@
and sets the corresponding device flag to true. '

log

7.1 Algorithm ENABLE-GROUP(CLASS) Routine to enable an input device class
Argument

gk CLASS the code for the class to be enabled ;
Bl;)G?N BUTTON, PICK, KEYBOARD, LOCATOR, VALUATOR device {283

IFCLASS = | THEN

TABLE 7.1
Input class numbering
Input device type Class number
Bution |
Pick 2
| Keyboard 3
| Locator 4
‘ Valuator S

Scanned by CamScanner



INtERACTION 213

pl GIN o
pl'mURM.-\l L OPERATIONS NEEDED TO PERMIT INPUT FROM THE
RUTTON DEVICES; UT FROM THE

pUTTON < IRUL

END |
£ CLASS » > THEN
BEGIN -
PERFORM ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE

PICK DEVICES:
PICN « TRUE:
END:
FCLASS = 3THEN
BEGIN
PERFORM ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE
KEYBOARDS:
KEYBOARD « TRUE;
END:.
[FCLASS = 4 THEN

BEGIN
PERFORM ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE

LOCATOR DEVICES:
LOCATOR «— TRUE:!
END:
IFCLASS = STHEN

BEGIN
PERFORM ALL OPERATIONS NEED

VALUATOR DEVICES:
VALUATOR « TRUE:
END:
RETURN;
END;

ED TO PERMIT INPUT FROM THE

42 Algorifhin DISABLE-GROUP(CLASS) Routine to disable an input device class
Argument CLASS the code for the class to be disabled |
S};’ga‘ BUTTON. PICK. KEYBOARD. LOCATOR. VALUATOR device flags
IN
IFCLASS = 1 THEN
BEGIN
PERFORM ALL OPERATIONS NEEDED TO PROHIB
BUTTON DEVICES:
BUTTON « FALSE:
END.
IFCLASS = 2 THEN
BEGIN
PERFORM ALL OPERATIONS NEEDED T
PICK DEVICES;

END. ALSE;

HCLASS = 3THEN

[T INPUT FROM THE

O PROHIBIT INPUT FROM THE

Scanned by CamScanner



p SEVEY e

NS NEEDED TO PROHIBIT INpyp g

DS: o3

BL

Gkl oPERATIONS NEEDED TO PROHIBIT INpyT
FOR '

LOCATOR < FA Y
ENDT
hpak RMALL OPERATIONS NEEDED TO PROHIBIT INPUT Fr 'I !
) )

PER .
VALUATOR DEVICES;

VALUATOR « FALSE: } e

END: 39N
RETL'RA\‘~ s ;

END: Al

We can also provide the user with a single routine for disabling all input de "

7.3 Algorithm DISABLE-ALL Routine to disable all input devices

5

Local CLASS for stepping through the possible classes of devices
BEGIN

FOR CLASS = 1TO 5 DO DISABLE-GROUP(CLASS):

RETURN:;
END;

EVENT HANDLING

ln lhcof! W ’ l.’_‘i o
the Pfocess;p;i::: a:;\ °‘fcm~driven device as one which generates an inteftf "
When the device hai b:c lnterm.pt. it stops its current activity and serviceS" |
servicing gn interrupy? - se”.‘CCd. normal processing resumes. What 18 *

hne for such an dlgorithm ,a t Will an algorithm to do this servicing look IiK

In general, poy, * Biven below. It assumes that there is a single €

CVer’ lhﬁl’e 1
d;mu? Means identifyip Coh“_ld be many queues instead of only one. Ser
Om thay devicc.'[:-w. Ich device caused the interrupt and obtaining = .
“Omd ) 4 litlle d|ffcrc lls lnfOrmation is thcn stored on the event QUCUC- » ‘ d _;“
Cmim ::lnans‘.kcial s(ﬁng slol.acausc they may requ".e more Slorage. Thc.s L
foung_ gina data fig)q 8¢ area. Op the event queue, instead of trying ™

v We & 0| | £3
Store a pointer which tells us where the & AT

7,‘ M‘ &
o Algory
; P - o This alpor: . fan!
BEGIN gorithm is a model for the processing ® -
DISAB
LE
" Prevep, i YSI
IMemmyption or - INTERRUPT;
of the )

Scanned by CamScanner



WEITEM M 2]5
SAVE PROCESSOR STATUS;
DETERMINE WHICH DEVICE (CLASS AND
INTERRUPT,
|F DEVICE IS LOGICALLY ENABLED THEN
BEGIN
IF EVENT FROM A STRING INPUT DEVICE THEN
BEGIN
GETTHE INPUT STRING:
ADD-STRING-Q(STRING, DATA);
END
ELSE GET THE DATA FROM THE DEVICE;
ADD-EVENT-Q(CLASS, NUMBER, DATA);
END;
RESTORE PROCESSOR STATUS:
REENABLE PHYSICAL INTERRUPT:
RETURN;
END;

NUMBER) CAUSED THE

A queue is a first-in—first-out data structure like a ticket line. The first one in line
is the first to get a ticket. As new patrons arrive, they take their place at the rear of the
line. We want our algorithm to add new events to the rear of the queue. We set up ar-
rays to hold the queue data and a pointer QREAR which tells us at which point the last
entry was made. We increment this position to store the next event (if we step past the
end of the array, we wrap around to the first array position). We also have a pointer to
the next element to be removed from the queue, QFRONT. A special value of
QFRONT = 0 means that the queue is empty, so this should be checked and set to |
when we enter the first queue element. (See Figure 7-8.)

1.5 Algorithm ADD-EVENT-Q(CLASS, NUMBER, DATA) Adds an event to the
event queue
Arguments CLASS class of the input device
NUMBER number of the input device
DATA data from the input device
Global EVENTQC, EVENTQN, EVENTQD
arrays of size QSIZE which form the event queue
QFRONT, QREAR pointers to front and rear of event queue
Constant QSIZE the maximum size of the event queue
BEGIN
IFQREAR = QSIZE THEN QREAR « | ELSE QREAR «— QREAR + a
IFQFRONT = QREAR THEN RETURN ERROR ‘EVENT Q OVERFLOW';

|
R, QSIZE
715(8|2]4
FIGURE 7-8 N
Q;RONT QREAR An array used as a queue containing
€Xt 10 Most recentl
be retrieved  stoped 7,5,8,2,and 4.

Scanned by CamScanner



216  CHAPTER SEVEN
: EAR] « CLASS; r
EVENTQCIQ® « NUMBER; i

EAR]
EVENTQNIQREAD "~ 1 \Ta;

VENTQD[QREAR] .
FFQFRONT _ 0 THEN QFRONT < L; =
RETURN; ‘ 5

END; v

dled in a simpler fashion. Each new string is added*'

i eue is han \
The string qu d of the array is reached, we wrap around to the hass.

array of strings. When the en

ning. i
ADD-STRING-Q(STRING, DATA) Saves STRING and returngl

7.6 Algorithm

inter to it in DATA ' .
A NG a string to be saved in the string array B

ts STRI '
Argumen f the index of the stored string

DATA for return 0
STRINGQ an array of strings
SQREAR next free string storage area
SQSIZE the size of the string queue array -‘,‘

r!f‘_

Global

Constant
BEGIN
IF SQREAR = SQSIZE THEN SQREAR <« 1 ELSE SQREAR « SQREAR +

STRINGQ[SQREAR] « STRING;

DATA < SQREAR,; | 248

RETURN; i
END; ;

|

=
- =y

=4

The user must be able to determine if an event has taken place. We must there-
fore havc-e an “‘await-event’’ routine. This routine checks the event queue and retu
mfonnatlo_n about which device has caused an event. If no event has taken place and
the queue is empty, the routine may poll the queue for a specified period of time. Ifat
the end of this time thef queue is still empty, a failure indicator may be returned.
case. [I:g“; ;S:i:es Cgﬁsngr the routin-c for checking the event queue. In the inte ’
obtains from the Pue :e ; queue until the event has occurred or time runs out. It then
However, if the i?lput I :i Cc:azs and number of tt'le device which caused the event.
should be simulated through pol;)iis [:;)t genf:rate_ Interrupts, then the event process
polling may be done. |t may be builgt in:3 :,VICC dlreCt]Y: There are two ways that the
System we are using, Input will thep ol © programming language and/or operat 8
high-leve] language READ Stateme taclg as.lf from a sampled device; an examPle isa.
hth? written ourselves. We ca]] thi L. Polling ma_ly also be done in a loop which we-
routine may involve g combinati S a polled device. In general, our AWAIT-EVE
done through trye interrupts bmlgn of thes_e techniques. For example, picks may %

iy uttons might be detected with a ‘‘homemade’’ PO

1.7 Algoriih
m AWAIT.Ey
event queue ENT(WAIT’ CLASS, DEVICE) Routine to check the

Scanned by CamScanner



reacnon 217

CLASS. DEVICE (o return the type of event which occurred
BUTTON, PICK . KEYBOARD device enabled flaps

oK INPUT STRING, PICKED-SEGMENT storage for keyboard and pick nput
DETEC TABLE segment detectability attribute array 4
BUTTON-POLL, PICK-POLL, KEYBOARD-POLL flag indicating t
(he status of polled devices |
TIME-LIMIT the time at which to stop waiting
pocal DATA for receiving data from the event queue \
|
BEGIN . by a sampled device, then include the following conditi \
if buttons are simulated by a sampled device, then include the following conditional |
satement .
IFB UTTON THEN
BEGIN
READ DEVICE;
CLASS < I
RETURN:
END;
if picks are simulated by 2 sampled device, then include the following conditional
statement
IF PICK THEN
BEGIN

PICKED-SEGMENT « 0;
WHILE PICKED-SEGMENT < | OR PICKED-SEGMENT > NUMBER-OF-
SEGMENTS OR NOT DETECTABLE(PICKED-SEGMENT) DO
READ PICKED-SEGMENT:
CLASS < 2;
DEVICE < I;
RETURN;
END:
if the keyboard is simulated by a sampled device, then include the following condi-
tional statement
IFKEYBOARD THEN
BEGIN
READ INPUT-STRING,;
CLASS « 3;
DEVICE « 1,
RETURN;
END;
if interrupt-generating or polled devices are available, then include the following loop
TIME-LIMIT « TIME( ) + WAIT;
WHILE TIME( ) < TIME-LIMIT DO
BEGIN
if interrupt-generating devices are adding to the event queue, then check the
queue with the following statements
BEGIN
GETQ(CLASS. DEVICE, DATA);
IF CLASS # 0 THEN
IF CLASS =2 THEN PICKED-SEGMENT«<DATA
ELSE IF CLASS = 3 THEN INPUT-STRING « STRINGQ[DATAJ;
RETURN:

Scanned by CamScanner



218  CHAPTER SEVEN

END: clude the following cqpy.

if buttons ar¢ S
ional statement ;
(lllgBUTTON AND BUTTON
BEGIN |
CLASS < 1 '
READ-BUTTON(DEVICE),
RETURN:

if El'\::[l?;is simulated on a polled device, then include the following conditions
if apick 15§

statement
IF PICK AND PICK-POLL THEN
BEGIN
READ-PICK(DEVICE.PICKED-SEGMENT);
IF DETECTABLE[PICKED-SEGMENT] THEN

BEGIN
CLASS « 2,
RETURN;
END;
END;
if the keyboard is treated as a polled device, then include the following condi-
tional statement
IF KEYBOARD AND KEYBOARD-POLL THEN
BEGIN
CLASS « 3;
READ-KEYBOARD(DEVICE, INPUT-STRING);
RETURN; '
END;
END;
CLASS «— 0:
DEVICE « 0;

RETURN;
END;

pOLL THEN

If interry
Pts and a try
the foremost jtem | © cvent queue are used, then we must have a routine 10 &

In queue. Th .
position of the leading ] ¢ algorithm uses the pointer QFRONT to indicat¢ the

v _ ement. | :
alue of the leading jtem ; f QFRONT is zero, the queue is empty; if M0 the

IS return
cd and the QFRONT pointer is advanced to the neX

1.8 Algorithm G
event queue

If the queue is
Arguments ¢

ETQ(CLAS
WASS, DE
VICE, DATA) Returns the event at the front of ¢

Zero i returned
class of the event

cmpty,
LASS

Globa)

Scanned by CamScanner



INTERACTION 219

Constant QSIZE the size of the event queue
0

BEGIN
CLASS < 0:
IF QFRONT = 0 THEN RETURN:

CLASS < EVENTQC[QFRONT];
DEVICE < EVENTQN[QFRONT];
DATA < EVENTQD[QFRONT];

IF QFRONT = QREAR THEN

BEGIN
QFRONT « 0;
QREAR «0;

END
ELSE IF QFRONT = QSIZE THEN QFRONT « |

ELSE QFRONT « QFRONT + [;
RETURN;
END;

The event queue allows several events to occur before the information is used.
The queue provides storage for the event information until it is needed. But we may
sometimes want to start fresh, ignoring old events which have not been processed. We
can design a routine which will clear the event queue, discarding the unwanted events.

7.9 Algorithm FLUSH-ALL-EVENTS Removes all events from event queue
Global QFRONT, QREAR event queue front and rear pointers
SQREAR string file pointer

BEGIN

QFRONT « 0;

QREAR «0;

SQREAR « 1I;

RETURN;
END;

boardThe f‘\WAlT-EVENT foutine simlflates the. occurrence of some event. For key-

Cunedowwk events, we still n?ust retrieve thf: information saved when the evcnt_oc-

Thi “-)m.e must therefore _prowdet the user with a GET—KEYBOARD-DATA routine.

DATA rm;?'e returns the string which was input, along with its length. A GET-PICK-
In€ returns the name of the segment which the user selected.

110 Algorithm GET-KEYBOARD-DATA(STRING, LEN) Routine to return the
Stored keyboard input

ATguments - STRING for the return of the string

Globg] LEN the string’s length

BEGIN INPUT-STRING keyboard input storage

;ﬁ: = LENGTH(INPUT-STRING):
ING < INPUT-STRING:

RETURN:. '

END. ,

Scanned by CamScanner



220 CHAPTER SEVEN | ‘
GET PICK‘DATA(SEGMENT'NAME) Routine to return the -

711 Algorithm GEZ* |

piet e EGMENT-NAME the name of the selected segment

A;g;l?ent l?’ICKED—SEGMENT pick input storage

Globa

BE(S}I[SNGMENT—NAME «— PICKED-SEGMENT ¢

RETURN;
END;
llows several input devices to be in use at the sy,
require input from only one device at a time, gn

The AWAIT-EVENT routine a

i ny applications, however, ut : . .
;‘Tt(;erl:dni)rz Egme time-sharing systems prohibit the simultaneous use of severa| da.
u :

vices. For these situations, the generalit_y of thc- event queue becomes a neefiless over-
head. To avoid this, we can provide routines which awa}t input from only 'a single clasg
of device, either button, pick, or keyboard. .Oan: again, the‘routmes will be device
and system-dependent, but outlines for possible implementations for button and pick

routines are given below.

d

7.12 Algorithm AWAIT-BUTTON(WAIT, BUTTON-NUM) User routine to await the
pressing of a button
Arguments WAIT the time to wait for a button event
BUTTON-NUM for return of the number of the button device
Global BUTTON device enabled flag
BUTTON-POLL status flag if button is a polled device
Local TIME-LIMIT the time at which to stop waiting
DUMMY a dummy argument
BEGIN
IF NOT BUTTON THEN RETURN ERROR ‘BUTTON NOT ENABLED’;
if buttons are simulated by a sampled device, then include the following statement
READ BUTTON-NUM;
if interrupt-generating or polled devices are used, then include the following 100p
TIME-LIMIT «TIME( ) + WAIT:

WHILE TIME( ) < TIME-LIMIT DO
BEGIN

if interrupt-generating buttons are used
BEGIN ed, they may be found by
ﬁ:E(':I‘Q(CLASS. BUTTON-NUM, DUMMY);
LASS = 1 THEN RETURN. '
END: TURN;
if buttons are simulated on a i : i ndi-
tional statement polled device, then include the following €©
IF BUTTON-POLL THEN
BEGIN
READ-BUTTON(BUTTON. .
RETURN; NUM):
| END;
END;
BUTTON-NUM «0;

Scanned by CamScanner



4
i

INTERACTION  22]

RETURN:
END:

e — — W R d‘

gorithm AWAIT-PICK(WAIT, PICK-NUM) User routine to await a pick
WAIT the time to wait for a pick event

PICK-NUM for return of the number of the picked segment

PICK device enabled flag

7[3 Al
,\rgumenls

bal e
0 PICK-POLL status flag if pick is a polled device
Local TIME-LIMIT the time at which to stop waiting
BEGIN

|F NOT PICK THEN RETURN ERROR "PICK NOT ENABLED";
if picks are simulated by a sampled device, then include the following statement
READ PICK-NUM;
i interrupt-generating or polled devices are used, then include the following loop
TIME-LIMIT <« TIME( ) + WAIT;
WHILE TIME( ) < TIME-LIMIT DO
BEGIN
if interrupt-generating picks are used, they may be found by
BEGIN
GETQ(CLASS. DUMMY, PICK-NUM); |
IF CLASS = 2 THEN RETURN; i
END:;
if picks are simulated on a polled device, then include the following conditional
statement
IF PICK-POLL THEN
BEGIN
READ-PICK(PICK-NUM);
RETURN;
END;
END;
PICK-NUM «0;
RETURN;
END;

SAMPLED DEVICES
The locator g a sam
negd 0 wait for an
Which reads the loca
Since locators

pled device and, therefore, may be read at any time; there is no
event to be placed on the event queue. We need only a routine
tor and returns its x, y values.

the AWAIT-EVEN are sampled devices, our simulat'ion of a locator need not involve
are reaq T routine. For an actual locator device, the current coordinate values

e from the device and returned. In a keyboard simulation, coordinate values will
Tom the keyboard and returned.

114 Algors
Globa) sorithm READ-LOCATOR(X, Y)

BEGIN LOCATOR the locator enabled flag

IF ;
NOT LOCATOR THEN RETURN ERROR ‘LOCATOR NOT ENABLED':

Scanned by CamScanner



222 CuarmRaiy N
' y) FROM l.()(':\'l‘()R DEVICE OR ITS .\llEiULATlON:
- WNR({‘\‘I"& N AALIZED DEVICE COORDINATES IF NECESS sy,
('()N\’li
RIETURN:
END:

Valuators are treated in essentially the same way as 10cators —one varjgp), IS
aludton .

umed instead of 2 coondinate pair.

7.15 Algorithm REAI)-\’ALUATOR(V)
G .k;h«l VALUATOR the valuator enabled flag
: ] Ll L

. o ¢
BEIC;::OTVALUATOR THEN RETURN ERROR ‘VALUATOR NOT ENABLED': o

OBTAIN V FROM VALUATOR DEVICE OR ITS SIMULATION; 4 ;
RETURN:;: s‘_
END,; S

THE DETECTABILITY ATTRIBUTE

A useful feature for pick devices is the ability to set the detectability of portions of a‘
display. We may wish to be able to pick an item from a subset of the items actually P
pearing on display. We want all other items of the display to be ignored by the pick de-
vice. This can be done by disabling the interrupt mechanism when portions of the di ;
play which we wish to ignore are being drawn. The interrupt mechanism is reenabl_
when detectable items are being drawn. We would therefore like to present the usef

with some routine for setting the detectability of portions of his display. We can give
segments a detectability attribute so that a segment may or may not be detectable bya

pick device. We do this by giving each segment a detectability flag. We provide the -

device to disable or enable |j ght-

:gotei \:\(/)A(;?emmc Whether a segment is a candidate for a pick. An example is
“EVENT routine for sampled pick simulations. In the case where a Pic!, 3

for a particular segment is sim th § ‘
] ulated by a keyboard, the det ili for that e

\ , ectability flag fo
ment is checked by the AWAIT-EVENT routine. If the segment tumns out not to be &

tectable, then i i |
another input is requested. [f the segment is detectable, then its name =

saved and - indi
Iafnacf:l\::f\irll’:;:i:/ S?Ire l’CLtlUn:lS. lndl_cating that a valid pick has occurred. Tor
INTERPRET routine shoulq sed for picks, then the MAKE-PICTURE-CURRENT %

rupts according to the b.e‘ extended to include enabling and disabling of,inICf*:'_
ctectability flag for the segment being interpreted.

The followi i
Ing algorithm allows the user to set the detectability attribute.

7.16 Algorithm SET DET %
. E (iné

to set the detectability attribugrABlUTY(SEGMENT—N AME, ON-OFF) User rou £
Arguments SEGMENT-NAM .

ON-OFF the dete

Global
Cons:lam gﬁggf;r;?)[fsme Vesabilty auribute array
| , ) EGMENTS the size of the DETECTABLE amay

E the diSp]ay-ﬁ

. le segment bei t
Ctability setting RSN} being s

Scanned by CamScanner



INtERACTION 223

nli(l;!:f[:GM,;N'lzNAM:". < 1 OR SEGMENT-NAME > NUMBER-OF-SEGMENTS
T”EleURl\l ERROR ‘'INVALID SEGMENT",
I)F,I,F:(-T,\nl.IEISIZ(‘EMliN'l‘-NAMliI « ON-OFF,
R[T:TURNZ
END:
We have added a new segment attribute, tl'his means that our routines which
¢ segment table must be extended to include this new property. There are
.. which must be changed: the CREATE-SEGMENT routine, which ini-
’ mu,t:;l“‘;mibutes. and the RENAME-SEGMENT routine, which copies all attri-
‘ ition in the table. The modified versions of these routines are given

manage th
(W
rializes
butes 10 & NEW POS
below.
717 Algorithm CREATE-SEGMENT(SEGMENT-NAME) (Modification of algo-
ithm 6.4) User routine to create a named segment
Argument SEGMENT-NAME the segment name
Global NOW-OPEN the segment currently open
FREE the index of the next free display-file cell
SEGMENT-START, SEGMENT-SIZE, VISIBILITY
ANGLE, SCALE-X, SCALE-Y, TRANSLATE-X, TRANSLATE-Y
DETECTABLE the segment-table arrays
Constant NUMBER-OF-SEGMENTS size of the segment table
BEGIN
IF NOW-OPEN > 0 THEN RETURN ERROR ‘SEGMENT STILL OPEN’;
IF SEGMENT-NAME < | OR SEGMENT-NAME > NUMBER-OF-SEGMENTS
THEN
RETURN ERROR ‘INVALID SEGMENT NAME’;
IF SEGMENT-SIZE[SEGMENT-NAME] > 0 THEN
RETURN ERROR ‘SEGMENT ALREADY EXISTS";
NEW-VIEW-2
SEGMENT-START[SEGMENT-NAME] « FREE;
SEGMENT-SIZE[SEGMENT-NAME] « 0;
VISIBILITY[SEGMENT-NAME] « VISIBILITY([0];
ANGLE(SEGMENT-NAME] «— ANGLEJ[0];
SCALE-X[SEGMENT-NAME] « SCALE-X|0];
SCALE-Y[SEGMENT-NAME] « SCALE-Y[0]:
iﬁﬁ:SLATE-X[SEGMENT-NAME] «— TRANSLATE-X[0];
DErEélEATE'Y[SEGMENT-NAME] «— TRANSLATE-Y(0);
—_ELTABLE[SEGMENT-NAME] « DETECTABLE(0];

OW-OPEN « SEG . .
RETURN: MENT-NAME;

END;

11 :
NAV'_“E"‘,‘V'"' RENAME-SEGMENT(SEGMENT-NAME-OLD, SEGMENT-
NAME.op py ) (Modification of algorithm S.5) User routine to rename SEGMENT-
lo be SEGMENT-NAME-NEW
SEGMENT-NAME-OLD old name of segment

SEGMENT-NAME-NEW new name of segment

Argumenyg

Scanned by CamScanner



224 CuarTER SEVEX

i  SEGMENT-SIZE, VISIBILITY
Global SEG(;[{E‘\:CSICS(‘ SCALE-Y, TRANSLATE-X, TRAN SLATE;(
BETECT ABLE the segment-lable arrays
NOW-OPEN the segment currenlljv open
Concant NUMBER-OF-SEGMENTS the size of the segment tzble
BE?IEEEGME_\T-NAME-OLD < 1 OR SEGMENT-NAME-NEW < |

OR SEGMENT-NAME-OLD > NUMBER-OF-SEGME;\TS

OR SEGMENT-NAME-NEW > NUMBER-OF-SI:ZGME!\TS THEN

RETURN ERROR ‘INVALID SEGMENT NAME";

IF SEGMENT-NAME-OLD = NOW-OPEN OR '

SEGMENT-NAME-NEW = NOW-OPEN THEN

RETURN ERROR ‘SEGMENT STILL OPEN’;

IF SEGMENT-SIZE[SEGMENT-NAME-NEW] # 0 THEN

RETURN ERROR ‘SEGMENT ALREADY EXISTS",
copy the old segment-table entry into the new position
SEGMENT-START[SEGMENT-NAME-NEW]

«— SEGMENT-START[SEGMENT-NAME-OLD];
SEGMENT-SIZE(SEGMENT-NAME-NEW]

— SEGMENT-SIZE{SEGMENT-NAME-OLD]; ‘
VISIBILITY[SEGMENT-NAME-NEW] « VISIBILITY[SEGMENT-NAME-OLD]
ANGLE[SEGMENT-NAME-NEW] < ANGLE[SEGMENT-NAME-OLD];
SCALE-X[SEGMENT-NAME-NEW] « SCALE-X{SEGMENT-NAME-OLD);

SCALE-Y{SEGMENT-NAME-NEW] « SCALE-Y[SEGMENT-NAME-OLD];

TRANSLATE-X[SEGMENT—NAME-NEW]
‘—TRANSLATE-X[SEGMENT-NAME-OLD];

TRANSLATE-Y[SEGMENT-NAME-NEW]

‘—TRANSLATE-Y[SEGMENT—NAME-OLD]‘.
DETECTABLE[SEGMENT-NAME—NEW]

— DETECTABLE[SEGMENT—NAME-OLD]',
delete the old segment
SEGMENT—SIZE[SEGMENT-NAME-OLD] «—0;
RETURN: '

END:

. As in previous chapters, we shall
This routine sets the d

oot e Provide the user with an initialization fO_““
€tault values so that no device ; are I
evice is enabled, no events
event queue, and no segments are detectable

7.9 Algorithm INITIALIZE-7 Initializati
Glo Zation
BEg?N DETECTABLE the detectability attribute array
INITIALIZE-6;
DISABLE-ALL;
FLUSH-EVENT-Q;

DETECTABLE(0] « FALSE.
RETURN;

END;

Scanned by CamScanner



INTERACTION 228

ULATING A LOCATOR WITH A PICK

¢ light pen can be‘uscd to sclcgl an object on t.he screen, it does not give that
ct's position. Nor can it be used to indicate a position where there is‘no object, as
objec done with @ joystick or tablet. In order to use a light pen for position informa-
king €ross 15 employed. A tracking cross is a small cross made of four or
. eparate line segments. This is placed at some known position on the screen and
moh. tdp\‘() that it is detectable by the light pen. (See Figure 7-9.)
\elcdtTh‘c pen is Posilioned at the center of the cross. Then as the pen is moved, it will
encounter one of the cross arms. If the pen is moved slightly to the right, it will en-
~ounter the right arm of the cross. This in'formation is used to move the cross slightly
:0 the right. After each refresh the cross will be moved until the light pen is once again
centered. (See Figure 7-10.)

A similar action is taken for all of the other arms of the cross so that the tracking
cross will follow the movements of the light pen. Since the position of the center of the
rracking cross is known, positional information can be entered by ‘‘grabbing’’ the
cross with the light pen and moving it to the desired location.

§IM
while th

can be
jon, a frac

SIMULATING A PICK WITH A LOCATOR

Suppose we have a locator, but no pick device. How can we use the locator to get the
effect of a pick? We know that the user is interested in the part of the picture located at
position (x, y), but do not know which segment is being drawn there. To find out, we
shall step through the display-file instructions segment by segment as if we were draw-
ing the image. But instead of generating line and character images, we will ask how
close the lines and characters are to the locator position. If a line or a character is suffi-
ciently close, we will assume that it is the item at which the user is pointing. We will
note what segment we are considering and return it as the value of the pick selection.

_ How can we determine the distance between a point (x, y) and a character? We
simplify the problem by treating the character as if it were a point (x., y.). Then we can
use the distance formula to give

D = [(x — xc)* + (y — yo)’]'? (7.1)
If this distance is close enough
D < APERTURE (7.2)

then we haye found the segment. (See Figure 7-11.)

FIGURE 7-9
Light pen and tracking cross.

Scanned by CamScanner



226 CHAPTER SEVEN

DN

I
I
FIGURE 7-10
K If the light pen encounters one of the arms of the cross, the positi

of the cross is shifted.

This formula will select a character if its point lies within a circle of rad;
APERTURE centered on the locator point. But this formula involves multiplicatio
which are computationally costly. A more efficient test is to select a point lying withj
a square with side 2 * APERTURE centered on the locator point. In this case, the te
condition becomes

|x = x| + |(y — y.)| < APERTURE (1.3

Absolute values are much easier to calculate than squares. (See Figure 7-12.)

APERTURE

(x.y) (xn Ye)

(x =xc)* + (y - y.)! > (APERTURE)?
Not selected

(x-xc)? + (y-y,)?< (APERTURE)?
FIGURE 7-11
Selection of a point.

Scannedr by CamScanner



INTERAC TION 227

x-x) + (y-yo)! <(APERTURE)?

je—2 APERTURE—

° °
(x,y) (Xe, ¥e)

FIGURE 7-12
x-x.| + ly-y <APERTURE A square test area results in a more efficient test.

We can also find the distance between a point and a line segment. We already
found an expression for this in Equation 1.30 which is

D =[x + sy + { (7.4)

where (x, y) is the locator point, and r, s, and t are parameters which describe the line
(see Equation 1.6) and also satisfy the normalization condition (Equation 1.7). The
values for r, s, and t satisfying these constraints for a line with endpoints (x,, y;), (X5,
Y,) are

r=(y,— yp/d

s = —(x2 s Xl)/d (75)

t = (xy, — %1 Y2/d

Where
d = [(x, — x)* + 02 = YT”

With a Jittle algebra, Equations 7.4 and 7.5 can be distilled into the formula

| (x — x)(y2 ~ y) — (Y~ YI)(xnz/z— x) | 1.6)
o [(x2 — x)? + (2 — y1)’]
he line segment. A preliminary test

ey ricasure applies to the entire line contaring beyond the segment endpoints.

should be mage to determine if the point lies 100
aLis, we can reject the segment if

far

Scanned by CamScanner



228 CHAPTER SEVEN

x < min(x,, X;) — APERTURE
or x > max(x,, X;) + APERTURE
or y < min(y;, Y2) — APERTURE
or y > max(y,. y2) + APERTURE

Here again we have a number of costly multiplications because we are accepting lin§
which fall within a circle about the locator point. By considering a square aboy th: 4
locator point we can use the following more efficient formula. (See Figure 113,

- |

- SAPERTURE (1) |

Vertical and horizontal line segments must be treated as special cases, Ap y. ]
gorithm for simulating a pick with a light pen is given below. It steps through the g |

(Xy=x)y-y))
Ya— )

(2= YD(x-X)) 3
X2 —-X)

Y=y

B e et B s

(Xl.)'|)

lx-x Xy; -y - (- ¥y Xx; "l)]2

(kg3 + (3 - y,)! < (APERTURE)?
(x3.¥3)
e
(x.y)
/ m=Y21"Y
X -xy

(X|.Y|)

FIGURE 7-B

; (-
min (Im(x-x,) + y, -yl,| —“_#.) + X, -x|) < APERTURE Tests for selecting a line segment-

Scanned by CamScanner



INTERACTION 229

ne, but considers only visj.
Ps through the display file as

: : ming the instruction, it applies the
The first segment which satisfies a test is returned as the result. If ne such

found, then zero is returned.

as does our MAKE-PICTURE-CURRENT rouij
ment ublt;ab-le named segments. For each segment, it ste
detec '

ble. NTERPRET routine, but instead of performin

ahove tests

2.20 Algorithm PICK-SEARCH (PICK, X, Y) Routine

Jocator ) . . . :

[t indicates which segment image is at !ocanon X.Y

arguments  PICK used to retumn the discovered segment

. X. Y position of the simulated pick

Global APERTURE sensitivity of the pick
SEGMENT-START. SEGMENT-SIZE the se
DETECTABLE the segment detectability aut
VISIBILITY the segment visibility attribute

o IMAGE-XFORM a 3 x 2 armay containing t

Local SEGMENT for stepping through the possibl
INSTRUCTIONS for stepping through the

Constant ROUNDOFF some small number greater t
NUMBER-OF-SEGMENTS size of the se

used to simulate a pick with a

gment-table arrays

ribute array

amay

he image transformation

¢ segments 5
display-file segments .
han any round-off error

gment table
BEGIN

X1 «0;

Yl «<0;

FOR SEGMENT = 1 TO NUMBER-OF-SEGMENTS DO
IF SEGMENT—SIZE[SEGMENT] #0

AND VISIBILITY[SEGMENT] AND DETECTABLE[SEGMENT] THEN
BEGIN

BUlLD—TRANSFORMATlON(SEGMENT);
DO-TRANSFORMATION(XI. Y1, IMAGE-XFORM);

PICK < SEGMENT:

FOR INSTRUCTION = SEGMENT—START[SEGMENT] TO

SEGMENT—START[SEGMENT] + SEGMENT-SIZE[SEGMENT] —
I DO

BEGIN

GET-POINT(INSTRUCTION, OP, X2,Y2);
IFOP > 0 OR OP < —3| THEN

BEGIN
DO-TRANSFORMATION(X2, Y2, IMAGE-XFORM):
IFOP < -3]
AND [X — X2| + |Y — Y2| < APERTURE THEN
RETURN;

IFOP = 2 THEN
IF X > MIN(XI, X2) — APERTURE AND

X < MAX(X1, X2) + APERTURE AND

Y > MIN(Y1, Y2) — APERTURE AND

Y < MAX(Y1, Y2) + APERTURE THEN
IF|Y2 — Y1| < ROUNDOFF OR

|X2 — X1| < ROUNDOFF THEN RETURN

ELSE IFMIN((Y2 — YD) * (X = X1)/(X2 — X1)

4

Scanned by CamScanner



TP RER AEVEN

+ Y1 = YJ(X2 = X1) s (y - Y1)/ ys

+ X1 - X)) STy
< APERTURE THEN RETURN: :

X! <« X2:

Y1 —Y2;

END:
END;
END:
PICK — 0: i
RETURN: f
END:
ECHOING

An important part of an interactive system is echoing. Echoing provides the User wigh.
information about his actions. This allows the user to compare what he has gy
against what he wanted to do. For keyboard input, echoing usually takes the form of
displaying the typed characters. Locators may be echoed by a screen cursor dis '
at the current locator position. This allows the user to see the current locator
and to relate its position to the objects on the display. (See Figure 7-14.)

A pick may be echoed by identifying the selected objects on the display. The
selected objects may be flashed or made brighter or, perhaps, altered in color. This
allow the user to determine whether or not he has selected the intended objects. (See
Figure 7-15.)

Buttons, when used to select menu items, can be echoed by flashing or highlight:
ing the selected items. (See Figure 7-16.) {

For a valuator. display of the current setting in numerical form or as a position oa
a scale is possible. (See Figure 7-17.)

It is important that some form of echoing be present, no matter what form it

takes. Without it, the user feels that he is working in the dark and may never feel cor
fortable with the program.

s

played
setting

INTERACTIVE TECHNIQUES

We should include in our discussion of graphics input some of the techniques for Ift
teractively creating and modifying pictures. Let us first consider how to add new e

8 R R ¢

\ J \__ J

FIGURE 7-14
Echoing a location.

Scanned by CamScanner



IMRAC T 20

pl N %18
pobng 4 1%

age. Foint plotting gives the user the capabllity of selecting
cenn. This is usually done by o sarmblnation ol “' I‘f—""’l i pint
used to lcll. which point the user selects, The h"“"'*“lnllnml !
ctly pur\ilulnml. The algorithm to perform point pl,::u'ulul:-“ "":"
the button e\'<"ﬂl‘. us SOON hs it oceurs, the locator may be read. The wlm-’ll o
be used o many different ways. For exmmple, it can give clulln'vinl' v(ly‘l"ll"”.
ons for text, or translations of picture segments, [t oceurs 5o ( I' d ","
orthwhile. Lt

e clements © the im

; A pont on the st

'g“\\l"“ R
The locator v

hafton )
tor s cone

when the I\

awal
oipts can
RNy, positt

L syatem routing for itis w

TON-GET-LOCATOR(WAIT, BUTTON-NUM, X, Y)

7.21 Algorithm AWAILT-BUT
point

User outine (o internctively select a
WAIT the time to wait for a button event

Arguments
BUTTON-NUM for return of the user's button selection
X. Y the point the user selects

BEGIN

AWAIT-BUTTON(WA IT. BUTTON NUM);
READ-LOCATOR(X, Y):
RETURN;
END;
gments. The idea here is

segments, like child’s
minate

utine is to enter line s¢
er with line
¢ whether 10 continue or ter

e Onf use for the poim-plotling ro
“‘wnnegt the successive points selected by the us
lh‘c(’:r“;::;lsh;-d()ls"' drawing. The user can indical
y which button is pushed. (See Figure 7-18.)

A program fragment for point plotting is as follows:

Item |

P

ltem 2

Q 0 ° ° o
ltem 3

FIGURg 7-16

Olng bu
lons and menu selection.

— ]

Scanned by CamScanner



™)
Vilue i 3 u—.L..I‘j
e ——

FIGURE 7.17
Fihoing o value,

——

BLGIN
BUTTON-NUM «- CONTINUE:

WHILE BUTTON-NUM « CONTINUE DO
BEGIN

AWAI'I‘-HU'I'I'ON-(}l-:'l'-L()CA‘I‘OR(WAlT. BUTTON-NuM, Y).
LINE-ABS-2(X, Y): '
MAKE-PICTURE-CURRENT:

END:

END;

A variation of this technig
cally leave a trail of line segm

+ :
Plot a point
+ ’
Plot a second point

=

Connect the points - quURE ?-18
with a line segment Point plotting.

Jue is called inking. Inking makes the locator auto
ents the way a pen leaves a traj] of ink. It does no

Scanned by CamScanner



INTERACTION 233

sh a button for every line segment; instead, a new segment is draw
a sufficient distance. (See Figure 7-19.) i
fragment outlines the inking techniques.

- yser to pY
qu! the locator moves

henever )
“hcneﬂ,e following program

GIN ‘
BB N « TRUE;

pEN-O
READ-LOCATOR(XOLD , YOLD);
WHILE PEN-ON DO

BEGIN
READ-LOCATOR(X. )3

IF|X — XOLD)| + Y — YOLD

BEGIN
LINE-ABS-2(X, Y);
XOLD « X;
YOLD «Y;
MAKE-PICT URE-CURRENT;

END:

UPDATE(PEN-ON);
END;
END;

| > NO-MOVEMENT THEN

The UPDATE(PEN-ON) determines whether inking should cease. This may be
governed by an event, such as lifting the stylus, or by the passing of a time limit or 2
limit on the allowed number of line segments. Note that we could collect the sequence
of locator positions without connecting them with line segments. Such 2 sequence of
points is called a stroke. Inking displays strokes.

Raster displays can extend inking to painting with a brush. A brush is a pattern of
pixel values. When painting, We repeatedly sample the locator position. Each time the
position changes we copy the brush pattern into the frame buffer. The pattern is cen-
tered on the current locator position. The effect is to draw this pattern repeatedly on the
display along the path of the locator. The instances of the pattern usually overlap, re-
sulting in a shape that looks as though the brush has moved across the display leaving a
trail of paint. The shape of the trail depends on both the path of the locator and the

shape of the brush. (See Figure 7-20.)

It is often the case that the user wants to connect endpoints of several lines, and

frequently horizontal and vertical lines predominate. But it can be difficult t0 position
to a single point, and it may be hard to get 2 line perfectly horizontal or vertical.

technique to aid in such constructions is agrid. A grid is a pattern of special po‘ints.
(See Figure 7-21.) Often the user can make these points either visible of invisible.

i)

FIGURE 7-19
Inking.

y

Scanned by CamScanner



CHAPTER sgvgy

FIGURE 7-20
Biish Painting.

What is special is that values obtained from the locator are rounded to the nearest

point. All lines begin and end exactly on a grid point. This makes it easy to ensure th
endpoints meet and that lines are vertical or horizontal. The following program fra
ment draws a grid; it should be placed in its own display-file segment so that it can

made visible or invisible.

BEGIN
FOR X = 0 TO NUMBER-OF-GRIDPOINTS DO

BEGIN
FOR Y = 0 TO NUMBER-OF-GRIDPOINTS DO

BEGIN
MOVE-ABS-Z(X/NUMBER-OF-GR[DPOINTS -DX/2,

Y/NUMBER-OF-GRIDPOINTS);
LINE-REL-2(DX, 0);
MOVE-REL-2(-DX /2, =DX/2);

B R
POEESTRILE R B e e ok s s
+t++++++++++++
R e
+++++++++++
F++++++ A HE A
++++++++++++TF
+++++++++++
++++++++4++++
r4+ ++++++++ T
+++++++++F++ T
+++++++++ T525E7n

Scanned by CamScanner



> Y
1

INTERACTION 235

LINE-REL-2(0. DX).
END:
END:
END:
e frag
In ™ o display 3

o g0 dISPIEY ST
Poml:d 1 each grid point. . . . .
imag The rounding 10 the nearest grid point would look like the following:

ment, NUMBER-OF-GRIDPOINTS is a count of how many grid
cross the screen and DX is the width of a small cross which will be

£ AD-LOCATOR(X. Y):

R X * NUN[BER-OF-GRIDPOINTS + 0.5) / NUMBER-OF-GRIDPOINTS;
NUMBER-OF-GRIDPOINT S + 0.5) / NUMBER-OF-GRIDPOINTS;:
raster displays allow a technique called rubber band

user to see what a line will look like before fixing it in
the user adjusts the locator to
button when the locator
tly drawn between the

h and some
allows the
cess is the same as line plotting;
the next line segment. The user presses a
d. The difference is that a line is constan
locator. As the locator moves, the line is redrawn in a new posi-
a rubber band stretched between the fixed endpoint and

vector refres
jines. This technique
lace. The basic pro
place the cndpoi.n.t of
is correctly positione
Jast endpoint and the
tion, giving the appearance of
the locator point. (Se€ Figure 7-22.)

: j
- FIGURE 7-22
Rubber band lines.

| A

Scanned by CamScanner




=
236 !

CHAPTER spvey

This technique is difficult 1o

tem with implement in a straightforward Manner ; 3

g 3 c(;g;iidgd:;g either the abi]it}f to alter portions of the display fj|e
gments, or the abilit

C}osed Segment. It can, however, be done by using the image transfq

single fixed line in a closed segment to create the rubber band line, ang anothe, ¢
Segment to hold the user’s final drawing. The details of this are left as ap CXerc?r oper
o The user might wish not only to create new images but to alter anq adjus:ee' ,
Ing lm'flges as well. The first thing necessary is often identifying which, part Ofxtl
image is to be changed. This is naturally a pick operation. Suppose the USer wang r
remove portions of the image. An AWAIT-PICK operation will determine Which g ’
ment should be removed and the SET-VISIBILITY routine can make it invisipy
Notice that this technique cannot be used to bring the item back, since ope cannot i
what one cannot see. (See Figure 7-23.) )

Another desirable modification might be a change in the image transformatioy
For example, the user may wish to change the position of a segment’s image. [t i uste
ally most convenient for the user to indicate the new position by pointing at it wit, 5
locator. The user can use a pick to select the segment to be moved and then select some
point on the image with the locator. Finally, the locator is moved to the place to whe

the point on the image should be moved. (See Figure 7-24.)

A program fragment to do this is given below. INQUIRE-IMAGE-TRANSLA-
TION(TX., TY) is a routine which returns the current image translation parameters.

. [g

. ) Wlth()m o 3}

y to append new instructions ontq 2 prey; o
10

Matiop, |,

n o

Select a segment

O

FIGURE 7-23

Make it invisible Selecting a segment with a pick.

Scanned by CamScanner



e [

INTERACTION 237

Locate position

6

FIGURE 7-24
Move object Positioning.

BEGIN

AWAIT-PICK(WAIT, SEGMENT);
AWAIT-BUTTON-GET- LOCATOR(WAIT, BUTTON-NUM, XOLD, YOLD):

AWAIT-BUTTON-GET-LOCATOR(WAIT, BUTTON-NUM, XNEW. YNEW);

lx\QUlRE-IMAGE-TRANSLATION(SEGMENT TX, TY),
SET-IMAGE-TRANSLATION(SEGMENT, TX + XNEW — XOLD,

TY + YNEW — YOLD);
MAKE-PICTURE-CURRENT;
END:

On a vector refresh and some raster displays. the image can be continuously
shifted and redrawn to follow the locator movements. The image appears to be at-
tached 0 the locator. The user can see how the picture Wil look before fixing the new
Image translation values. This technique is called dragging. (See Figure 7-25.)

An outline for a possible dragging procedure is given below.

BEGIN
AWAIT-PICK (WAIT, SEGMENT);
AWAIT-BUTTON-GET-LOCATOR(WAI
DRAGGING « TRUE:
WHILE DRAGGING DO

L BUTTON-NUM, XOLD, YOLD);

Scanned by CamScanner



‘-d‘
238 CHAPTER SEVEN -:

BEGIN

INQUIRE-IMAGE-TRANSLATION(SEGME
READ-LOCATOR(XNEW, YNEW):
IF XNEW > XOLD OR YNEW # YOLD THEN
BEGIN
SET-IMAGE-TRANSLATION(SEGMENT, TX 4 XNEW 3
TY + YNEW — YOLD); = Xopp
XOLD « XNEW; '
YOLD «— YNEW;
MAKE-PICTURE-CURRENT:
END;
UPDATE(DRAGGING):
END:
END;

NT.TX, Ty,

The UPDATE(DRAGGING) routine is used to stop the dragging process This
< AIS

usually done by detecting the occurrence of some event, but might also be triggered
the passing of a time limit. b

Changes in orientation and scale may also be done interactively. The techniques’
are basically the same as for changes of the translation parameters, except that the py |
ural input device might be a valuator instead of a locator. A valuator may be simulated.
using a locator and a scale drawn on the screen (usually parallel to the x or y axis). The

SR

_ Y,
~

\

& j FIGURE 7-25

Dragging.

Scanned by CamScanner



INTERACTION 239

rsor can be positioned on lhe- scale by the user and this position can then be
Jocator C:into a valuator value. (See Flgure 7-26 and Plate 3)
on\cnc

interactive program may provide the user with seve
An

segd with the buttons by assigning a button for each optio
made

by pressing the appropriate bl'mon. We may wish to in
tion ypnd what the corresponding buttons are. Such 5
options Sa e Figure 5-7 and Plate 1.) When there are a large
menu. (orixe excessively long and hard to read. To avoid {
can btt‘cche ral smaller submenus. A top-level menu can b
up lmi(r)xing the desired item. Thus menus can be structure
C?:xmscle‘-“i on process one might have to step through sev
Plhc final selection, but at each level the menu is small an

Menus should be placed in a segment or segment
ture so that they can be made invisible when no longer
convenient to transfer his attention back and forth betw
locator (or pick). It’s for this reason that a light pen or
switch built into its tip or handle. To avoid switching ba
devices, we may wish to use the light pen or stylus to i

n. The user makes a selec-
form the user Just what his
list of Options is called 3
number of Options, a menu
his the menu cap be broken
€ used to select the submenu
d into a hierarchy. In a com-
eral levels of menus to reach
d the selection easy.

s different from the main pic-
needed. A user may find it in-
een buttons (or keyboard) and
tablet stylus will often have a
ck and forth between different
ndicate the desired menu item.

1

such selection items are called light-buttons. They behave as buttons, but do not require

the user to shift his attention from the screen.

FURTHER READING

Description and classification of graphics input devices are foynd in [QHL78]. ‘Early
descriptions of tablets are given in [DAV64] and [TEI68]. One input device we did not

Q

FIGURE 7-26
Using scales.

i
Scanned by CamScanner



240 *‘

CHAPTER SEVEN

7 \
e ITEM 1

e ITEM 2

® ITEM 3
o ITEM 4

K j FIGURE 7-27
A menu.

mention is a touch panel, which acts as a locator attached to the display s
tions can be indicated by touching the screen with a fi ' 0 that pog
‘ y touching the en nger or with a speci) .
example of this class of device is described in [NAG85]. A version of a mougge"- ‘\f!
detects changes in position optically is described in [LYO82]. An even qUe;"h
graphical input is suggested in [SPR75]. Graphic interaction techniques are dCSC;' r
in (BER78]. [FOL74], and [NEW68]. A detailed model of device-independen; vi '.
input devices is given in [ROS82]. A description of virtual input is given in [WAL7
In some cases. the virtual devices we have described may not be a good match 1o g
actual devices; an alternative approach is to describe devices by the state they managa
the events they notice, and the actions they cause [ANS79]. A discussion of some :
teractive techniques for raster displays and encodings of raster data to support th
may be found in [BAU80]. The distinction between the handling of an interaction and
the applications program which uses the information is made clear in [KAMS3]. The
use of picks in interactive graphics is described in [WEL80]. An algorithm for simu
ing a pick with a locator is given in [GAR80]. Simulating valuators with a locator]
described in [EVAS81] and [THO79]. In [TUR84] a distinction is made between pro
gram variables (set by assignment statements) and graphics variables (set B
hardware). An extension of graphics systems to allow attributes and coordinates 0
graphics variables allows the display to be dynamically altered for interaction. Issue
in interactive graphics and a bibliography are given in [THO83]. ’

[ANS79] Anson, E., **The Semantics of Graphical Input,’” Computer Graphics, vol. 13, no. 2, pp- 13-4

(1979). 3
[BAUSO] Baudelaire, P., Stone, M., **Techniques for Interactive Raster Graphics,” Computer Grop™
vol. 14, no. 3, pp. 314-320 (1980).
[BER78] Bergeron, R. D., Bono, P. R., Foley, J. D., **Graphics Programming Using the CORE S)'slc
ACM Computing Surveys, vol. 10, no. 4, pp. 389-394 (1978). _vion D
[DAV64] Davis, M. R., Ellis, T. O., **The Rand Tablet: A Man-Machine Graphical Communicalio s
vice,”” AFIPS FJCC. vol. 26, pp. 325-331 (1964).

(EVA81] Evans, K. B., Tanner, P. P, Wein, M., ‘‘Tablet-Based Valuators That Provide One.
Degrees of Freedom,”* Computer Graphics, vol. 15, no. 3, pp. 91-97 (1981).
(FOL74] Foley. J. D., Wallace, V. L., **The Art of Natural Graphic Man-Machine Conversa

ings of the IEEE, vol. 62, no. 4, pp. 462-470 (1974). - [nterd i
[FOL84] Foley. J. D., Wallace, V. L., Chan. P, **The Human Factors of Computer GmPh":i) ;
Techniques,’" IEEE Computer Graphics and Applications, vol. 4, no. 11, pp. 1348 (198 o o
[GARB0] Garret, M. T., ‘“‘Logical Pick Device Simulation Algorithms for the CORE System
Graphics, vol. 13, no. 4. pp. 301-313 (1980).

Two, of hre

tion,” Pros

Scanned by CamScanner



