THREE
DIMENSIONS

INTRODUCTION

Some graphics applications are two-dimensional; charts and graphs, certain maps, a
some artist's creations may be strictly two-dimensional entities. But we live in
dimensional world, and in many design applications we must deal with de _
three-dimensional objects. If the architect would like to see how the structure will actt
ally look, then a three-dimensional model can allow him to view the structure fromd
ferent viewpoints. The aircraft designer may wish to model the behavior of th
unc?er the three-dimensional forces and stresses. Here again, a three-dimensional
scngtion is .required. Some simulation applications, such as docking a space hip
landing an ‘anrplane, also require a three-dimensional view of the world. 3
sionallgbj-l;ft:_h\?:i; :l/:: es:[zzlrlldgeneralize: our system to handle mod(?ls of three- n
three-dimensional space. Since (t)}l:r i nsforrnatnons t,o allow translation 'and rotd i

: € Viewing surface is only two-dimensional, W&

consi tecti . .
aralll:tl:r “?y s of Projecting our object onto this flat surface to form the image- B¢
P And perspective projections will be discussed.

3D GEOMETRY
Plest object is, of course, the point. AS

a point by establishing a coordinate SY*=
We will need an additional coordinate .;,

case pf two dimensions, we cap specify
and listing the coordinates of the point
the third dimension (three axes in all '

Scanned by CamScanner

1

THREE DIMENSIONS 245

 height a1es X and y, respectively, to comespond to the
o 4xis, for depth. is named the z axis. We have a chojce
7c b given positive values. (See Figure §-1.)
7% 1 Lot i / i :
nﬁ, orieniation of -me CWM{qaw Sy s_tem_ls determined as follows. If the thumb
" band points in the positive z direction as one curls th

- . e fingers of the ri
7 o il:c"_A‘ ; g of the nght
o bf{-"m « into y. then the coordinates are called a right-handeq system. If, however,

y o points in the negative z direction then it is lefi-handeq Whereas most of

¥ 1 gk B right-handed syst'em. computer graphics often prefers the left-handed
E’i-';.:s We shall ad(.)p! the nght:handed system for our use. (The right-handed
v; i normally used in mathemalxcs.. although in computer graphics we also find
§:7;ﬁ-h&ﬁ ded system in use so that objects behind the display screen will have posi-
ht,wl values.) Any point in space may now be specified by telling how far over, up,
'5_';0m 1 is from the origin, where the three axes intersect. These distances are written
., e ordered triple (. 3. 2). (See Figure 8-2.)

m'o-dimensional case,
as to which end of the

Tid
P

" o
e

-

y axis
-1
X axis
|
liis
Right-handed
y axis
z axis
]
X axis
FIGURE &-1 ded coordinate
d left-han
Right-handed a0
-1 systems.
Left-handed

Scanned by CamScanner

246 CHAPTER EIGHT

Yy oaND

X axis

X FIGURE 8-2
s Position of the point (x, y, ;

We can use the coordinates to specify a line. In two dimensions a line was
by an equation involving x and y.

)’—Y|=Y2_)’l (
X — X, Xy — X,

This equation states that as x changes, the y coordinate changes proportionately.
ratio of the change in y to the change in x is always the same. In three dimensions,

we move along the line, both y and z coordinates will change proportionately to x.
line in three dimensions is given by a pair of equations

Y=Y _Ya-y

X=X Xxp-x
Z-Zl Zz—zl

It requires the coordinates of two
Y2. Z3). Thus it still takes two po
Symmetrical expression for a line
is expressed in terms of a paramet

points to form these equations: (X, y;. Z)) and (X:
Ints to specify a line, as we might expect. A mor

s the parametric form, where each of the coordinales
eru.

X = (x2 - x,)u + xl
Y =02 =y) + Y, 8.
= (22 - Zl)u + Zl

We shall also want o i .) o ofihe
formm. | work with planes. A Plane is specified by a single equation

4
AX+By+Cz+D =g &

Scanned by CamScanner

| THREE DIMENSIONS 247
one of the constants (for example A

if it is not zer
(0] m ..
n so that) may be divided out of

Notice the!
mCCquatlo
x+By+Cz+D, =90

(8.5)

an equation for the same plane when

s
B,=B/A, C =C/A, and D, =

1= DA (8.6)

fore requires only three constants B, C}, and D, to specif
go:cfrsr a pan‘iCUIa_r plane.ma)t be.de.ter.mined if we knos they;:zrlc)ili:zégt? (:}?:ea -
poins (not all In a line) Wth.h lle. within it: (x,, y,, 2,){x,, y,, z,), and (X3, y Z)e
We can determine the equatlo’n n ‘h‘_’ following manner. Since each poinst,is 3m t;e.
plane, it must satisfy the plane’s equation

X1 + Bly.l + Clzl + Dl =0
X2 + BIYZ + Clz2 + D1 =0 (87)
X3 + B1y3 + CIZ3 + Dl =0

We have three equations to solve for the three unknowns B,, C,, and D,, and standard
algebra techniques for solving simultaneous equations will yield their values.
Another normalization is

A,=A/d, B,=B/d, C,=C/d, ad D,=D/d (88)

where
d = (A2 + B2+ CH'? (8.9)

The value of this selection is that the distance between a point (X, ¥, 2) and the plane is

given by

L =|A2x + Bzy + C2z + D2| (810)

The sign of the quantity in the absolute value bars indicates on which side of the plane

the point lies. This is an i ion 1.30 for lines.

- extension of Equation 1.3U Tor lines-. -
~ Another way of specifying a plane is by a single point in the p}anzl a}:g :1‘; ::::l
b Perpendicular to the plane. A vector perpendicular to a plane ‘j ¢ cror, and (Ko
Yector. We can call [N, N, N the displacements for the normal vector, P

¥ 23) are the coordinates of a point in the plane. (S€€ g [(
If fX, Y, Z) is to be an arbitrary point in the plane, then quation for the plane by

1:) is a vector parallel to the plane. We can derive an the sum of the products
0;1n8 ?hc vector dot product. The dot product of two chtor_si lSA ¢ A an =
lheg corresponding components. For example, if A = 17
* ¥ B,), then their dot product is (8.11)
A-B =AB ¥ ABy ¥ AP ths of the tW0 vectors
].h° result of th ' the product of the leng
t e dot product is equal t0 5.)

. ¢ 8-5-
S the Cosine of the angle between them. (Se€ Figure

Scanned by CamScanner

1
248 cuapTER BiGHT

il
1 e FIGURE 8-3

be—d,— > A vector in three dimensions.

A-B = |A||B|cos® 8.1

Now the angle between any vector parallel to a plane and the normal vector to
plane is 7/2 radians (because that is what we mean by a normal vector). Since
cosine of w/2 1s 0, we know that the dot product of the normal vector with a vect
parallel to the plane is 0. We can find a vector parallel to the plane by taking the diffe
ence of two points within the plane. Therefore, if '

N; (x — Xp) + Ny (y=—yp) + N,(z—-12)=0 (8.13

is a true equation then the vector formed by the difference between (x, y, z) and (x,
¥p» Z,) must be parallel to the plane. And since (X, ¥, Zp) IS in the plane and we can
get to (x, y, z) by moving along a vector parallel to the plane, we know that (x, ¥, 2))is
also a point in the plane. (See Figure 8-6.) So Equation 8.13 is then an equation for the
plane.

FIGURE 8-4
A vector normal 102 plane-

Scanned by CamScanner

THREE DIMENSIONS 249

FIGURE 8-5
A The angle between two vectors,

Now that we know hOW_ to express points, lines, and planes in three dimensions, let us
consider algorithms which allow the user to model three-dimensional objects. We have
rovided the user with commands for moving the *‘pen’’ and drawing lines and poly-
gons in (WO dimensions. Extending these operations to three dimensions will mean re-
aues(ing the user to provide three coordinate specifications instead of two. At some
time in the display process We must project these three coordinates onto the two screen
coordinates, but We shall place this burden on the DISPLAY-FILE-ENTER routine and
postpone its discussion for the moment. As in the case of two dimensions, we picture
an imaginary pen or pointer which the user commands to move from point to point. We
save this pen’s current position in some global variables, only now three variables are
required: DF-PEN-X, DF-PEN-Y,and DF-PEN-Z, one for each of the three coordi-
nates. The three-dimensional LINE and MOVE algorithms are as follows:

ﬁ [N, N, N,

jane is 90 d¢B™® o

FIGURE 8.6

angle between a vector normal

the
to a plane and a vector pamllcl to the P

Scanned by CamScanner

250 Chaprer EIGHT

8.1 Algorithm MOVE-ABS-3(X, Y, Z) The 3D absolute move
Arguments X, Y, Z world coordinates of the point to move the pen to
Global DF-PEN-X, DF-PEN-Y, DF-PEN-Z current pen positjon
BEGIN

DF-PEN-X « X;

DF-PEN-Y «Y;

DF-PEN-Z < Z;

DISPLAY-FILE-ENTER(1);

RETURN;
END;

8.2 Algorithm MOVE-REL-3(DX, DY, DZ) The 3D relative move
Arguments DX, DY. DZ changes to be made to the pen position
Global DF-PEN-X. DF-PEN-Y, DF-PEN-Z the current pen position
BEGIN

DF-PEN-X <« DF-PEN-X + DX;

DF-PEN-Y < DF-PEN-Y + DX;

DF-PEN-Z <« DF-PEN-Z + DZ;

DISPLAY-FILE-ENTER(1);

RETURN;
END:

8.3 Algorithm LINE-ABS-3(X, Y, Z) The 3D absolute line-drawing routine
Arguments X.Y, Z coordinates of the point to draw the line to
Global DF-PEN-X, DF-PEN-Y, DF-PEN-Z the current pen position
BEGIN

DF-PEN-X <« X;

DF-PEN-Y <« Y;

DF-PEN-Z «— Z,

DISPLAY-FILE-ENTER(2);

RETURN;
END;

8.4 Algorithm LINE-REL-3(DX, DY, DZ) The 3D relative line-drawing routine
Arguments DX, DY, DZ displacements over which a line is to be drawn
Global DF-PEN-X, DF-PEN-Y, DF-PEN-Z the current pen position
BEGIN

DF-PEN-X < DF-PEN-X + DX;

DF-PEN-Y «— DF-PEN-Y + DY:

DF-PEN-Z < DF-PEN-Z + DZ;

DISPLAY-FILE-ENTER(2);
. RETURN;
END;

.[ional
Polygon commands can also be extended by simply processing _a“hzld;ie in?
array of coordinates. We assume that the user will provide coordinates whic lowing
plane, but a check could be placed in the algorithms to guarantee it. The fo
the three-dimensional versions of our routines for entering polygons-

Scanned by CamScanner

THREE DIMENS oy 251
;5 Algorithm POLYGON-ABS-3(AX, AY, AZ,N) e 3y Poly
gon-draw

rou[iﬂc
Argume

ats N the number of polygon sides =

AX, AY, AZ arrays of the coordinates of (he vertice
DF-PEN-X, DF-PEN-Y, DF-PEN-Z the curre i

bal)
Glo I for stepping through the polygon sides

Local

BEGIN
[FN < 3 THEN RETURN ERROR *SIZE ERROR';

DF-PEN-X < AX([N];
DF-PEN-Y < AY[NJ;
DF-PEN-Z «— AZ[N];
DISPLAY-FILE-ENTER(N);
FORI = 1 TO N DO LINE-ABS-3(AX[I], AY(I], AZ[I));
RETURN;
END;

Nt pen position

8.6 Algorithm POLYGON-REL-3(AX, AY, AZ, N) The 3D relative polygon-drawing
routine
Arguments N the number of polygon sides
AX, AY, AZ arrays of displacements for the polygon sides
Global DF-PEN-X, DF-PEN-Y, DF-PEN-Z the current pen position
Local I for stepping through the polygon sides
TMPX, TMPY, TMPZ storage of point at which the polygon is closed

BEGIN

IFN < 3 THEN RETURN ERROR ‘SIZE ERROR’;

move to starting vertex

DF-PEN-X « DF-PEN-X + AX[1];

DF-PEN-Y «<— DF-PEN-Y + AY[l];

DF-PEN-Z < DF-PEN-Z + AZ[1];

save vertex for closing the polygon

TMPX « DF-PEN-X;

TMPY « DF-PEN-Y;

TMPZ « DF-PEN-Z;

DISPLAY-FILE-ENTER(N);

enter the polygon sides

FORI = 2 TO N DO LINE-REL-3(AXIL], AY (I}, AZ{I]);

close the polygon

LINE-ABS-3(TMPX, TMPY, TMPZ);

RETURN;
END:

DT ‘
TRANSFORMATIONS

Usin
gt
Objec he ab

Y) is
. X wlng of hl
. _gimensional ‘‘draw :
OVe routines the user can construct a three dim o-dimensional image

. _ . w :
resp 1€ actual display surface is two-dlmem?na;i 'Z:'ec::t. e process of find
ing Whi "ds to 4 particular view of the three-dimension amil surfaces of the object 1IN

ich v .
¢h points on the flat screen correspond to the lines

Scanned by CamScanner

252 CHAPTER EIGHT "y | |
; w it is useful to translate, ¢y,
. have seen ho v Scale, gn

rmation. We

volves a viewing transfo idering the generalization of these transform,

~ nsi .,
s II begin by €0 arid fonf o't .

rotate images. We S;?ms \%/c shall then extend our transformations to include Para]je

. imen .

tions to three di

and perspective projections.

sx O
0 Sy

or in homogeneous coordinates,

1]
>
ol ©
- O O

Sx 0 0
0 sy 0
0 0 sz

If using homogeneous coordinates, a 4 X 4 matrix is required.

Sx 0 0 O

4
0 o g 8.14)
0 0 0 1

Transformation of a point is done by multiplication by the matrix, just as in Chapter 4. |

5x 0 0 0
le:lel=xyZW Osyoo 5,2 W
I l 0 0 Sz 0 =| SxX Syy z 15)
0 0 0 1 (8.

f the homogeneou i ' Jation values: |
This will still be the case f g $ coordinate matrix for trans

or three dimensjon - x 4 instead ©
3 X 3.To translate by t, in th *» only the matrix is now 4 direcs

. . e X d. 1 4 . . . c Z
tion, we multiply by the mutr ifection, t, in the y direction, and t, in th

X
1 0 0 o
0 0 1 0
x ty 1z 1

Scanned by CamScanner

- L .

THRep DIMENS e0q 253
n we considered rotation of an object in tw
whe

. about the origin. © dimensions,

Cos@ sing
~sin@ cosg

We can gencra]ize this to a. t.hree-dimc?nsional rotation aboy
shout the Z axis, all z coordmf_nes remain unchan
e the same as in the two-dimensional case,

A matrix which does this in homogeneouy

t the z axis. I
ged, while the X [

(See Figure 8-7.)
$ coordinates g

We rotate

and y coordinates be-
have

Cos® sing o g

-sing cosg 0 0

Rz = 0 0 10 (8.17)

0 0 01

In the above rotation, We are thinking of the axes as fixed while some object in the

space is moved. We could also think in terms-of the object being fixed while the axes

are moved. The difference between these two interpretations is the direction of rota-

tion. Fixing the axes-and rotating the object counterclockwise is the same as fixing the

object and moving the axes clockwise.

Rotation about the x or y axis is done by a matrix of the same general form as in

Equation 8.17, as we might expect from the symmetry of the axes. To rotate about the
X axis so that y is turned into z, we use the homogeneous coordinate matrix

1 0 0 0

0 cosg sing O
& .
Rx = 0 -sing cosf O ®.18)

0 0 0 1

y axis
X axis
FIGURE 8-7 .
i Rotation about the z axis:

Scanned by CamScanner

254 CMAPTER BIONT

y axis

‘ X axis

FIGURE 8-8
Z axis Rotation about the x axis,

(See Figure 8-8.) To rotate about the y axis so that z is turned into X, we uge the
homogeneous coordinate matrix

cosg QO -sin® 0
Ry < 0 1 0 0
Y=|sing 0 coso 0
0 0 0 1

(See Figure 8-9.) i

Three-dimensional transformations are useful in presenting different views of an
object. An example of a program which lets the user interactively specify the transfor-
mation parameters for viewing a molecule is shown in Plate 3. Since we will find
translation and rotation about an axis useful in creating a viewing transformation, we|
will develop algorithms for creating transformation matrices involving these OPC"“';
tions. We shall do this by means of a routine which creates an identity transformation =
matrix (NEW-TRANSFORMATION-3) and routines which have the effect of multiply- =
ing the current transformation matrix by a matrix for translation or rotation about on¢ t
of the principal axes. We will use the homogeneous coordinate techniques. For the ’
viewing transformation, we can arrange matters so that the fourth column is al¥a)® |
three Os and a 1. Knowing this, we do not actually need to store these numbers: 508 |
4 X 3 array of storage is all that is needed. We will call this transformation a7 |
TMATRIX. The following algorithm sets it to the identity transformation. '

: : ixto |
8.7 Algorithm NEW-TRANSFORM-3 Initializes the viewing transformation matnk = &
the identity i

Global TMATRIX a 4 X 3 transformation matrix array

Local I, J for stepping through the array elements
BEGIN
FORI = 1TO4 DO
BEGIN

FORJ = 1TO 3 DO TMATRIX(], J] « 0:

Scanned by Camcanner

“

|

THREE DIMENSIONS 288

¥ FRYs]

X axis

FIGURE 8-9
Rotation about the y axis.

s

IF1 # 4 THEN TMATRIX[L, 1] « L;
END:
RETURN;
END:
The next algorithm has the effect of multiplying the TMATRIX array by a trans-

Jation MALtrXx.

8.8 Algorithm TRANSLATE-3(TX, TY, TZ) Post-multiplies the viewing transforma-

tion matrix by a translation
Arguments TX, TY, TZ the amount of the translation
Global TMATRIX a 4 X 3 transformation matrix array

BEGIN
TMATRIX[4, 1] < TMATRIX[4, 1] + TX;
TMATRIX[4, 2] «— TMATRIX[4, 2] + TY;
TMATRIX (4, 3] « TMATRIX[4, 3] + TZ:
RETURN;

END;

Algorithms for rotating about each of the major axes are given below. The argu-
NS are the sine and cosine of the rotation angle rather than the angle itself.

8.9 Algorithm ROTATE-X-3(S, C) Post-multiplication for a rotation about the x axis

(y into 2)
g;gzmcms S, C the sine and cosine of the rotation angle
Loi;ual TMATRIX a 4 X 3 transformation matrix array
I for stepping through the matrix elements
BEGIN T™P lemporary storage
BEGIN

*S;

TMP — TMATRIX(I, 2] + C — TMATRIX[L 3] * S;
RIX([I.3]* G

TMATRI)([I. 3] «TMATRIX]I, 2] + S + TMAT

A ,

Scanned by CamScanneﬁr

256 cuarter EIGHT

TMATRIX[I, 2] « TMP,
END;
RETURN;
END;

8.10 Algorithm ROTATE-Y-3(S, C) Post-multiplication for a rotation aboy, - ,
(z into x) ’

Arguments S, C the sine and cosine of the angle of rotation
Global

TMATRIX a 4 x 3 transformation matrix array
Local 1 for stepping through the matrix elements

TMP temporary storage
BEGIN
FOR1 = 1TO4 DO
BEGIN

TMP «— TMATRIX(I, 1]+ C + TMATRIX(], 3]+S;
TMATRIX[I, 3) « —

TRIXIL 1) + S + TMATRIX]L, 3). .
TMATRIX[L, 1] «— TMp;
ND.

RETURN;
END;

841 Algorithm ROTATE-Z-3(S, C) Post-multiplication for a rotation about the 12
(x into y)
Arguments S, C the si

Global TMATRIX

Local 1 for stepping through the matrix ele

ments
T™P temporary storage
BEGIN .

FORI = 1TO4 DO
BEGIN

TMP G—TMATRIX[I. 11+C - M2 ss:
TMATRIXII. 2] 1—TMATRIX[1. 11+8S + TMATRIX 2]+ C;
TMATRIX[I. 1] <TMp; ’
END:
RETURN;:
END:;

re familiar with three-dimensional msformnﬂ"[
ave developed transformations for rotation about!
_ _ general any line jp Space can serve as an axis for rotation. The pro :
lem is to derive a transformatiop

. CTIve a tran Matrix for a rotation of angle 6 about an arbit¥
line. We will build this transformatiop, ou
tered. We shall perfo

t of those which we have already enco ¢ y

M 2 translation to move the origin onto the line. We shall m)

make rotations about the x and y axes to align the z axis with the line. The ;ota "

about the line then becomes a rotation aboyg the z axis. Finally, we apply inverse *

formations for the rotatjons about the y ang x axes and for the translation to resto®
€s to their original Orientation, (See Figure 8-10.)

Scanned by CamScanner

THEEE DBENTONS 287

L’_/—-\

Ct /

FIGU (k)
@) |
sof
gl hout x untll the aus @
GU is. (b) first transl is 10 the ongin. (€) romc‘a» gy
)% about an arbitrary axis,

. ; & oure fined
- bou the z axi . o this figure it
mtaton is in the xz plane, (d) rotate af ﬁ;i:gul::lobjcc(and rotating the axes (we have |Nm " and () -
tout 2 (the axis of rotation) instead O

i erse the rotatien 3
the axes and rotated the object), (f) reverse the rotation about ¥, (8) FE¥€

; verse the translation.
; the
/ . ‘hich is to be
b . line which1s
/ orthe li : :
Ly We should decide upon a convenient mpm%;?l;:;ol‘;:e's direction, 1§ sufﬁC'e\t:ti:(:
W ' . . wi 'n[o S
}:’{ = e cypoit o the B togethC; rm for our purposes- The po! 1e~p0f rota-
}!;" i o Thi wil prove 10 ¢ * &) lioon will tell us the coxjmct 32(g|ons for th
Vi ;?fom’allo.n for the translation, and the ?}:fcform m the parametri eq
:¢’/'/f % for aligning the z axis. We can find -
": ; ¢ in the following manner. Given the line
!{;\

Scanned by CamScanner

(0.8.C) (A.B.C)

Z axis

288 CuurTER BIONT
X = Au + X1
y = Bu + ¥,

Z=CU+Z|

a point on the line is (x,,¥).2)) and the direction is specified by the vector of [A R
We can now determine the transformation matrix needed for our general oy

The initial translation to move the origin to the rotation axis should be

0
0
1

-0 OO

After this translation, the point on the line (X, y;, z,) will be moved to the origin,
will also require the inverse of this translation to place the origin back at jts original 3

sition once our rotations are completed. This is just a translation by the same amount i
the opposite direction

- O OO
=

translated so that the point (0, 0,0
the axis. Now imagj ini

gment formed on the yz plane. The shadow will extend from
(0.0.0) 10 (0, B, C). (See Figure 8-11.) ’

\1

T X axis FIGURE 8-11
Projection of a line €@
plane.

men‘ o[lw

Scanned by CamScanner

- et e Sl o TR .
B T
hs
[
F

THREE DIMENsI0NS 259

s Shac cnow that the length of the shadow V will be

W \
V = (B2 + cyI2
| - (8.23)
4 from the definition of the sine and cosine, we see that
& SinI = B/v
cosl = C/V (8.24)
The rotation about the x axis should be
0 cosI sin] ¢
Rx = 0 -sin] cosI 0 (8.25)
0 0 0 1 7.
So we have
Ry =0 C/V B/V 0 836
0 -B/V C/V 0
0 0 o 1|

The inverse transformation is a rotation of equal magnitude in the opposite direction.
Reversing the direction of the angle changes the sign of the sine elements, but leaves

the cosine elements unchanged.

1 0 0 0

Ryt _|0 C/V -BIV 0 (8.27)
X 0 B/V C/V 0
0 0 0 1

y axis

B
(O,B.C)
| \%
}'
5 i ‘
‘)/ x axis

I / ¢ FIGURES-Z rojection:
E) Paramete
r F

Scanned by CamScanner

260 cHaPTER BIGHT

Now we can picture our rotation axis s lying in the xz plane. (See Figure 13
The rotation about the x axis has left the x coordinate unchanged . W, alﬂ .
that the overall length of the segment o0
L=(A"+B*+)
1s unchanged. The z coordinate will be

(LZ e AI)UI Lo (B2 Xe C2)lf2 =V
We wish to rotate by an angle J about the y axis so that the line segment aligng “m;
Z axis.

sin] = A/L
cos) = V/IL
The rotation matrix will be
cos] Q0 sinJ 0
Ry=| 0 1 0 o
=SmJ Q cos] @
O o o 1
VI/IL 0 A/L 0
- 0 1 0 o
-A/L 0 V/L 0
0O o 0 1

i S1gns are different in Equation 8.31 from those in Equation 8.19 because we ar
rotating from x into z instead of from z into x. The inverse for this transformation is

-AIL 0
Ryt .| 0 1. 0 o (8.3

AIL 0 V/L 0

0 o0 1

Y axis

A .
X axis
j \
/V

Raxe Rotation axis
- FIGURE 8-13
The rotation axis lying within the xz plane,

Scanned by CamScanner

THREE DIMENSIONS 26]

. .\\\“
»

: ition to rotate by an angle 6 about th i is Si
¢ are in a position o I« ; : € arbitrary axis. Sin
Fi"’],ly ‘:d the arbitrary axis with the z axis, a rotation by 6 about the 2 axisciz

“bavc
peded: cosg sing 0 0
_|-sin@ cos® 0 0
Rz 0 0 10 (8.33)
0 0 0 1

al wransformation for a rotation 8 about an arbitrary axis is given by the prod-
transformations.

Ry = TR,R,R,R,'R;'T"! (8.34)

¢ actll
et of the 8OV

PARALLEL PROJECTION

We have talked about creating aqd transforming three-dimensional objects, but since
our viewing surface is only two-dimensional, we must have some way of projecting our -
tree-dimensional object onto the two-dimensional screen. (See Figure 8-14.)
Perhaps the simplest way of doing this is just to discard the z coordinate. This is
aspecial case of a method known as parallel projection. A parallel projection is formed
by extending parallel lines from each vertex on the object until they intersect the plane

y axis

L X axis
3 D object
s

Y axjs

\ FIGURE 8-14 |
X axis A three-dimensional object and its

Proiece: i
OJection of object projection.

4

Scanned by CamScanner

262 CHAPTER EIGHT

: intersection is the projection of the vertex . 4
o l-he screcn.‘Th g p<’)m.t of mtd::fs which co?'respond 10 connections \;/c b
projected vertices by 1‘:‘; shgm N the g
‘ igure 8-13. E
Obmti)(‘ic:picgi al case of discarding the z coordinate ‘is the case where lhe," A
viewing surface, is parallel to the xy plane, and the lines of projection gre py
the z axis. As we move along these lines of projection, 07.11)! the z coordinate
x and y values remain constant. So the point of intersection 'with the view;
has the same x and y coordinates as does the vertex on the object. The Projecta
is formed from the x and y coordinates, and the z value is discarded.
In a general parallel projection, we may select any direction for the lin
jection (so long as they do not run parallel to the plane of the Viewing surfa
pose that the direction of projection is given by the vector xp ¥, z,] and
image is to be projected onto the xy plane. If we have a point on the object ag (x.
z;), we wish to determine where the projected point (x,, ¥2) will lie. Let y
writing the equations for a line passing through the point (x, Y. 2) and in the dir
of projection. This is easy to do using the parametric form

X =X + xpu
y=)’l+ypu
z=zl+zpu

y axis

Z axis \

X axis

Y axis

-15
t\ X axis FIGURE 8

. 'on‘
Projection . A parallel project!

Scanned by CamScanner

R
L4
THREY DIMENSIONS 263
< this line intersect the xy plane? That j
In here st]) plane hat 18, what ; .
o we .h:-z“is 0?12 is 0, the third equation tells us that the "“""r:lct(::cul?: X and y
Ay) h(
\‘ZJ{‘\ ’ Zl
U= ——
z, (8.36)
g this into the first (wo equations gives
__nriuting
ol X = X = 21 0/ 7;)
ya =Y — 21 (Yp/ 2) (8.37)
: gojt\‘ﬁo“ formula is in fact a transformation which may be written in matrix
s
form
; 1 0
} [x2 Y2]=[X1 Y1 zl] 0 1 (8.38)
.l -xp/zp -Yp/Zp
| oin full homogeneous coordinates
1 0 0 0
0 1 0 0
1] =10[x z; 1] .
[x2 Y2 Z2] 1 Y121 _xplzp -Yp!Zp 0 0 (8.39)
0 0 0 1

This mensformation always gives 0 for z,, the z position of the view plane, but it is
We will find it useful in Chapter 9 when we

ofien useful to maintain the z information.

order projected objects according to their z position as part of the hidden-surface re-
moval process. A transformation that includes determining 2 z-coordinate value Z;
(skich turms out to be the same as z,) is as follows:

1 0 0 0
1 00

[xy,2, 1] =[xy y1z1 1] -xPezp -yp/zp 1 0 (8.49)
0 0 01

d image-.

rojections. We shall assume

W will jugy j
just ignore the z value when drawing the projecte

Let us write -
an al i
4 the ragiog gorithm for performing parallel p

SXP = xp/zp (8.41)

hi‘vg SYP = yp / ZP |
g them for every point Pro-

been cat.e
cale ,
Hleq, ulated and stored, so as to avoid recomputin

Scanned by CamScanner

204 CHAPTER FIGHT

8.2 Algorithm PARALLEL TRANSFORM(X, Y, Z) Parallel projection of ; |

Arguments X, Y, Z the point to be pmjccwd. also for return of result

Global SXP. SYP the parallel projection vector ratios
BEGIN
X « X - Z+SXP:
Y Y- Z+SYP,
RETURN:
END:
PERSPECTIVE PROJECTION

An alternative projection procedure is a perspective projection. In a perspective w
tion. the further away an object is from the viewer, the smaller it appears, This

vides the viewer with a depth cue, an indication of which portions of the image ¢op
spond to parts of the object which are close or far away. In a perspective projecti
lines of projection are not parallel. Instead, they all converge at a single point ¢
the cenzer of projection. It is the intersections of these converging lines with the plane ¢
the screen that determine the projected image. The projection gives the image whig
would be seen if the viewer's eye were located at the center of projection. The li es.

projection would correspond to the paths of the light rays coming from the object to the
eve. (See Figure 8-16.)

y axis

2 axis \

X axis

Yy axas

, FIGURE 8-16 o,
Projection A perspective P“’J‘c“

Scanned by CamScanner

.uﬂ——“jiiegzélli

A

| | THRg g Dingy Ny
If the center of projection is at (x

. 2d o e Yeo z.) and x
7)), then the projection ray will be the line conl;ininh ::]L
') the

ST 265

POINt ony e Objegy

i SEPOINES and wi * Xy,
X = x. 4 (x, - - dwill he Biven by
Yy = yc 4 (yl - yc)u

2Lt (g - gy, (8.42)

\ d int X » ~ i) :
The projectec po il 2: ¥2) Will be the poin, Where this Jipe :
The third equation tells us that u, fq this intersectio, poi : (K 'Nersects the o
‘ M@ =),

) Y plane,
1S
U= 5
—
Zl - ZC

o (8.43)
Substituting into the first two quations gjveg

X 4T X
c—zc\

Zl"zc

XZ=

- (8.44
Y2=y. -2 u)

(o

- zl - Zc
With a little algebra, we can rewrite this ag

_ Xch - XIZC
\

<
N
|
“«
n
N
I
<
N
(2]
~~
oo
PN
h

-2 0 0 o
0 -z¢c 0 o
P=1x v 0 1 (8.46)
0 0 0 -z¢

To show that t

; his transformation works, consider
®0Us coording

the point (x,, y,, z,). In homoge-
tes we would have

: iwy yowy zpwy wy)
ltiplying by the transformation matrix giv

es
-Zc 0 0 0
(x 0 -z¢ O 0
M2 yaw, W, W] = [x;w; y1wy z;wy wy) Xc Yo 0 1
0 0 0 -zc

= .47
= xiwiz¢ +Ziwixe -yiwizc + ziwiyc 0 Ziwi-zewi]l (8.47)

Scanned by CamScanner

266 CHAPTER EIGHT

s0

and

which gives

and

which gives

and

which gives

The resulting point (x,,

An equivalent form

¥2) is then indeed the co

Wy =)W, — Z.W,
LW, = 0
Z, = 0
X2W2 = =XV Z, +2z,w;x_
xczl xlzc
X2 =
Zl - Zc
YaWo = —y,wyz_ + Wy,
_ Y2y — Yz,
Y2~
Zl - ZC

rrectly projected point,
of the projection transformation is

1 0 0 0
- 0 1 0 0
“Xc/zc -ycrze 0 -1/z¢
0 0 0

Scanned by CamScanner

‘.

THREE bl!/.f_'-"s."’)‘-'

267

(hat the descriptions are equivaleny g follo
-

ws. To get the :
N Perspective
(e €40 ° . with the center of projection a (X Yeu 2,), we can first translate ;.
,,nsfﬂfma” origin and then use the perspective transf, given -

e) 2 ¥ 1]

Ormation marriy p
it 10 ° s, where d 15— Zc. We ﬁ"a“)_’ translate back 1o (e original coordinaes
P ion 8-27° e proof are left as an exercise. =S

e of th ,) ,
?.rq, details O transformation maps points on an object to points on the v

“C e abo.‘i«er find it useful to use a modified versjop of 1
" ¢hall. O“Jhici’ yields the same x and y values 5o tha
gant 8 o would like to compute a z value different fro
gl but W uch that we can preserve the depth relationship between objects, even
fad 2 \'al"estsmnsfom\ed. If object A lies in front of object B, we wan the perspective
Jfer they &% of object A to lie in front of the perspective transformation of object B,
L,r“;forrnanoﬂ, want to compute z values such that after transforming the points on 2
F;'»"f“‘"ﬂorc' V,':S{m have a straight line. We want the transformation to preserve plan-
craight line. “]vgonS are not warped into nonpolygons. The reason we want to do this
ity S0 that pol) - tablish depth order for hidden-surface removal (in Chapter 9) after
15 10 dlo“;f‘é;:]id the perspective transformation. A form of the perspective transfor-
having p¢

.+ which meets these requirements is as follows:
mahol

iew plane.
his transformation. We
we can stil display the
m zero. We would Jike to

-z¢ 0 0 O
0 -z¢ 0 O (8.57)
P=lx vy -1 1
0 0 0 -z¢

This vields a transformed z value given by
Z

Z]—Zc

(8.58)

Z, =

: ive transformation
We shall now present an algorithm for performing a perspective
of a point,

4 ctive projection
8.3 Algorithm PERSPECTIVE-TRANSFORM(X, Y, Z) For perspective proj
of 2 point _
Argupn?cnts X, Y, Z the view plane coordinates of the point
Global XC, YC, ZC the center of projection
Local D the denominator in the calculations
Constany ROUNDOFF scme small number greate o ein

VERY-LARGE a very large number approx!

r than any round-off error
finity

BEGIN
Dezc -7
IF D] < ROUNDOFF THEN
BEGIN
X « (X ~ XC) » VERY-LARGE
Y < (Y - YC) » VERY-LARGE
Z < VERY.LARGE
END

Scanned by CamScanner

268 CHAPTER EIGHT

ELSE

GIN .
BEx“(x,zc - XC+2Z)/D;

Y(-—-(Y'ZC - YC+2Z)/D;
Z<2/D:
END;
RETURN;
END;

VIEWING PARAMETERS

We have seen how parallel and perspective projections can be used to form ‘\
mensional image from a three-dimensional object as seen from the front. But sunr
we wish to view the object from the side, or the top, or even from behind, |
this be done? All that we need to do is to apply some rotation transformationg
projecting. There are two equivalent ways of thinking about this. We can ‘
view plane (that is, the plane of our display surface) as fixed and the object as rg
or we can picture the object as fixed and the view plane as repositioned. (See F our
8-17.) <

In our system we shall use this second description. It is as if the view plane &
the film in a camera. Every display-file segment represents a photograph taken by thi
camera. (See Figure 8-18.)

We can move the camera anywhere, so we can view the object from any
The picture taken by this synthetic camera is what is shown on the display surface,
if the film is developed and stuck upon the screen. The user is given routines by which
he may change a number of viewing parameters. By setting the parameters, he can po
sition the synthetic camera.(See Figure 8-19.) 3

The first parameters we shall consider are the coordinates of the view referenc
point (XR, YR, ZR). The view reference point is the center of attention. All other view:
ing parameters are expressed relative to this point. If we rotate the view, it will bearm-
tation about the view reference point (not about the origin). We can think of the vie#
reference point as an anchor to which we have tied a string. The synthetic camemg ‘
tached to the other end of the string. By changing other viewing parameters, we &%

sw.ing 'the camera through an arc or change the length of the string. One end oS
string is always attached to the view reference point. ‘

The direction of this imaginary string is given by the view plane normal ve’
[DXN DY]TJ DZN]. This normal vector is the direction perpendicular to the V! 1‘
plane (the view plane is the film in the camera). This means that the camera always

IOOIFS along the string toward the view reference point. The camera is pointed in the 6
rection of the view plane normal.

The length of the strin
how far the camera is

positioned VIEW-DISTANCE away from the view
the view plane norma].

We now have two co
used to model our object,

1
o
i

is telf8
Jane B

ng is given by the VIEW-DISTANCE parameter. L
posttioned from the view reference point. The view P

: irection %
reference point in the dirff¢™" -

: . ich
ordinate systems. We have the object coordinates e other
and we have view plane coordinates, which are attache

Scanned by CamScanner

'4

THREE DIMENSIONS 269

y axis
z axis
x aXis
y axis
Axgs fixed
Object moved
7 axis
X axis ~
y axis
Object fixed
Axes moved
Z axi
X N FIGURE 8-17
Rotating an object is equivalent to
rotating the axes in the opposite direc-
TAAS tion.

View plane. Think of the object coordinates as being painted on the “*floor’" which sup-
ports the object, while the view plane coordinates have been printed on the film in the
Synthetic camera. We can place the origin of the view plane coordinates at the point
Where the string attaches to the film, that is, where a line parallel to the view plane nor-
mal, passing through the view reference point, intersects the view plane. _

~ There is one more viewing parameter we need t0 discuss. Imagine holding the
String fixed and spinning the camera on it sO that the string serves as the axis of rc;(z;—
ion. At each angle, the photograph will show the same SCenc. but rotated so that a dil-

f
€rent part of the object is up. (See Figure 8-20-)

Scanned by CamScanner

270 =

CHAPTER BIONT

FIGURE 8-18
The synthetic camera analogy.

The view-up direction [XUP YuUP ZUP] fixes the camera angle. Imagine
arrow extending from the view reference point in the view-up direction, We look
through the camera’s viewfinder and spin the camera until the arrow appears 1o be j
the camera’s ‘‘up”’ direction.

Changing the view reference point will change the part of the object that
shown at the origin. (See Figure 8-21.)

View reference
point

View plane
normal

View plane

FIGURE 8-19
Three-dimensional viewing parameters.

Scanned by CamScanner

View-up

View plane
coordinates

URE 8-20 _
fffw.up and the view plane coordinates.

VRP ® L1 X axis
z axis
® |vre
L]| k/_,///
\L-l_.l—-‘ X axis
Laxjs
?h?nURE 8-21
EIng the view reference point. 271

Scanned by CamScanner

272 - CHAPTER LIGHT

Changing the view plane normal will move the Camery
object from a different orientation, but the same part of the object iy u|",h,“h';:'
the origin. (See Figure 8-22.) ways §

Changing the view distance determines how f
is when it takes the picture. (See Figure 8-23.)

When changing view-up, we can imagine alwa
same object from the same direction, but twisting the
picture, when developed, will turn out sideways or up

These parameters allow the user to select how
must provide the user with a means of setting the para
sires. The values are saved as global variables. The fo
terface between the user and the three-dimensional vi

80 as

ar away from the Object 4
o .c

Y5 pointing e C
camera in our pyy,
side-down, (§ee Figure .
10 View the objegy ()
meters to the valye,,
lHowing algorithms,
ewing transformaric

hm(;ra
df, ('(, l

Jur Wy
which
Provide ,
M System
8.14 Algorithm SET-VlEW-REFERENCE-POINT(X,
view reference point

Arguments X, Y, Z the new view reference point

Global XR, YR, ZR permanent storage for the reference point
BEGIN

XR < X;

YR «Y;

ZR «~ Z;

RETURN;
END;

Y, Z) For changing 11,

VPN

[K
I 1 1| =3 X axis J

View plane

Z axis

=4
“ eV vi , L 4‘/
)

X axis

Z Ax1s
FIGURE 8-22
Changing the view plane normal,

Scanned by CamScanner

z axis \
V1
(Y17
V-dist l \i/
1M
I /
Z axis \’
FIGURE 8-23

Changing the view distance.

y axis

1V|ew-up

O

ka axis

Y axig

S Veveup
O

*‘N__‘ axis

G

FiGupy

&ng the view-up direction.

X axis

273

i
Scanned by CamScanner

\N4)
- USAFTER E3ONT

$05 Algorithm SET-VIEW-PLANE-NORMAL(DX, DY, DZ) For changine
plane normal pe
Arguments DX, DY, DZ the new view plane normal vector i
Globa! DXN., DYN, D2N permanent storage for the view plane norr

Local D the length of the user's specification vector ks
Coasant ROUNDOFF some small number greater than any round-off en ')T ¢
BEGIN

D—SQRTIDX 1 2+DY t2+DZ 1} 2):
IF D < ROUNDOFFTHEN
RETURN ERROR "INVALID VIEW PLANE NORMAL':
DXN — DX/ D;
DYN < DY/ D;
DIN «DZ /D;
RETURN;
END:

816 Algerithm SET-VIEW-DISTANCE(D) For changing distance betwecn vieg LN

reference point and view plane 04

Argument D the new distance AN

Global VIEW-DISTANCE the permanent storage for the view distance

BEGIN e Y
VIEW-DISTANCE « D: } o
RETURN;

END;

817 Algorithm SET-VIEW-UP(DX, DY, DZ) For changing the direction which illbe
verucal on the image ‘
Glotal DXUP. DYUP. DZUP
Constant ROUNDOFF some s
BEGIN

IFIDX| + IDY| + 'DZ! < ROUNDOFF THEN
RETURN ERROR 'NO SET-VIEW-UP DIRECTION s
DXUP « DX;

DYUP « Dv;

DZUP « DZ:

RETURN:;:
END;

permanent storage for the view-up direction
mall number greater than any round-off error

In the above algorithm we use an approximation to the length in order to avoid &

zero-length vector. It-is easier and faster 1o sum absolute values than to calculate
square root required for the true length (as we did in algorithm 8.15)- 3
approximation will be no smaller than the trye length and will be larger by no ™

than a factor of \/'3'. It therefore provides a good indication of the vector's length
will catch the zero cases.

We must also provide the user with a means
ures 8-25 and 8-26.) o

For a parallel projection, the user mus; specify the direction of the l-)mjeC[;nt-
lines. A perspective projection requires the location of the center of a projection :’Pe:_
The values are saved in global variables. A flag is used to indicate whether P¢

for setting the projection. (S¢¢ Fig

Scanned by CamScanner

zll"s
||
1
|
\
\ \\
i \\ \\
v WD
:fi:ﬁ:i\ AT > X axis k J
1.}\!5
[RE 8-25 . st
g?nging the parallel projection direction.
(O
V!
V1
1]
\I‘U
W/

Lixs

gy 426 | 3

Scanned by CamScanner

CHAPTER 1GHT
live op
A paralje] jecti
‘ Projection is dec:
o - 1sd T ¢
{ Projection e Lt s i esired. The flag is set 1o corre

8.18 Algorithm, SET.

PA ’ .
zarallel Projection RALLEL(DX, DY, DZ) For user INput of the directj,
Tuments p o
Global Pé(. DY, DZ the new parallel projection vector

RSPECTIVE-FLAG the pe

rspective vs, paralle]
DXP, DYP, D .
Constant ROUND ZP permanent storage for the directiq

BEGIN OFF some small number greater than any

IF IDXI + |DY| + |D2| < ROUNDOFF THEN
RETURN ERROR ‘NO DIRECTION OF PRO
PERSPECT]VE-FLAG < FALSE;:
DXP « DX:
DYP « Dy:
DZP « pDz:
RETURN;
END:

Projection flag
n of pijCliOn
round-off emor

JECTION":

8.19 Algorithm SET-PERSPECTIVE
save the center of projection
Arguments X, Y, Z the new center of projection
Global XPCNTR, YPCNTR, ZPCNTR the permanent storage for the center
of projection
PERSPECTIVE-FLAG perspective vs. parallel projection flag

(X, Y, Z) Indicate a perspective projection 3 d

BEGIN
PERSPECTIVE-FLAG «—TRUE;
XPCNTR « X;
YPCNTR «Y;
ZPCNTR « Z;
RETURN;
END;

SPECIAL PROJECTIONS

; - iect exist
The problem of rendering a two-dimensional view of a.thre?e-dlxgzﬁsizzzli;)b;::;ﬁngi
ed long before the computer was used._ One class of pl:O_]CFthl; 0 e e e irecionl
called an axonometric projection. This is a parallel projection lorr B e ion of o1
projection is perpendicular to the view _plane. We c'antatreovided e also Cha,.,gel
axonometric projection to get a diffcrcn’t v:-ew of an .objeg , pose S e loo‘kl"i
the view plane normal to match the projection dl['eCI.IOH. l;z]: e might s with
at a cube that has edges parallel to the object coordinate axes.

uarc:
ar to be asd
iew looking straight at one of the faces so that the cube would appe
vi

igure 8-27.) o . e '
(See I;;g\:c change our direction of projection slightly to the 'T;dshortcn- i mlsesoon
1] become visible, while the edges of the front face wi e while the edge
thget W;l o the top edges lengthen to make the top face visible.
angle of view,

he side faces appear to shrink. (See Figure 8-28.)
the ¢ §

Scanned by CamScanner

g

THES
MENSIONS 277
]

, FIGURE 8-27
| Looking straight at onc of the faces of the cube

There is a particular direction of projection for which all ed_ges wil.l appear 'shor'17
msé from their three-dimensional length by the same factor. This special direction 1S
wlied 0 isometric projection. (See Figure 8-29.) ' .

An isometric projection of a cube will show a corner of the cube in the r;!?):lc \3:
2= image surrounded by three identical faces. From the _syrr_xmetry of ll;: lewwi:h s
2 sez that the commands needed for an isometric projection of an 0bj¢

prallel to the axes are:

SETPARALLEL(], 1, 1):
SELVIEW.PLANE-NORMAL(-1, -1, -1)

=
Q
[
®
®
%
EY
&
€

44
Scanned by CamScanner

S .

. K ¢
278 CHAPTER EIGHT : :

FIGURE 8-29
Isometric projection shortens all axes equally.

This projection will focus on the upper right-front corner of the object. The apy o
commands for projections of the other seven corners are left to the reader ag

an exe
Cise.

If a viewing transformation is chosen such that edges parallel to only twg of
axes are equally shortened, then the projection is called dimetric. (See Figure 8-39)
A trimetric projection is one in which none of the three edge directions is eq
shortened. There are no symmetries in the angles between the direction of projectioy
and the directions of the object edges. (See Figure 8-31.)
If the direction of parallel projection is not parallel to the view plane noma
then we have what is called an obligue projection. We shall describe two special types
of oblique projections, called cavalier projections and cabinet projections. 4
Let us first discuss the cavalier projection. Let us assume that we are vie ing an
object with edges parallel to the coordinate axes. The view plane will be parallel to the
front face (parallel to the xy plane). For a cavalier projection, the direction of projee
tion is slanted so that points with positive z coordinates will be projected down ando
the left on the view plane. Points with negative z coordinates will be projected upand
to the right. The angle of the projected z axis (the ratio of up to right) can be whatever
we desire, but the distance the point shifts in the projected z direction must equal the

actual three-dimensional z distance from the view plane. The projection command
which will create a cavalier projection at angle A is

SET-PARALLEL(COS(A), SIN(A), 1).

Actually, any SET-PARALLEL command with ar

. guments in the same ratio as ':'}
above will work as well. (See Figure 8-32.) ;

We stated that for a cavalier projection, the distance shifted along the Pfoleaed‘
axis was equal to the actual z-axis distance. This restriction makes it easy 10 €0n" .

<> ‘
—1

FIGURE 8-30
Dimetric projection shortens two axes equally.

Scanned by CamScanner

THREE DIMENSIONS 279

FIGURE 8-31
Trimetric projection shortens all axes differently.

th‘c rc.sult-is an object which appears elongated along the z
hich is still easy to construct with a scale and triangle is to
along the projected z axis. This is called a cabinet

5. However

(hese Jrawing _
An alternative W

ection: i
:!;\ﬁf(:nly half the actual z distance
ection. (Se¢ FIEUEE §.33.) It can be created by a SET-PARALLEL call with argu-
ments 10 the ratio of

(ETPARALLEL(COS(A). SIN(A), 2).

ections can be classified as one-point, two-point, or three-point.
he number of vanishing points required for a construction of the
are sufficiently general to generate all three types of perspective
rspective projection occurs when one of the faces of a rectan-
e view plane. (See Figure 8-34.)
projection refers to the situation where one set of edges
but none of the faces is parallel to it. (See Figure 8-35.)
s the case where non¢ of the edges is parallel

Perspective proj
These names refer to t
drawing. Our routines
projection. A one-point pe
gular object is parallel to th

A two-point perspective
runs parallel to the view plane,

A three-point perspective projection i
to the view plane. (See Figure 8-36.)

CONVERSION TO VIEW PLANE
COORDINATES

ﬂxc'uscr enters the description of the object i
particular point of view corresponds to expre
nates. The process of generating a particular Vi
from one coordinate system to another. While this p
actually one which we have already solved. The steps 10

{ coordinates. But our
he view plane coordi-
ew of the object is one of transforming

roblem may appear complex, it is
be taken are the same as those

n terms of the objec
ssing the object int

Yy i

~

A

& FIGURE 8-32
____xaus A cavalier projection:

|

L ——T

Scanned by CamScanner

280 CHAPTER EIGHT

y axis

A
A
N

FIGURE 8-33
x axis A cabinet projection,

which were used for a rotation about an arbitrary axis. We wish to perform a seril
transformations which will change the object coordinates into the view plane .- .
nates. The first step is a translation to move the origin to the correct Position fg

view plane coordinate system. This is a shift first to the view reference point, and the
along the view plane normal by the VIEW-DISTANCE. After the origin is in place,y
align the z axis. In the rotation problem, we saw how to rotate a line onto the 7 agic

V FIGURE 8-34
A one-point perspective.

Scanned by CamScanner

|

x FIGURE 8-35
A two-point perspective.

| FIGURE 8-36 '
| A three-point perspective:

281

Scanned by CamScanner

282 CHAPTER EIGHT

Here, we wish that line to be the object coordinate’s z axis, and we sha]| ? te i
the view plane coordinate’s z axis (the view plane normal). This is done il
First, a rotation about the x axis places the line in the view plane coordinate
Then a rotation about the y axis moves the z axis to its proper position. Ng
needed is to rotate about the z axis until the x and y axes are in their place f;L

plane coordinates. The entire transformation sequence is given by

TMATRIX = TR,R R, i
where 2
1 0 0 .
0 1 0
T = 0 0 1 -

-(XR + DXN * VIEW-DISTANCE) ~ -(ZR + DZN * VIEW-DISTAN
-(YR + DYN * VIEW-DISTANCE) '

1 0 0 0
R, = |0 "DZN/V -DYN/V 0
*“lo DYN/V -DZN/V 0
0 0 0 1
and
V = (DYN? + DZN?)!2 \
also
V 0 -DXN 0
Rvo| 0 1 0 0
Y IlpxNn 0 v o
0 o0 0 1
and
YUP-VP/RUP XUP-VP/RUP 0 0
R, - | “XUP-VP/RUP YUP-VP/RUP 0 0
0 0 10
0 0 01
where
[XUP-VP YUPVP Z 1] = [DXUP DYUP DZUP I]RR,
and

RUP = (XUP—VP2 + YUP-VP?)!2

Scanned by CamScanner

/——_

werpEE>”

r
THREE DIMENSIONS 283

; P_and YUP-VP vanable:s? We are trying to finish up the transfor-
t3C ess by rotating ‘the X aqd_y axes n.nto.posuion. The correct position is ob-
(:T ! en the Y axis 15 aligned with the .prOJecuon on the view plane of the view-u
\ aine v " the view-up vect(?r was specified in the object coordinates. It is mucﬁ
z ector ork in the (as yet incomplete) view plane coordinate system. In the view
pasic 10 e, We can project the view-up vector onto the view plane by just ignorin
| planc Sysfdina‘e- The x and y values will be in the ratio of the sine and cosine of thic;
I the Z oded 10 correctly align the up direction. So what we are doing is performing
formation (R,R,) on the view-up direction. The translation part is not
orking on a vector (which has no position, only magnitude
n). The Z coordinate is ignored to project onto the view plane, and the dis-
he origin to the projected point is calculated. Dividing the x and y values
:clds the sine and cosine of the needed rotation angle. The following

te the view plane coordinate transformation.

! s XU P’V

our P jal war®
neede because we are W

and directio
ce from {
(his distance y

glgorithm will crea

§.20 Algorithm MAKE

ing rransformation
XR, YR, ZR the view reference point

_VIEW-PLANE-TRANSFORMATION For making the view-

Global
DXN, DYN, DZN the view plane normal
DXUP, DYUP, DZUP the view-up direction
TMATRIX a 4 X 3 transformation matrix array
PERSPECTIVE-FLAG the perspective projection flag
VIEW-DISTANCE distance between view reference point and view plane
Local V, XUP-VP, YUP-VP, RUP for storage of partial results
Constant ROUNDOFF some small number greater than any round-off error
BEGIN

start with the identity matrix

NEW-TRANSFORM-3;

translate so that view plane center is new

TRANSLATE-3(— (XR + DXN * VIEW-
—(YR + DYN * VIEW-DISTANCE), —

rotate so that view plane normal is Z axis

V«SQRT(DYN T 2 + DZN 1 2);

IFV > ROUNDOFF THEN ROTATE-X-3(—

ROTATE-Y-3(DXN, V);

determine the view-up direction in t

XUP-VP <« DXUP * TMATRIX[1, 1]
DZUP * TMATRIX([3, 1]

YUP.VP < DXUP » TMATRIX[1, 2] + DYUP* TMATRIX[2. 2} ¥
DZUP x« TMATRIX[3, 21;

determine rotation needed to m

RUP « SQRT(XUP-VP 1 2 + YUP

IFRUP < ROUNDOFF THEN

RORETURN ERROR ‘SET—VIEW-UP ALONG VIEW P
TATE-Z-3(XUP-V Up, YUP-VP/ RUP);

IF PERSPEC(TI\l/Jg-F&g THEN MAKE—PERSPECTIVE-TRANSFO

ELSE MAKE.PARALLEL TRANSFORMATION:

END;

origin
DISTANCE),
(ZR + DZN * VIEW-DISTANCE)):

DYN/V, — DZN/V);

hese new coordinates
+ DYUP *TMATRIX[Z, 1] +

ake view-up vertical
VP T 2)

| ANE NORMAL":
RMATION

Scanned by CamScanner

[S - -5‘..\

284 CHAPTER EIGHT

. verts the parallel or perspective Projection n,
mc‘abm:bi]c%o::;rn;i :‘1‘::5 ‘ig“view plane coordinates. This is done ::ll:.:
n.‘mcm: t:;[XKEJ.PARALLEL-’I‘RANSFORMATION or the MAKE-PERS ‘ ke
’el"}(lh/:;\llS;ORMATlON routine. The MAI.(E-PERSPECTIVE-TRAI\‘JSEORMAHON 8
routine just applies the tmnsformation.mamx to the center off hthe Projection pojng. An
error occurs if the center of projection is on the wrong S|.dc of the view plane, thay lg5ie E
the observer is on the same side of the screen as ?he object. The/M’.\K?‘PARALL ¥
TRANSFORMATION routine converts the d'urectnon of parallel /Projection to the view
plane coordinates. Since the direction is specified by a vector (rio pos}tlon.), the trang],,]
tion portion of the transformation is omitted. An error occurs if the direction of bejep. k-
tion turns out to be parallel to the view plane.

8.21 Algorithm MAKE-PERSPECTIVE-TRANSFORMATION Convert center of -
projection to view plane coordinates

Global XPCNTR, YPCNTR, ZPCNTR the center of projection F
XC, YC, ZC the center of projection in view plane coordinates .

i
k.

BEGIN
XC < XPCNTR;
YC < YPCNTR;
ZC < ZPCNTR;
VIEW-PLANE-TRANSFORM(XC. YC, ZC);
[FZC < 0 THEN

RETURN ERROR ‘CENTER OF PROJECTION BEHIND VIEW PLANE';
RETURN:
END;

8.22 Algorithm MAKE-PARALLEL-TRANSFORMATION Calculation of direction
of projection in view plane coordinates

Global TMATRIX a4 x 3 coordinate transfonpation matrix array
DXP, DYP, DZP the parallel projection vector

VXP, VYP, VZP direction of Projection in view plane coordinates

SXP, SYP the slopes of the projection relative to z direction

Constant ROUNDOFF some small number greater than any round-off error
BEGIN

VXP < DXP * TMATRIX(1, |
DZP * TMATRIX([3, 1]:
VYP < DXP » TMATRIX[1, 2] + DYP « TMATRIX[2, 2] +
DZP » TMATRIX([3, 2):

VZP < DXP » TMATRIX[1, 3] + DYP «
DZP * TMATRIX[3, 3]:

IF |VZP| < ROUNDOFF THEN
RETURN ERROR ‘PROJECTION PARALLE]. VIEW PLANE';

SXP « VXP/VZP;

SYP « VYP/VZP;

RETURN;
END;

] + DYP * TMATRIX[2, 1] +

TMATRIX[2, 3] +

Scanned by CamScanner

THEEE iy NSions 288

P pING iN THREE DIMENSIONS
cL

crapter 6 W¢ introducedl th(;l idc.flde a w.indf)wr which se
In _dimcﬂs"’"al space. In three Imensional space the
int f;g volume OT VieW volume. This is a three-dimensional region or box, Ob;
he view volume may be seen, while lhgsc outside are not di-,playC(i. ()bj'zz:
Cing the poundary are cut, and only the portion .wnhin the view volume js shiwn
(10 i volume may clip the frf)nt' or back of an object as wel] as its sides. For exam.
lwimagine the image of.a building. The picture centers on the door of the buildinrg-
ple, ize of the entrance INCreases as you seem to approach it, Passing through zhe:
g:nvay. the outside walls disappear. The displa)./ now shows the entry hall, Clipping
nay be used to remove the front wall of the building, which was hiding its interior.
(see Figure 8-37.) o o
The extension from two-dimensional to three-dimensional clipping is not a dif-
ficult one. The methods remain basxcall).f t'he same. The difference lies in the test to see
whether or not @ point 1s inside the v1snble. region. Instead of comparing the point
against a line, we now must compare the point against a plane. In general, any plane

‘rvcd as a clipping boundary
concept can be extended 1 4

y axis

Object

View a(
point

— . — ———— — ——

1 axis
Clipping
plane
Yy axis

!
|
|
|
|

Laxjg -~ !
i G 8-37 Jane through a0 object

Front of object Moving 2 clipping P

clipped away

Scanned by CamScanner

e ™

J

286 CHAPTER EIGHT

may be used as a boundary, and clipping regions can be arbitrary Polyhedra; but g
are two view volume shapes which are usually used because they are €asy to w
The type of view volume used depends on whether a parallel or a PerSpectiye &
tion is to be employed. For a parallel projection, imagine planes that are i,
tion of projection extending from the edge.s of the window. These planes f(.)rm A recty,
gular tube in space. Front and back clipping planes can be addeq 10 section h ¢
into a box. Objects within the box are visible, whereafs tl:lose. outside are clip \
(See Figure 8-38.) An application of front and back clipping is shown ip Plate 2 Where
the clipping planes are used to show a slice of a molecule. For a PEISpective pryian
tion, we picture rays from the center of projection passing through the wind

a viewing pyramid. This pyramid can be truncated by the frqnt and back clippj .
planes to form the volume in which objects may be seen. (See Figure 8-39) U

The reason for choosing these regions becomes apparent when we consider whgy

happens when the objects are projected. After projection, objects within the View yol.
ume will lie within the window on the view plane. After projection, the clipping planes
run parallel to the z axis through the window boundaries, and their €quations look the
same as the window boundary line equations. This means that if we project the obj‘eé'v
before clipping, then the left, right, top, and bottom clipping cases are essentially
same as the window clipping we have already seen in Chapter 6.

We must provide a means to specify where the front and back clipping planes are
located. We shal] provide algorithms to set these parameters in the same way that the
window boundary was specified. The planes will be positioned relative to the view ref-
rmal. (See Figure 8-40.)

» We have a view volume bounded by

specified by the user ip

positions given in terms of the distance from the view reference point in the direction
of the view Plane norma].

Window
Lines
of
projection
Fl‘Oﬂ(BaCk
Plane plane
View plane

FIGURE 8-38 o
View volume for a parallel po!

Scanned by CamScanner

THREE DIMENSIONS 287

> View volume
¥l —
ﬂ’{) /
o~

Window

-

-
)| =

Front ———u

plane
Back

View plane plane

FIGURE §-39 . o
view volume for a perspective projection,

8.23 Algorithm SET-VIEW-DEPTH(FRONT-DISTANCE, BACK-DISTANCE) User
routine to specify the position of front and back clipping planes
Arguments FRONT-DISTANCE, BACK-DISTANCE plane distance from the view
reference point along the view plane normal
Global FRONT-HOLD, BACK-HOLD storage for plane positions
BEGIN
IF FRONT-DISTANCE > BACK-DISTANCE THEN
RETURN ERROR ‘FRONT PLANE BEHIND BACK PLANE’;
FRONT-HOLD « FRONT-DISTANCE;
BACK-HOLD « BACK-DISTANCE;
RETURN;
END;

nd/or back clipping tests. All that is

We could, if we wished, omit the front a . A
are a point against the clipping plane

needed is a flag which indicates whether to comp

y axis |
i [;ACK-DISTANCE
FRONT-DISTANCE
>
e VIEW- View
i G DSTANGE]y
normal
VIEW. + |l -
REFERENCE.
POINT
Back
View Flr::et plane
Y
HGURE 840 plane

Mt ang e
back clipping plane speciﬁcation.

Scanned by CamScanner

288 cnartii pion

Or 10 pass it to the next routine without chccking. Wlth very little effor, we
the user the ability to tum the front and back clipping on or off. Routine, gt
set clipping flags for this purpose are given below,

8.24 Algorithm SI'I'I‘-Iv‘R()N'l‘-l’l,ANE-CLIPPING(ON-OFF) User routine G2 .
front clipping flag 3. . "
Argument ON-OFF the user’s clipping flag Sc'ﬂll:lg
Global FRONT-FLAG-HOLD the front clipping flag set by the user
BEGIN)

FRONT-FLLAG-HOLD «= ON-OFF;

RETURN;
END;

8.25 Algorithm SET-BACK-PLANE-CLIPPING(ON-OFF) User routine 15 seq g
back clipping flag o
Argument ON-OFF the user’s clipping flag setting
Global BACK-FLLAG-HOLD the back clipping flag set by the user
BEGIN

BACK-FLAG-HOLD « ON-OFF,;

RETURN;
END;

We need to decide whether to perform the z-plane clipping before or after projec-
tion. Clipping can be done at either point, provided that the Z/(Z~ — Z) transformatiog
is used on the clipping plane position if we are clipping after a perspective projection.
The argument for clipping in z after the projection is that CLIP-FRONT and CLIP:
BACK algorithms can simply be incorporated into the clipping sequence. The reasoa;
why clipping before projection is desirable is that perspective projection requires that
objects lie behind the center of projection. Now if we wish to construct programs
where the center of projection (the eye of the viewer) moves among objects and
perhaps even through them, then we would like to remove from consideration all 0%
jects which lie in front of the center of projection before that projection is carried oul:
That is, we want to employ front clipping to remove the objects that the viewer has
passed and then to project the remaining objects which might be seen. (See FIZ™
8-41.) We shall present algorithms for the simpler case of clipping after projection %2
leave clipping before projection as a programming problem. 9

We shall use the MAKE-Z-CLIP-PLANES algorithm to capture and s2%¢
user’s front and back clipping specification (which can be changed at any time). ﬂ“c ;
will give fixed clipping characteristics for the life of a display-file segment, 3515 1
in NEW-VIEW-2 for the window clipping planes.

$
8.26 Algorithm MAKE-Z-CLIP-PLANES Establish the front and back clippi"é plar® ;
Global 'FRONT-HOLD, BACK-HOLD storage for plane positions :
FRONT-Z position of the front clipping plane
BACK-Z position of the back clipping plane
FRONT-FLAG-HOLD the front clipping flag set by the user
BACK-FLAG-HOLD the back clipping flag set by the user

Scanned by CamScanner

b .
viewpoint
U
View Plane Clipping Plane
|
|
|
|
o |
Viewpoint < i
|
|
. LLEN
View Plane Clipping Plane
FIGURE 8-41

Froat clipping before projection can remove objects that should not be projected.

FRONT-FLAG the front clipping flag
BACK-FLAG the back clipping flag . :
VIEW-DISTANCE the permanent storage for the view distance
PERSPECTIVE-FLAG the perspective projection flag
XC, YC, ZC the center of projection in view plane coordinates
BEGIN
FRONT-FLAG <« FRONT-FLAG-HOLD:;
BACK-FLAG «— BACK-FLAG-HOLD;
FRONT-Z « VIEW-DISTANCE — FRONT-HOLD:
BACK-Z « VIEW-DISTANCE — BACK-HOLD:;
IF PERSPECTIVE-FLAG THEN
BEGIN _
FRONT-Z < FRONT-Z / (ZC — FRONT-Z);
BACK-Z « BACK-Z / (ZC — BACK-Z):
END;

RETURN:
END.

ool Ry
Scanned by CamScanner

290 CHAPTER EIGHT

CLIPPING PLANES

The clipping problem becomes one of deciding on which side of a
This is similar to the problem of deciding on which side
plane. Remember that the equation of a plane has the form

f a plane 5 POIm 5
of a line a pojp, lies i 4
AX + By +Cz+ D=0 (8-

Suppose we plug the coordinate values of a point (x,, y,, z,) into this €quation, The

the point is on the plane, the equation will be satisfied.
Ax,+By, +Cz,+D=0

But if the point‘is not on the plane, the result will not be zero.’It wi

11 be positive if g
point is on one side of the plane e

AX, + By, + Cz, + D> 0 (8.69)

g

and negative if the point is on the other side. %
Ax, + By, + Cz; + D<0 (8.70)

We can therefore tell if a point is within the clipping boundary by checking the signof
the expression obtained from the equation of the plane. 3

Let’s consider what the equations describing our actual clipping planes will be,
The front and back clipping planes are particularly simple. We shall take them to be),
parallel to the view plane, so in the view plane coordinate system they are givenby

z = FRONT—Z_ and z = BACK-Z (87!)

where FRONT-Z and BACK-Z, are constants
z axis. (See Figure 8-42.)

For the point (x,, y,, 2)) to be visible, it must be behind or on the front plane ant
in front of or on the back plane. The tests should then be '

giving the positions of these planes on the

2)<FRONTZ and 7, = BACK-Z

y axis
/ Visible part
.\\ -
~
C?P\
R
Clip
Z axis
FRONT-Z BACK-Z FIGURE 8.42
X axis

Front and back clipping.

Scanned by CamScanner

291

cLIP-BACK > CLIP-FRONT

CLIP-RIGHT >

CLIP-BOTTOM

FIGURE 8-43
The clipping process.

8.27 Algorithm CL[P—BACK(OP, X, Y, Z) Routine for clipping against the back
boundary

Arguments OP.X,Y,Z2a display-file instruction
Globa]

BACK-z Position of the back clipping plane

\ BACK-FLAG the back clipping flag
XS,YS, zs Arrays containing the last point drawn
NEEDFIRST ammay of indicators for saving the first command

FIRSTOP, FIRSTX, FIRSTY, FIRSTZ arrays for saving the first command

BEGIN CLOSING indicates the Stage in polygon

IF BACK-FLAG THEN
BEGIN
N
IFPFLAG AND
BEGIN

FIRSTOP(5) op.
FIRSTX([5] x.
FIRSTY(5) —y.
FIRSTZ(5) — 7

NEEDFIRST(5) « FALSE;
END

ELSE

IFz < BACK-zZ AND ZS[5] < BACK-Z THEN

NEEDFIRST[S] THEN

Scanned by CamScanner

=

292 CHAPTER EIGHT

CLIP-FRONT(I, (X = XSISD « (BACKZ - 2)1(Z - Z815)) + X,
(Y _ YS[S) + (BACK-Z = 7)1 Z = Z8[5]) + ¥,

BACK-7)
ELSE ’
|F Z = BACK-Z AND ZS(3] = BACK-Z THEN
[F OP > 0 THEN ' | :
CLIP-FRONT(OP. (X — XS[5)) * (BACK-Z ~ 2)/ (Z ~ 7S(5))
+ X, g
(Y — YSI5]) * (BACK-Z — Z)/(Z - 755}, -
+ Y. BACK-Z) .
ELSE
CLIP-FRONT(1, (X — XSI5]) * (BACK-Z = Z)/(Z = 78[5}
+ X, 1
(Y — YSI5)) » (BACK-Z — Z)/ (Z = Z8{$))
+ Y, BACK-2);
XS[5] <« X
YS[S) < Y:
ZS(5) < Z;
IF Z = BACK-Z AND CLOSING # 5 THEN CLIP-FRONT(OP. X, Y, Z);
END
ELSE CLIP-FRONT(OP. X. Y, Z);
RETURN:

END:

8.28 Algorithm CLIP-FRONT(OP, X, Y, Z) Routine for clipping against the front
boundary
Arguments OP. X,Y,Za display-file instruction
Global FRONT-Z position of the front clipping plane
FRONT-FLAG the front clipping flag
XS. YS, ZS arrays containing the last point drawn
NEEDFIRST array of indicators for saving the first command 1
FIRSTOP. FIRSTX, FIRSTY, FIRSTZ arrays for saving the first command.
CLOSING indicates the stage in polygon :
BEGIN
IF FRONT-FLAG THEN
BEGIN
IF PFLAG AND NEEDFIRST[6] THEN
BEGIN
FIRSTOP(6] < OP;
FIRSTX[6] < X;
FIRSTY[6] < Y,
FIRSTZ[6] < Z,
NEEDFIRST(6] < FALSE,;
END -
ELSE
IF Z = FRONT-Z AND ZS[6] > FRONT-Z THEN + X
CLIP-LEFT(I, (X — XS[6]) * (FRONT-Z — Z)/(Z ~ Y
Y — YS(6) = (FRONTZ — 2)/@ = 2515V
FRONT-Z)

Scanned by CamScanner

- w

|
THREE DIMENSIONS 293
ELSE
IF Z = FRONT-Z and ZS(6) < FRONT.
el NT-Z THEN
CLIP-LEFT(OP. (X - XS(6])
. F " -
. * (FRONT-Z - 2)/(z - 7g/6))
(Y = YS[6)) » (FRONT-Z -
+ Y, FRONT-2) ST - zsie)
ELSE
CLIP-LEFT(1, WXH, (X - XS[6]) « (FRONT-Z - Z)/
(Z - Z516) + X, ‘
g = YS(6]) + (FRONT-Z - Z)/
= ZS(6)) + Y, FRONT-2):

XS[6] < X:)'

zZs(6) — Z:

IF Z < FRONT-Z AND CLOSING # 6 THEN CLIP-LEFT(OP, X. Y. Z):

END;
ELSE CLIP-LEFT(OP, X, Y, Z);
RETURN;

END;

The following routines are extensions of those presented in Chapter 6. In many
cases all that is needed is to include a z coordinate along with x and y. In the four
routines which actually do the clipping, the z coordinate of any intersection with the
clipping plane must be calculated, as well as the x or the y coordinate. We are main-
ining the z-coordinate information in anticipation of its use in the hidden-surface

routines of the next chapter.

8.29 Algorithm CLIP-LEFT(OP, X, ¥, Z). (An extension of algorithm 6.6 to three

dimensions) Routine for clipping against the left boundary

Arguments OP, X,Y,Za display-file instruction

Global WXL window left boundary
XS. YS, ZS arrays containing th \ ;
NEEDFIRST array of indicators for saving the first comman d o
FIRSTOP, FIRSTX, FIRSTY, FIRSTZ armays for saving the first ¢
CLOSING indicates the stage in polygon

e last point drawn

and

BEGIN
IF PFLAG AND NEEDFIRST[1] THEN
BEGIN

FIRSTOP[1] < OP;

FIRSTX[1] < X;

FIRSTY(1] « Y;
. FIRSTZ[1) « Z;
NEEDFIRST([1] < FALSE:
| END
Case of drawing from outside in
ELSE

IFX = WXL AND XS[1] < WXL THEN

Scanned by CamScaﬁner

294 cHaPrEr EIGHT

CLIP-RIGHT(1, WXL, (Y — YS[1]) * (WXL — X)X - XS(1]) 1
(Z — ZS[1])) * (WXL — X)/ (X - XS[1]) -
Case of drawing from inside out . ’
ELSE
IF X = WXL AND XS[1] > WXL THEN
IF OP > 0 THEN

CLIP-RIGHT(OP, WXL, (Y - YS[1]) * (WXL - X)/(X -

+Y,
(Z — ZS[1]) » (WXL - X)/ (X -
+ 9 ;
ELSE
CLIP-RIGHT(1, WXL, (Y — YS[1]) * (WXL — X))/ (X - XS[1 J*
+ Y, a
(Z = 7S[1]) * (WXL — X) /(X — Xs(yy
+ 2); '
Remember point to serve as one of lIEe_ndpoints of next line segment
XS[1] < X;
YS(1] «Y;
ZS[1]) « Z;

Case of point inside

IF X = WXL AND CLOSING # | THEN CLIP—RIGHT(OP, X.Y, Z);
RETURN;

END;

8.30 Algorithm CLIP-RIGHT(OP, X, Y, Z) (An extension of algorithm 6.7 to three

dimensions) Routine for clipping against the right boundary s
Arguments OP, X, Y, Z a display-file instruction

Global WXH window right boundary
XS,YS, ZS arrays containing the last point drawn
NEEDFIRST array of indicators for saving the first command

FIRSTOP, FIRSTX, FIRSTY, FIRSTZ arrays for saving the first command '.
CLOSING indicates the stage in polygon ’
BEGIN

IF PFLAG AND NEEDFIRST[2] THEN
BEGIN

FIRSTOP[2] « OP:
FIRSTX[2] « X:
FIRSTY[2] —Y:
FIRSTZ[2] « Z:
NEEDFIRST[2] « FALSE:

END

ELSE

IF X = WXH AND XS[2) > WXH THEN
CLIP-BOTTOM(1, WXH, (Y = YS[2]) «

2 (gt
15

PALY

(WXH - X)/(X — XS[2) + Y.

(Z = ZS[2)) = (WXH — X)/ (X — XS[2)) +)
ELSE
IFX = WXH and XS[2] < WXH THEN
IF OP > 0 THEN -
CL[P-BOTTOM(OP, WXH, (Y - YS[2]) * (WXH — X)/ X -
+y,

-

Scanned by CamScanner

S TS

THREE DIMENsIONS 29§

(Z - Z5[2)) + (WXH -
7 X) /(X = XS[2))

LSE
CLIP-BOTTOM(I, WXH. (Y = YS[2]) » (WXH - X)/ (X
+Y, N
(Z - ZS[2)) » (WXH -
+ 2 H o X)I(X - Xs[2))

XS[2))

yS[2] < Y"

25121 — &

FX = WXH AND CLOSING # 2 THEN CLIP-BOTTOM(OP, X, Y, Z):
RETURN: -

END:

thm CLIP-BOTTOM(OP, X, Y, Z) (An extension of algorithm 6.8 to three
Routine for clipping against the lower boundary

OP, X, Y, Z a display-file instruction

WYL window lower boundary

XS.YS, ZS arrays containing the last point drawn

NEEDFIRST array of indicators for saving the first command

FIRSTOP, FIRSTX, FIRSTY, FIRSTZ arrays for saving the first command
CLOSING indicates the stage in polygon

§.31 Algori
dimensions)
Arguments
Global

BEGIN
IF PFLAG AND NEEDFIRST[3] THEN
BEGIN
FIRSTOP[3] < OP;
FIRSTX([3] < X;
FIRSTY[3] < Y;
FIRSTZ[3] < Z;
NEEDFIRST[3] « FALSE;
END
ELSE
IFY = WYL AND YS[3] < WYL THEN
CLIPTOP(1, (X — XS[3)) * (WYL = Y)/ (Y = YSBI) + X. WYL,
(Z — ZS[3]) * (WYL = Y) /(Y = YS[3D * 7)

ELSE
IFY < WYL AND YS[3] > WYL THEN

IFOP > 0 THEN ’
CLIP-TOP(OP, (X — XS[3]) * (WYL — Y)/ (Y = YS[3D + X, WYL.

(Z - ZS[3)) * (WYL — Y)/(Y - YS[3) + 2)

ELSE Z2-200 " -
= + X, WYL,

CLIP-TOP(1, (X — XS[3)) * (WYL — Y) /(Y = YS[3D) ,

ol b YS(3)) + 2)

_ Y~
7 — ZS[3]) *x (WYL = Y) /(

5] x (3D

YS[3]) Y:

]ZSB]\“Z:

FY>WYL AND CLOSING # 3 THEN CLIP-TOP(
ENRETURN.

D: :

OP. X.Y.2):

Scanned by CamScanner

296 CHAPTER EIGHT

8.32 Algorithm CLIP-TOP(OP, X, Y, Z) (An extension of algorithm 6.9 to
dimensions) Routine for clipping against the upper boundary i
Arguments OP. X,Y,Za display-file instruction
Global WYH window upper boundary
XS.YS, ZS arrays containing the last point drawn
NEEDFIRST array of indicators for saving the first command
FIRSTOP. FIRSTX, FIRSTY, FIRSTZ arrays for saving the firsi
CLOSING indicates the stage in polygon
BEGIN
IF PFLAG AND NEEDFIRST[4] THEN
BEGIN
FIRSTOP(4] < OP;
FIRSTX[4] « X;
FIRSTY[4] < Y,
FIRSTZ(4) « Z;
NEEDFIRST[4] <« FALSE;
END
ELSE
IFY = WYH AND YS[4] > WYH THEN
SAVE-CLIPPED-POINT(1, (X — XS[4]) * (WYH — Y)/
(Y - YS[4)) + X, WYH,
(Z — ZS[4]) * (WYH — Y) /(Y - YS[4]) + 2):

ELSE
IFY =2 WYH AND YS([4] < WYH THEN
IF OP > 0 THEN
SAVE-CLIPPED-POINT(OP, (X — XS[4]) * (WYH - Y)/
(Y — YS[4]) + X, WYH,
(Z — ZS[4])) » (WYH - Y) /.
(Y — YS[4)) + Z)

ELSE
SAVE-CLIPPED-POINT(1, (X — XS[4]) * (WYH - Y)/
(Y - YS[4]) + X, WYH,
(Z — ZS[4]) * (WYH - Y)/
(Y - YS[4) + Z);

XS[4] < X:
YS[4] < Y;
Z58(4) « Z;
IFY = WYH AND CLOSING # 4 THEN SAVE-CLIPPED-POINT(OP, X, Y. 2):
RETURN:

END;

8.33 Algorithm SAVE-CLIPPED-POINT(OP, X, Y, Z) (An extension of algorith™

6.10 to three dimensions) Saves clipped polygons in T-buffer and sends lines and charc
ters to the display file

Arguments OP, X, Y, Z a display-file instruction
Global COUNT-OUT a counter of number of sides on clipped polygon

PFLAG indicates if 4 polygon is being clipped
BEGIN i

IF PFLAG THEN
BEGIN

Scanned by CamScanner

S
< e
Ry
; IS
THREE DIMENSIONS 297
COUNT'OUT «— COUNT-OUT + 1;
pUT-IN-T(OP. X, Y. Z, COUNT-OUT);
Lf:glgme-TRANSFORM(OR X.Y);
' RETURN '
END:
R 8. |gorithm PUT'IN'T(OP' X, Y, _Z_' INDEX) (An extension of algorithm 6.11 to
‘ dimensions)
xhrecmcn(s opP. X, Y. Z the instruction to be stored
A INDEX the position at which to store it
aipalie. tFT XT, YT, ZT arrays for temporary slorage of polygon sides
BEG!N
[TINDEX] < OF;
XT(INDEX] <~ X;
YT[INDEX] < Y:
Z[INDEX] < Z
RETURN;
END;
§.35 Algorithm CLlP-POLYGON-EDGE(OP, X, Y, Z) (An extension of algorithm
6.12 to three dimensions) Close and enter a clipped polygon into the display file
! Arguments OP. X, Y, Z a display-file instruction
Global PFLAG indicates that a polygon is being drawn
COUNT-IN the number of sides remaining to be processed
COUNT-OUT the number of sides to be entered in the display file
IT, XT, YT, temporary storage arrays for a polygon
NEEDFIRST array of indicators for saving the first command
FIRSTOP, FIRSTX, FIRSTY, FIRSTZ arrays for saving the first command
CLOSING indicates the stage in polygon
Local I for stepping through the polygon sides
BEGIN
COUNT.IN « COUNTIN — L;
CLIP-BACK(OP. X, Y, Z); !
lf COUNT.IN # 0 THEN RETURN; |
close the clipped polygon
g@& polys
[FBACK-FLAG AND NOT NEEDFIRST(] THEN
CLIP-BACK(FIRSTOP(5), FIRSTX[5]. FIRSTY[5], FIRSTZSLX
CLOSING < 6:
IF FRONT-FLAG AND NOT NEEDFIRSTI6| THER .
’ ¢ A A ey FiRSTX[e). IRSTYI6l. FSTES
LOSING « 1.
'CFL’;‘ OT NEEDFIRST(1] THEN .
c P-LEFT(FIRSTOP[1]. FIRSTX[1]. FIRSTY(1). FIRSTZ(LD:
IFLSSITNG —
NEEDFIRST(2) THEN
CUP-RIGHT(FIRST([)}!B]. FIRSTX(2), FIRSTY(2) FIRSTZ(2)):
1
|
r

Scanned by CamScanner

298 CHAPTER EIGHT

CLOSING « 3;

IF NOT NEEDFIRST([3) THEN
CLIP-BOTTOM(FIRSTOP(3]. FIRSTX[3]. FIRSTY[3
CLOSING «4;

IF NOT NEEDFIRST[4] THEN

CLIP-TOP(FIRSTOP(4], FIRSTX[4], FIRSTY[4], FIRSTZ(4)):
CLOSING «0;

. FIRSTZ(3)),

PFLAG <« FALSE;

IF COUNT-OUT < 3 THEN RETURN;

enter the polygon into the display file
VIEWING-TRANSFORM(COUNT-OUT, XT[COUNT-

FOR I = 1 TO COUNT-OUT DO VIEWING
RETURN:
END:;

OUT], YT(COUNT-Quy
“TRANSFORM(IT(1}, XT(1), y7

8.36 Algorithm CLIP(OP, X, Y, Z
sions) Top-level clipping routine
Arguments OP, X, Y, Z the instructio
Global PFLAG indicates that a
COUNT-

) (An extension of algorithm 6.13 1o three dj

n being clipped

polygon is being processed
IN number of polygon sides still to be input
COUNT-OUT number of clipped polygon sides stored
XS,YS, ZS arrays for saving the last point drawn

Local I for initializing the four clipping routines

BEGIN
IF PFLAG THEN CLIP-POLYGON-EDGE(OP, X, Y, Z)
ELSE IF OP > 2 THEN B

BEGIN
PFLAG « TRUE:
COUNT-IN « OP;
COUNT-QUT « 0:
FORI = 1 TO 6 DO
BEGIN
XS[] « X:
YS(I] < Y:
ZS(l] — Z:
END:
END
ELSE CLIP-BACK(OP, X, Y, 7):
RETURN;
END;

THE 3D VIEWING TRANSFORMATION

i

We finally have all of the tools which are needed to process the l'xser_'s lhf:;i‘::; .
ional drawing. We assume that the user has specified the desired viewing P i 0

sion the MAKE-VIEW-PLANE-TRANSFORMATION routine has bef:n el

and [Lh:[view plane coordinate transformation. The user now calls a three-dime

crea

Scanned by CamScanner

THREE DIME Ny 10y, 299

4 such as LINE-ABS-3(X, Y, Z). This command upd
omman DISPLAY-FILE‘ENT,ER routine which transforms and projects the
alls [hi/ ow plane before entering it into the display file, The e [i\'::cl :L
on © | b; the view plane transformati_on ma'lrix to coxl\fcrl the point .lo(vic\(u)
’ muIHP_y s, This in effect changes the VleWpon.nt to that of our synthetijc camera
marform a projeclion to place the two-dimensional image on the **film "
Gnd: Sifze (he image in the display ﬁle' by means f’f our clipping routine. l)oi;lg

ew plane transformation makes it seem as if our clipping win-

gl * " frer the Vi
~ i . It governs the size of the “*film'" in the s ;
LW-IP uached to the View plane..Thg ¢ “hilm™ in the synthetic

jow 18 a) 8-44.)
" (See Figure . , :
cm A'n algorilhm 1o multiply a point by the view plane transformation matrix and

convert it from object to view plane coordinates is given next.

ates the pen po-

mertb)'
Algorithm VIEW-PLANE-TRANSFORM(X, Y, Z) Transforms a point into the
oordinate system

X. Y, Z point to be transformed, also for return of result

TMATRIX a 4 X 3 transformation matrix array

T three-element array to hold results until calculation finished

| index for stepping through the TMATRIX columns

8.37
view plane €
Argumems
Global

Local

BEGIN
FOR1 = 1TO3 DO
T[l] « X * TMATRIX]1, I] + Y » TMATRIX[2, I] +
7 » TMATRIX[3, I] + TMATRIX[4, IJ;
X < T[],
Y T2
Z<T[3);
RETURN;
END;

Window

FIGURE 8-44 -
\ The window is attached to the view plane.

Scanned by CamScanner

300 cuarter piGuT

The modified DISPLAY-FILE-ENTER routine is as follows:

8.38 Algorithm DISPLAY-FILE-ENTER(OP) (Revision of algorithm 6.14) Ry -
to enter an instruction into the display file R“Rme 4
Argument OP opcode of instruction to be entered » s
Global DF-PEN-X, DF-PEN-Y, DF-PEN-Z the current pen position
PERSPECTIVE-FLAG perspective vs. parallel projection fla
Local X,Y, Z hold the point that is transformed —eon lag
BEGIN
IFOP < | AND OP > - 32 THEN PUT-POINT(OP, 0, 0)
ELSE
BEGIN
X « DF-PEN-X;
Y < DF-PEN-Y;
Z < DF-PEN-Z;
VIEW-PLANE-TRANSFORM(X, Y, Z):
IF PERSPECTIVE-FLAG THEN PERSPECTIVE-TRANSFQ
ELSE PARALLEL-TRANSFORM(X. Y, Z);
CLIP(OP, X, Y, Z);
END; -
RETURN;:
END;

RM(X, Y, 2)

To finish up, we will extend the CREATE-SEGMENT routine to call ap al- b
gorithm named NEW-VIEW-3 that forms a new viewing transformation and establishes
clipping parameters. This means that a new viewing transformation can be established
for each display-file segment. The three-dimensional viewing parameters are therefore
established in the same manner as the window specification. The user may set new
values at any time, but the new values will not go into effect until a display-file seg- -

ment is created. Furthermore, a particular viewing specification will remain in effect -
throughout the segment. |

8.39 Algorithm NEW-VIEW.3 Create 5 new overall viewing transformation
BEGIN

MAKE-VIEW—PLANE-TRANSFORMATION;
NEW-VIEW-2:
MAKE-Z-CLIP-PLANES;
RETURN;
END;

8.40 Algorithm CREATE-SEGMENT(SEGMENT-NAME) (Modification of
algorithm 7.17) User routine to create a named segment

Argument SEGMENT-NAME the segment name
Global NOW-OPEN the segment currently open
FREE the index of the next free display-file cell EX
SEGMENT-START, SEGMENT-SIZE, VISIBILITY, ANGLE, SCALE™"
SCALE-Y, TRANSLATE-X, TRANSLATE-Y,
DETECTABLE the segment-table arrays
Constant ~ NUMBER-OF-SEGMENTS size of the segment table

Scanned by CamScanner

/=

Bl

THRE(DIMp

NSIONS 301

GIN

'NOW-OPEN = 0 THEN RETURN ERROR "SEGMENT g
::._;,v(.,,\,,;m-.wfxmn = I OR SEGMENT-NAME ~ NS,L;['R“OP
”':;:smuw ERROR ‘INVALID SEGMENT
IF SEGMENT-SIZE[SEGMENT-NAME
RETURN ERROR ‘SEGME
NEW-VIEW-]
SEGMENT-START[SEGMENT-NAME] + FREE;
SEGMENT-SIZE[SEGMENT-NAME) «- ,
VISIBILITY[SEGMENT-NAME] « VISIBIL
ANGLE[SEGMENT-NAME] «~ ANGLE|0):
SCALE-X[SEGMENT-NAME] <~ SCALE-X[0):
SCALE-Y(SEGMENT-NAME| «— SCALE-y|0).
TRANSLATE-X[SEGMENT-NAME) “—TRANSLATE-X|0);
TRANSLATE-Y(SEGMENT-NAME] —TRANSLATE-Y|0):
DETECTABLE[SEGMENT-NAME) « DETECTABLE(0):
NOW-OPEN «— SEGMENT-NAME:
RETURN;

PEN':
SEGMENTS
NAME":

| > 0 THEN

N'l'Al,RF.Al)Y linSTS‘;

ITY[0):

END;

We

also need an initialization routine to establish default viewing parameters.

The default parameters we shall choose are a view reference point at the origin, the

view plane in the object coordinate x
y direction, and a parallel

y plane, the view-up along the object coordinate’s

projection in the z direction. Front and back clipping will ini-
tially be off.

8.41
Local
BEGIN

END

Algorithm INITIALIZE-8 Initialization of global data
I for initialization of the clipping routines

initialize
INITIALIZE-7:
SET-VIEW-REFERENCE-POINT(0, 0, 0);
SET-VIEW-PLANE-NORMAL(0, 0, — 1);
SET-VIEW-DISTANCE(0):
SET-VIEW-UP(0, 1, 0):
SET-PARALLEL(0, 0, 1):
SET-FRONT-PLANE-CLIPPING(FALSE):
SET-BACK-PLANE-CLIPPING(FALSE):
SET-VIEW-DEPTH(0, 0):
NEW-V]EW—3'.
FORI = | 16 DO
BEGIN
NEEDFIRST(I] « FALSE;
XS[I) «o:
YS(I) «0:
ZS[1) —0:
END:
RETURN:

Scanned by CamScanner

\

302 cHAPTER EIGHT

AN APPLICATION

One application relying heavily upon three-dimensional graphics is
simulator. A flight simulator can be used as part of_a pilot’s trainj
may look like the real cockpit, only the windshield is replaced by
ated image of the world. This image alters under the pilot's actions in the same py
as his yiew of the world would change if he were actually flying. In the Simulay
pilot may practice, and even err, without endangering anything but hjs Pride. (Seq.
ure 8-45.) !

Let us consider how our three-dimensional graphics system might be
flight simulator program. The first thing to be done is to construct a y
over which the pilot is to fly. Buildings, runways, fields, lakes, and othe; landscape
features may be constructed using our three-dimensional LINE and POLYGON primi.
tives. Windowing allows us to use real-world dimensions, such as meters. The ggp.
struction may be somewhat tedious, but it is straightforward. Let us assume that it ha
been done, that we have a procedure named BUILD-WORLD which contains the c-'—

still project this landscape ontq

an airplapa o
Ng. The simylac.
4 Computer.gan

sed in ,
model of the wory

windshield. The view reference point will be attached to the airplane, so as it moves,
the windshield (view plane) moves with it. A VIEW-DISTANCE value of zero will dg
nicely. Ny

It may be convenient to think of the view reference point as centered on the
windshield. We can accomplish this with our SELWINDOW command.

SET-WINDOW(-0.5, 0.5, -0.5,0.5);

The orientation of the plane corresponds to the orientation of its windshield, which i 4
set by the SET-VIEW-PLANE-NORMAL command. The pilot may bank or roll the
plane. This would change its view-up direction. And finally, we must indicate the Prog
Jection, which should be a perspective view centered on the pilot's eye. This is behind

the windshield, say about 0.5 meters away. (See Figure 8-46.)
Let us outline two routines,

position, and another to be called
update the plane’s position, we ch
jection.

j

\ FIGURE 8-45
Airplane flight simulation.

Scanned by CamScanner

THRIT DIAiE NSIONS 303
pank angle .
\/ A \ anve Center of projection
"lew 'v I i .) .
Vew plane rcmzzlv/d /(’/; ’
P
yyew reference il
point <
Window \
RE 8-46 :
}2&:*“” for flight simulation.
BEGIN
ENCE-POINT(EAST-WEST, ALTITUDE, NORTH-SOUTH);

SET.VIEW-REFER
SET.PERSPECTIVE(EAST-WEST — 0.5 » EW-DIRECTION,

ALTITUDE — 0.5 * AL-DIRECTION, NORTH-SOUTH

— 0.5 * NS-DIRECTION);
CREATE-SEGMENT(2);
SET.VISIBILITY(2, FALSE);
BUILD-WORLD:;
CLOSE-SEGMENT;
SET-VISIBILITY(1, FALSE);
SET-VISIBILITY(2,TRUE);
DELETE-SEGMENT(1);
RENAME-SEGMENT(2, 1);
RETURN;

END;

Here we have used (EAST-WEST, ALTITUDE, NORTH-SOUTH) as the coordi-
TS of the plane’s position. The vector [EW-DIRECTION AL-DIRECTION NS-

?gE CTION] gives the plane’s orientation and is assumed to be ponnalized. In_tl:ie
i ‘PERSPECTIVE command, 0.5 is used as the distance of the pilot fmm' the wind-
teld. It s multiplied by the plane’s direction and subtracted from the plane’s position

I : .
:,fu'“ the pilor’s position. The visibility property and segment renaming i l;;f%::
e that the old image of the world is maintained until the new one is ready

play,
i . o like the follow-
ing: A routine to update the plane’s orientation mi ght look something like

BEG]
3 NS-DIREC-

SET-VIEw,
P h .
Tion, LANE-NORMAL(EW-DIRE

$
ET'V"':""UP(SIN(B,«\NK-ANGLE) « NS-DIRECTION,

CTION, AL-DIRECTION.

Scanned by CamScanner

304 CHAPTER EIGHT

COS(BANK-ANGLE) * (EW-DIRECTION 12 + NS-DI
—SIN(BANK-ANGLE) * EW-DIRECTION);
RETURN;
END;

In the above, BANK-ANGLE is how much the Plane is bankeq t
value of zero means level flight, and a negative value means bankin
arithmetic which occurs within the call to SET-VIEW-UP finds av
coordinates which, if attached to the plane, would correspond to th
in level flight, n

A program for flight simulation might also take advantage of mmc-dimens' ¥
clipping. Such a program should not display what is behind the airplane. W shoull ""
tend the program so that it clips any object which lies behind the Windshielg (the yie
plane). We can do this with our front clipping plane. If the pilot has unlimited yig; :
ity, then the back clipping plane should not be used. If, on the other hand, we wu;, "
simulate the limiting effects of bad weather on visibility, an approach might be 1 girm
Ply clip away all objects that exceed the range of vision. "

Instructions to set up the front and back clipping might look as follows: b/

1
SET-VIEW-DEPTH(0, VISIBILITY-DISTAN CE), "
SET-FRONT-PLANE-CLIPPIN G(TRUE),

SET-BACK-PLAN E-CLIPPING(BAD-WEATHER);

O the Jof
810 the :
€ctor in the ‘:v

€ Vertica]

_ ' dimensional polygon surfaces, but they may.als‘}wn _;
described by three-dimensional structures. This is called solid modeling and is ©

: . . Loe. seful
used for computer-aided design. Three-dimensiona] image representation is also >

Scanned by CamScanner

