CHAPTER

HIDDEN
SURFACES

LINES

| INTRODUCTION

we described how to obtain different views of a scene. We de-
which made constructed objects look more realistic.
Id only draw those lines and polygons which could
d be hidden by other objects. What is hidden
of view. As seen from the front, the front of
he structure is hidden; but as seen from the

ents of the building from outside
f view inside the

- Inthe last chapter
| veloped perspective projections
But for a realistic scene, we shou
actually be seen, not those which woul
and what is visible depend upon the point
abuilding is visible, while the back of t
rear, this situation is reversed. We cannot se€ the cont
bec_:ause they are hidden by the building’s walls, but from 2 point 0
bilding, some of the contents should be displayed- So far, we have leamed how 9
Model and project three-dimensional objects, but all parts of the objects are always dis-
;;layed_ This gives our drawings a transparent quality. Such figures are called WIlr-g
. Complex objects can easily tum into 2 confusing clutter ©

M2y be difficult 1q ; biect and which to the
ult t ich li to the front of the obje e
ack o judge which lines belong 10 o il to producing reallSt‘lC-IOOk‘

; -The remov . . . -
ing : al of hidden portions of objects 15 €S .
prgt;lr:ages. (See for examplg Plates 4 through 15.) In this chapter W€ consider the
Jeet, l;n of removing those lines which would normally B¢ 12 be free to construct
Centi:e can assign this task to the machinc. then the L% z;lltoesce it as it will ac-
model (front, back, inside, and outside) and still be b What nature

g .
Y 3pear. This problem is not nearly as €asy 25 it might scem at first
311

Scanned by CamScanner

el processing) W€ must do (hr.()ugh eXtensive g

of pa.rarl,: (g the hidden surface and line fprohlcm. Many
- There exist many solu;': s the best soluugn hu.s. yet to l?c ()lll}fj, W? "hﬂ"_
tation. have been tried; per]p one solution will be l.mplcmt,n'lcd_ Phe firg, "
Prvoach"'S ral approaches but only moval. This is sufficient for single conyey o i
cusssizcc: back-face detection a'::cr:emoval of hidden surfaces by means of (. Paingeps
= nsiders :

The second section €O

BACK-FACE REMOVAL

cess, and so it behooves us to apply easy tuen
Hidden-line removal can be a ::;‘z ‘;Lossiblc before undertaking a thorough anzl;s
to simplify the problem as }Twe can perform which will eliminate most of the facee
There is a simple (¢ wh!c test identifies surfaces which face away from e
which cannot be seen. T,?-’Sh make up the back of the object. They cannot be visib
They are the S;;:fafc :;c‘:;b}(;ct is in the way. This does not completely solve the hidde a
?e:f?fee U::bl;:m gecause we can still have the front face of an object obscureg by ,
;:cond cfbjcct or by another part of itself. But the test can remove roughly half of the
surfaces from consideration and thus simplify the problem. . ,
We begin our discussion by noting that we shall only consider polygons. Lines -
cannot obscure anything, and although they might be obscured, they are usually found
only as edges of surfaces on an object. Because of this, polygons suffice for mos
drawings. Now a polygon has two surfaces, a front and a back, just as a piece of paper
does. We might picture our polygons with one side painted light and the other painted !
dark. But given the arrays of vertex coordinates which represent polygons, how can we
tell which face is which? Easy! We shall say that when we are looking at the light sur-
face, the polygon will appear to be drawn with counterclockwise pen motions. If we -
Move our point of view to the other side, so that the dark surface may be seen, the pen
drawing the polygon will appear to move clockwise. (See Figure 9-1.)

Scanned by CamScanner

|

HIDDEN SURFACES AND LINES 313

fittle mathematics will give us the direction
NoW aolrlmal 10 the plane of the polygon). We shall de;}l‘::b(:proozg&n surface is
vector normal (0 the pl;i;e of the polygon. The first method uses a: c? oo
ing ¢ Jlled the vector cross product. The cross product of two vectors s a th c!;erauon
(hat 15‘; ength equal to the product f’f the lengths of the. two vectors times (}l{ vector
qith 10 ¢ between them and, most important to us, a direction perpendi e sine of
he two vectors. (See Figure 9-2.) icular to the

ang® "~
d;e containin three-dimensional '
P The formulas for 2 1onal cross product in a right-handed coordinate

as follows. For

gystemm R, R, RJ=1[Px Py PIX[Q, Q, Q]
x s x Ny Nz (9.1)
we have
R, = P,Q, — P,Q,
R, = P,.Q« — PQ; (9.2)

R, = Pny - Pny

lygon describe two vectors in the plane of the polygon, so the
cross product of two polygon sides forms a vector pointing out from the polygon face.
Will this vector point out from the dark face or the light face? That depends on whether

the two sides form a convex or concave angle.

Let's assume that we are dealing with two adjacent sides which do not lie in the
qame line and which meet in a convex vertex, that is, a vertex where two sides meet to
form a convex angle. The vector Cross product will yield a vector which points out of
the light face. (See Figure 9-3.)

The problem with this first approach to finding the vector normal to the polygon
is that some searching and checking are required to find a vertex at a convex corner of
noncollinear sides. The second method (which we shall use) is suggested by Newell
and described in [SUT74]. The calculation is as follows: If the n vertices of the poly-

gonare (x;, y,, z;), then form the sums over all vertices

Now two sides of a po

R
A

FIGURE 9-2
The vector cross product.

Scanned by CamScanner

Ji4 CHAPTER NiNI

FIGURE 9-3
The cross product point out of the light face a4 convell
'CA Ven

n

a= _El(}’i = ¥z + z;)
1=
n

b= ‘El(zi - Zj)(xi + xJ)
1=
n

¢ = _El(xi = X0y + Yy
1=

where if i = n, then j = 1; otherwise, j =1 + 1.

The result [x b c]is a vector normal to the polygon. Each of these sum
twice the area of the projections of the polygon on a plane. That is, if we
polygon along the x direction to the yz plane, then the area of that projected
a/2. The values b/2 and ¢/2 are the areas of the projections on the xz and Xy
spectively. (The proof of this is left as an exercise.) So a, b, and ¢ describe thep
tion of the polygon in the x, y, and z directions. But this is directly related to thet
tion of the plane. The amount of area projected along the z direction, for exampi
proportional to the z component of the polygon’s normal vector. So [a b]IS
mal vector to the plane of the polygon. The virtue of this method is that there 2
special cases to check; we simply compute the sums.

Now, suppose that we make the rule that all solid objects are to be cQ
out of polygons in such a way that only the light surfaces are open t0 the air;
faces meet the material inside the object. This means that when we look .at '
face from the outside, it will appear to be drawn counterclockwise. (Se¢ Figures

If a polygon is visible, the light surface should face toward us and the k ‘
face should face away from us. Since a cross product or sum can be forme e
gives the direction of the light face, this vector should point toward us. SO if
mal vector points toward the viewer, the face is visible (a front face), other™!
face is hidden (a back face) and should be removed. . 0T do't ;

How can we tell whether or not a vector points toward the viewer: TO v
examine the z component of the normal vector. If the z component is positives
polygon faces toward the viewer; if negative, it faces away.

Scanned by CamScanner

HIDDEN SURPACES avp Lives 318
]
FIGURE 94
All exterior faces are colored light (drawn counterciork-
wise

This is @ Special case of the general problem of comparing two vectors, If we
1

wo vectors (say R and S) and wish to compare their directions, we use the vector
have t

dot product.
a=R-S =|R|S|cos b (9.4)

saw in Chapter 8, the dot product gives the product of the lengths of the two
As Y es the cosine of the angle between them. This cosine factor is important to
\-'eclljor::;l if the vectors are in the same direction (0 = 6 < w/2), then the cogin? is
u:)sifi(\:/e and the overall dot product is positive; but if the directior)s are opposing
Emz < 0 < 7), then the cosine and the overall dot product are negative. (Se¢ Figure

9-5.) _ . e
The formula for computing 2 dot product 1s as follows:
a=R-S
o [Rx R‘y R1J : lsx Sy Sz] (9.5)

- RS, + RS, + RS,

For the back-face check, one vector is the normal to .the polygon and the otfler 1sf [d;:
depth direction [0 0 1]. So the test for a bacl; f;lc)e is then a check on the sign of the
Eom | vector. (See Figure 9-0.)

;\)A(;:::': :}f)czgfdn:lﬁ? this chec(king be done? Cex:tainly it sh-oulfi be ;dhone aft:;u '12;
transformation-to view plane coordinates. It should follf)w projection (l O:karic; =i
can affect whether the polygon image is drawn clockwise or counterc ockse ‘,, s
should also wait until after clipping has been perform;d so that we wonY Go\'_[:;DGE
Polygons outside of the window. There is a point in the CLIP-POL h

R > R
g cos8 <0
FIGURE 9.5

0s s ;
pUir:xn © of the angle is positive if the vectors are pointing somewhat in the same
“Way from each other.

direction and pegative if they

— |

Scanned by CamScanner

316 %ﬂy

Result of
cross product

FIGURE 9-6

The left plane would be visible §; e

its cross product and projection veer, N

same direction (positive dot product),
Projection vectors would be a back face.

A

i is sitting in a temporary storage buffer wairine
ine where the clipped polygon is sitting 1n a buffe
:;::erlic i:to the display file. We test to be sure that the number of sides is a

fore the polygon is saved. At this point we can also perform our back-face
quiring the polygon to also be a front face before it is saved.

BACK-FACE ALGORITHMS

Now let us detail the algorithms which will remove back faces. To begin with, we

not always want hidden lines removed, so we should provide the user with the me
of tuming the process on or off.

9.1 Algorithm SET-HIDDEN-LINE-REMOVAL(ON-OFF) User routine to set the
hidden-line removal indicator

Argument ON-OFF user specification for removing hidden lines
Global HIDDEN hidden-line removal flag.
BEGIN
HIDDEN « ON-OFF;
RETURN:
END;

is the modified CLIP-POLYGON-EDGE routine, which no
cludes a check for back f

aces when the HIDDEN flag is true.

9.2 Algorithm CLIP-POLYGON-EDGE(OP, X, Y, Z) (Revision of algorithm 833
Close and enter 3 clipped polygon into the display file

Arguments QP X.Y,Za display-file instruction

Global PFLAG indicates that a polygon is being drawn

COUNTIN the number of sides remaining to be processed le
COUNT-OUT the number of sides to be entered in the display i

IT, XT, Y1 emporary st
NEEDFIRST ammry rage arrays for a polygon

Y of indicators for saving the first command mm3? -
FIRSTOP. FIRSTX, FRgTy, FIRSTZ ang'ays for saving the first ©
CLOSING Indicates the stage in polygon

Scanned by CamScanner

HIDDEN SURFACES AN

Duxnes 317
FRONT-FLAG, BACK-FLAG
done
HIDDEN flag for hidden-line remova]

Ll I for stepping through the polygon sides

BEGIN)

CLIP-B:\CK(OP. X.Y.2);
IF COUNT-IN # 0 THEN RETURN;
close the clipped polygon
CLOSING « 5:
IF BACK-FLAG AND NOT NEEDFIRST(5] THEN
CLIP-BACK(FIRSTOP([S], FIRSTX(S], FIRSTY(S], FIRSTZ(5]):
CLOSING < 6.
IF FRONT-FLAG AND NOT NEEDFIRST(6] THEN
CLIP-FRONT(FIRSTOP(6]. FIRSTX[6], FIRSTY[6], FIRSTZ[6];
CLOSING « I
IF NOT NEEEDFIRST(1] THEN
CLIP-LEFT(FIRSTOP[1], FIRSTX[1], FIRSTY[1], FIRSTZ[1)):
CLOSING « 2;
IF NOT NEEDFIRST[2] THEN
CLIP-RIGHT(FIRSTOP(2], FIRSTX[2], FIRSTY[2], FIRSTZ(2));
CLOSING < 3;
IF NOT NEEDFIRST([3] THEN
CLIP-BOTTOM(FIRSTOP([3], FIRSTX|3], FIRSTY[3]. FIRSTZ[3]).
CLOSING « 4,
IF NOT NEEDFIRST([4] THEN
CLIP-TOP(FIRSTOP[4], FIRSTX[4]. FIRSTY[4], FIRSTZ[4));
CLOSING «0;
PFLAG < FALSE,;
IF COUNT-OUT < 3 THEN RETURN;
enter the polygon into the display file
IF HIDDEN THEN CALL BACK-FACE-CHECK(COUNT-OUT);
ELSE
BEGIN
VIEWING-TRANSFORM(COUNT—OUT‘ XT[COUNT-OUT].
YT[COUNT-OUTY));
FORI = 1 TO COUNT-OUT DO
VIEWING-TRANSFORM(IT(1], XT(1}, YT{ID:
END;
RETURN;
END:

indicate whether front and back clipping is

_ decide

The algorithm above uses the BACK-FACI.S-CHECK fl]lnC‘;-:)l;1 [?[?:Ztrl:\ﬂll:::cs the 2
Whether the polygon is a back face and enters it into the q.sp ?y E L;ation 9.3. It then
Component of the vector normal to the polygon according (:isc:)ositive. Thus, only
Checks the sign and enters the polygon only if the Z componen

front faces are entered.

Scanned by CamScanner

8 CHAPTIR NINI

9.3 Algorithm BACK-FACE-CHECK(POLYSIZE) Filters out polygon gray,
clockwise ' |

'SIZE mber of sides on the polygon
Argument POLY SIZE the n;lfer e Ve s

Global XT, YT, ZTT-bu
Local C z component of a vector for thf: normal to the plane of the polygon
1, J for stepping through the vertices
BEGIN
C <0
FOR | = 1 TO POLYSIZE DO

BEGIN
IF1 = POLYSIZE THEN J « |

ELSEJ <1+ L;
CeC+ (XT{) = XT(J)) = (YT(] + YT([ID):
END,;

IFC < 0 THEN RETURN:
VlEW[NG-TRANSFORM(POLYSIZE. XT[POLYSIZE], YT[POLYSIZE))

FOR I = 1 TO POLYSIZE DO VIEWINGTRANSFORMUT(I], XT(1}, YT())

RETURN;
END;

We have added a new global flag, so we should include it in the initializations.
We shall make the default hidden-line removal setting FALSE, so that hidden lines will
not be removed unless such action is explicitly requested by the user.

9.4 Algorithm INITIALIZE-9A Initialization routine

BEGIN
INITIALIZE-8;
SET-HIDDEN-LINE-REMOVAL(FALSE);
RETURN,;

END;

. }Ve have just seen how to remove many of the lines which would be hidden by 4"
object’s bulk. The method will suffice for single convex objects, but m&y N \;l
adequate when several objects or concave surfaces are involved. (See Figur 9-7.)

npw survey some of the techniques used to solve the full hidden-surface and hidden
line problems.

F!GURE 9-7
Hidden lines among front faces.

Scanned by CamScanner

Ry

HIDDEN SURFACI;S AND LINEs

319
A d ; S
f l‘U”hR v backed by a frame buffe
/ ster displays backed by a frame buffe
conside” rll-m“) as well as lines. If we are using such a disply
(NS .
((.Ilcd po ,ur face problem is that we want to arran
idden-s ixel is that of the surface cloge
fhe M { any pixet k
ed 8

I. These displays can show surfaces
Y, another Way to state
ge the frame byffe, S0 that the ¢olor
St 1o the vie

! wer for that point. To do
Jisplay ust somehow compare all of the surfaces which are projected onto the pixel
(i, WC.I _ which one can be seen. We must sort the polygons according to their posi-
and decide This notion of geometrically sorting
c‘ .

spac

e removal.
face and lln‘(_‘ ""]': approach to this problem relies on a devi
One S xeribed by Catmull [CATT4], It is 4 large
paffer Was dji“: lay (like a frame buffer). The Z buffer is
ixel on lhc‘l s‘:}\ to sort out the polygons by keeping tra
values: l.(hLdP; 1;,ycd, When the frame buffer is cleared, the Z-buffer elements are all
faces bcm‘gv l':tr[, e negative value (a value which is beyond anything which will be im-
set 10 “.r'\- ;(iil value may be thought of as the z position of the background. Poly-
aged). Tmb;ncntered one by one into the frame buffer by the display-file interpreter,
gons "f"‘” sonversion algorithms such as those discussed in Chapter 3. Suppose that
using 5‘3_"hw which turns on each pixel of the polygon knows the projected z position
. algoql t"tlxzing displayed. It could then compare the z position of the polygon point
of ¥ pOl; buffer value and decide if the new surface is in front of or behind the cur-
o lhetcl;ts of the frame buffer. If the new surface has a z value greater than the Z-
r;unf(fecr(’\['lalue‘. then it lies in front; its intensity value is entered into the frame buf;er‘ atrrll:
its z value 1s entered into the Z buffer. If the z value of the _new surface is lelssv ::nztgmd
value in the Z buffer, then it lies behind some polygon which was prevfnfous ?_ 7 buffer
The new surface will be hidden and should not be imaged. No frame 'b'ul t:r Ois g
enines will be made. The comparison is carried out on a plxel-by-_pl;\leof :1}158 éolyeon.
must be able to find the z position of the projected point for °Vﬁ§ l),(,.surface rem(;val.

If we were to modify our system to use a Z buffer for ; thz polygon vertices.

*¢ might extend our display file to keep the z coordinates oordinate of any interior
From the 2 coordinates of the vertices, we can find the 123 ():(OVALUES) how to incre-
Point. We have seen in Chapter 3 (Algorithm 3.15 UPDAT -hr-ou h the scan lines. The
Mentally find the x values for the polygon edges as we st}clp td esga[each step. All we
tame technique can be used to find the z values along the edg

in y for the polygon
need is the starting z value and the change in z for each step in

: hich indi-
. airs of x coordinates W
“dges. So for each scan line, then, we still generate pairs 0 h of the fill-span end-

eac .
Cat‘c Where 1o fill: but in addition, we know a z vah.je forthiS time using the spans
P, By reapplying this linear interpolation technique, t each pixel can be calcu-
Hange ip 2 for each step in the x direction, the z values aoint 7 coordinates as argu-
e THE FILL 1N algorithm would have to obtain the endflting values to the Z-buf-
Mentg : Y mpare the res
fervap.. '™ the interpolation in x, and co . ensity.
" alues 10 decide wh:fher to change the frame bl:ffe(r)flnr:emof‘y (one ent;y gssiﬁz
q . ires a lo . R ish the
Pixe}) Z‘;ifgl’ecsn be ex};:enswes.ug_':g;l number of bits 10 distingu

niry must have a

the surfaces i central to hidden sur-
fjon 10
ce called a 7 buffer. The Z
array with an entry for each
used to save the z coordinate
ck of the z position of the sur-

Scanned by CamScanner

320 CHAPTERNINE N p
‘ 3 oo ecision must be made for ey, .
. s consuming 1 that.ad . le method. < €Iy pixe]
values. Tt can also be ti® However, it is 8 very Simp * SIMPple engypy -
1 n. e the speed problems. And the time equireq 1 y
ther [ech‘ .‘,'

ber of objects in the scene. (Some ¢
inst every other polygon require time Propor.
very polygon 28 This, together with th . Por-ig
lygons.) 1S, g the Co“tlnu'
f the number of po ing
fional to the square ©

t of memory makes this method (or its extensions) an inc“"asingly 1
in the cost O 1
mnﬁ approach to the hidden-surface problem.

' e num
process a scene 1S pnopomonal to th

niques which compare €

SCAN-LINE ALGORITHMS

W oo o collect the polygons and process them together, thep , -
ﬁlcli?silg;rlfz“t:uzfl:’:r\:sl lrlllotgneeded; a scan-line Z buffer will suffice and requires myc,
less memory. The idea was suggested by C.Jarpenter [CAR76]. The reason.a large
amount of memory is needed for a Z buffer is that we process each polygon indepen-
dently. As each polygon is rasterized, we must in effect be able to remember the depth
of each of its pixels so that they may be compared against later polygons. A polygon
may be as large as the screen, so we need a full-screen Z buffer. But we can reduce the
memory requirements by processing all of the polygons together on a scan-line by
scan-line basis. This in effect is repeatedly doing a Z-buffer hidden-surface removal
for a screen that is only one pixel high (a single scan line). The Z buffer only needs to
hold one scan line's worth of depth information. When the scan line is done, we save
the result, reinitialize the Z buffer, move to the next scan line, and do the next scan-
lcl:)]zsizd.::ilife;l slort. T?e key here is that all polygons are processed together. Instead of
4 pgly 05::‘; ines for a polygon before moving on to the next polygon, we cor
done using aliorilhr(:s ?nscal?ll.me before moving on to the next scan line. This can
o s gy uch like th.ose of Chapter 3, only instead of entering the edges

Y&on into the edge list, we enter the sides of all the polygons. We must

also be careful when pajr; .
polygon. N painng edges for filling that we pair edges belonging to the same

on of the scan-line 3 a
pproach d . Where
a polygon, a line ge oes not require a Z buffer at all. Wi

A variati
scan line cuts
: . . . ¢
are being sorted for BMeNL or span is described. It is these spans Wi

rs
We ca : .) oL
trate, and the order - N use this to Slmpllfy the Ca]culatlon one
no
ering j ines 4
- Depth reqy, enpg is the same for the two scan Ii" : ugh
N& 1S needed only when the sweeP in 0°

order of Span .
N, passes g polygon, or finds chang

endpoints, feW polyg,

Scanned by CamScanner

ES

1] { ' | ns l l
| “l" ‘1”""A I A ““
.

: r,\IN'I‘I'IR'S ALGORITHM
i a property ,"r il buffers used by Newell [NEW
i s the painier ¥ "lx'f’f"""' The algorithm gets ity nl, EW72], which has hec
il ainting '* crcmc'd. Ihe artist begins with the hlucl;"nllc from the manner in \;;::nlc
il the cn't';rc t‘f‘f“’"“ “'“-“ll "“‘. "‘}th!l(')l.lll<l seene, The nrl,il.’:):;",d' ”?' can, if he wi,uh:
abjeets: e 18 o m‘u o erase portions of the l):nck;v|~(;l """ paints the l’uu:ymuml'
on 10 of t!\cm. lhcf.ncw puu.n covers the old so that ”,;” ind; the artist simply 'p;u‘mq
Jisible A lmmclhuHcr has this s.umc property. We enter 'lyl“ llhc newest layer of paint s
puffer bY changing the proper pixels to values C‘H‘rcgp(,;]_l led polygon into the fr:un(;
ayle: If we then enter a second polygon “*on top (;I"- '; ing to the polygon's interior
ixels will bclchunglit‘d m'CO;}vshond to the second pnlylg:)cn"-,”'ﬁl; some of those same
olygon lies, the hirs - ON's interior style
polyg overed 1|;|)‘:t‘(l|::]¥"|l;:)l'] ;':)I.xc! :s‘cuil‘ms have been f,(r)r:'l():tlltc‘nwll"}crcvc.r
hich are farthest fr(m; llhc ::-l .I::I.m(n- s algorithm tells 1’1,\ to énlcl: ftlcr:l
the viewer (the f‘"'b‘l'mund)L },L'r (the background) and enter last II;
" orar o deaw tl‘- e lu!dcn surfaces can be covered b
iem and taking advantage of the up by
properties of

the second
ond polygon has
hose polygons W
objects closest to
choosing the correc
frame buffers. (See Figure 9-8.)
The Pu.mlcr: ullgorllhm is a simple idea, but let’s look at what is | |
ation. First of all, we cannot process each Dolygon‘indcpzln:;c:::lv;l:s‘c (\Jnlcndi-tj
y A b]

J
}

implement

:
L

FIGURE 9-8 ‘
erwrites previous pixel values.

The most recent filled polygon oV

Scanned by CamScanner

322 CHAPTERNINE

-screen Z buffer. We must compare each pyj,,
in the back-face Ch:c“‘/(h?crl:‘;: if:lfrom of which. We must, in effect, sor lhg pglgy(;:):“h
all of the rest 10 Se,l for their display. The sorting w1ll‘determme. the order i, whs'to
determine a pnozdyimo the display file (the order in which they wil be drawp) y Ich |
t;ne.y will :ie;;e:o limit the number of comparisons and we try to make the com _‘:f- \
iciency,

On
process fast.

COMPARISON TECHNIQUES

There are several techniques for determ?niﬂg th? relevanrcfy and relaFive Position of twy |
polygons. Not all tests may be-used with .all hidden-su ace algorithms, and gop, of |
the tests are not always conclusive. Sometimes we can use simple tests for many of th
cases and resort to more costly tests only when all else fails. |
One technique that is often useful is called the minimax test or boxing tesr, We may |
not need to know the order of every polygon relative to every other polygon: it may
suffice to know just the relative orderings of those polygons that overlap. So a tes! that
can quickly tell us if two polygons do not overlap is useful. The minimax test will &g
just that. This test says that if we place boxes around two polygons and if the two
boxes don't overlap, then the polygons within them cannot overlap. (See Figure 99.)
We want the boxes to be as small as possible and still contain the polygons. That
means we want the top of the box to be as low as possible. The lowest we can make the
top of the box is where it just touches the highest point on the polygon, that is, the |

;

VCIIJ?‘
FIGURE 9-9 not ¢

es 40
The minimax test. If the bo:rlap-
then the polygons cannot O

Scanned by CamScanner

HIDDEN SURFACES AND LINEg

323

_ of the polygon’s vertices. Similarly,

he coordmif;eih e minimum of the y Coordinates ¢

mof! f the box i e is above the other, that is, if the |,

o 'w:tom[verlap if ot:cr box. This means that the mMinimum
f the 0

f the Vertices. Ty
ottom of ope box is

of the y Coordinates

= S

SO compare left ang
: inates.
Ay ng the x coordina .
! “’,lcm- g similar test l::;eg then the polygons do not overlap; but if the boxes do
\Lq 8 i jnimaXx test :;Sel‘[ain' whether the polygons within them overlap. We wil]
o l{ -" are nOt
" we stl

.\fﬁjf" fur[her (CStS .

ied to the z coordinates can often tell the relatjy
it pC im test applle

e ordering of
lue for o
in X and y. If the smallest z va
:«h do overlap In X
S Wthh

ne polygon is
; hen the first polygon lies in front,
Boii r the other polygon, t . .
% Pot:saio‘he - }‘:a'lsu z::ful is to see if all the vertices of one PO:I)’%:'L:;S:S‘SS
:::jrAnOthl' test whic ltaiﬂing the other polygon. If polng_n P h:S a[If Q. If all the
s of the plane e of polygon Q as the viewer, then P is in rgonloo) |
ot §108 ne . - re 9-10.
. qne side of the plahalf-space, then P is behind Q. (See f]glll on Q may intersect
s lie in the oth;?ro be inconclusive because the planeho \I/):n}i,fes of Q against the
g S ing the
D iis dhould happen, we can try compari A
sy I this iggurl:ay PP may not yield results. (slee Sﬁu,fto pieces such that the
aoeof P Again, ts fail, we might break up the polyg to both polygons and com-
Lot ht ;ry to find an xy point common
s suceeed, or we mig

2 e corresponding z-coordinate values.

WRNOCK'S ALGORITHM

k
ted by Wamoc
blem was presented t ene
. idden-surface pro - ning in the sc

'!J. mlerestm'g Zoproact] 1o thet : to decide exactly wh?t N l;atll?;edisplay increases,
I?“vAR69]..Hns rpethod does o trlz right. As the resolution o right also increases.
. mme”us; o i thﬂtl;edsgon'ythm must do to get the scene

“amount of work whic

f
ide of the plane of
FIGURE f9.lo polygon on one side 0
Vertices of one

another polygon.

Scanned by CamScanner

324 CHAPTER NINE

FIGURE 9-11
Vertices of each polygon straddle the plane of the other.

(This is also true for scan-line algorithms.) The algorithm divides the screen up into
sample areas. In some sample areas it will be easy to decide what to do. If there are no
faces within the area, then it is left blank. If the nearest polygon completely covers it,
then it can be filled in with the color of that polygon. If neither of these conditions
holds, then the algorithm subdivides the sample area into smaller sample areas and
considers each of them in turn. This process is repeated as needed. (See Figure 9-12.)
It stops when the sample area satisfies one of the two simple cases or when the sample
area is only a single pixel (which can be given the color of the foremost polygon). The
process can also be allowed to continue to half or quarter pixel-sized sample areas,
whose color may be averaged over a pixel to provide antialiasing., _

'l?he test for whether a polygon surrounds or is disjoint from the sample area 13
much like a clipping test to see if the polygon sides cross the sample-area boundaries-

FIGURE 9-12
~J Subdivision of a scene.

Scanned by CamScanner

HIDDEN SURFACES AND Lings 325

{he minimax test can be employed to identify many of the disjoint poly
gons,

Iy, .. _
Acw:ﬂ y (st for whether a polygon is in front of another is a comparison of the 7
. COOr-

ASTP of the polygon planes at the comers of the sample area,

dinalesl cach subdivision, information learned in the previous test can be ys d
e roblem. Polygons which are disjoint from the tested sample area \:ijleul:::
simP oint from all of the subareas and do not need further testing. Likewise, a I.
be:ljjhich currounds the sample area will also surround the subareas. i
£

FRANKL[N ALGORITHM

" mentioned how the number c.)f possible comparisons of polygons grows as the
quare of the numb.er of polygons m.the scene. Many of the hidden-surface algorithms
exhibit this behavior and have serious performance problems on complex scenes.
Franklin (FRA80] developed an appmfiCh which gives linear time behavior for most
cenes. This is done by overlaying a grid of cells on the scene (similar to Warnocks ap-
roach, only these cells are not subdivided). The size of the cells is on the order of the
e of an edge in the scene. At each cell the algorithm looks for a covering face and
determines which edges are in front of this face. It then computes the intersections of
hese edges and determines their visibility. (See Figure 9-13.) The idea is that as ob-
jects are added to the scene and the number of polygons increases, the new objects will
sither be hidden by objects already in the scene or will hide other objects in the scene.
While the number of objects increases, the complexity of the final scene (after hidden
portions are removed) does not increase. By considering only the edges in front of the
covering face for a cell, the algorithm considers only the edges likely to be in the final
image. Although the total number of edges may increase, this increase occurs, for the
most part, behind the covering faces, and the number of edges in front will remain

small.

' L/

(7777777
(777)

Can ignore faces behind the covering face

Y/

Must consider edges in front of the covering face

HQUR!H K}

CES bey; |
thd l'he ﬁrsl facc to cover a Cc" can be igﬂomd fOI’ [.hat CCll-

Scanned by CamScanner

326 CHAPTER NINE

HIDDEN-LINE METHODS~

e techniques such
r, are not su

as the painter’s algorithm, which rely ,
fficient for calligraphic displays. On gy,
f lines. This means that for each |ipe

ll('_ oy,

Gisplay,

|
'

The hidden-surfac A
; e bull¢
ivr:?;fsft t:; f;?arr; the hidden portions 0 . also just | o Wemyy
! 1t obiects lie in front of it but also Jll?l 10W those objecy, hide
decide not only what 0b) ilable long before raster displays became ecqp, -
Calligmpbic dlsplaysr:t:;f\\;{;s‘auackcd before the hidden-surface problep,. e,
" Ih’i‘tz\ldf?rzrll:g;zt?on [ROB63] compared lines (0 objects. For each object, jy consjg.
ered mlc:ant edges to see if the object hid them. The b9 et "“g"F MOt hide an gy
all o might hide it entirely. It might hide an end, making the visible portion oy,
edge smaller, or hide the middle, making two smflllcr Yu.snblc line segments. After o,
parison of the line and object, the resulting visible l'mc scgmcnt..s were compareq jp
turn to the remaining objects. A segment which survives comparison to all objecys i,
drawn.

We do not have to compare the line against all of the polygon edges in an object
in order to tell if the object hides the line. The only edges which can change whether
the line is visible or not are those on the boundary where a front face meets a back
face. These are called contour edges. We can find the contour edges by examining the
object. For a solid object, each edge has two polygons adjacent to it. If the polygons
which meet at the edge are both front faces or both back faces, then we have an inzerior
;c'{ge; b;t lli c;ne is a tront face and the other a back face, then it is a contour edge. (See

igure 9-14.

Ins}ead of comparing all lines to each object, we can compare the contour edges
Zif uflillr (;?:;[: tl)(; heizll]cdh;inel.).For each intersection 'of a line' with a contour edge, .the line
e P hiding :)h;el?:, :r f:.}l;ner.ges from it. So with each such intersection, the
termed the number of faces hidi::l e;.lnc.reases or de.cre.asets. b.)l. . Appel [APP67]#ZS.
den-line removal is to find the ufn?'tm'e n's q{‘a'm'"?nve mwsz'b l{ujy' HIS- me[hod.fOT :1d
then to follow along the conne(ited lli o meSIbl'lny 108 an mngl Sr——

nes, finding intersections with the contour ¢dge

Interior cdgc

FIGURE 9-14 Contour edge
Interior and contour edges.

Scanned by CamScanner

HIDDEN SURFACES AND LINES 327

;K'() ‘.isibili!y
R CE PARTITION
hidden-surface algorithm. The method we shall use is based on
nd is credited to Fuchs [FUC80]. It is called binary space parti-
sort the polygons for display in back-to-front order. To order
fion { we use the test which compares all the vertices of one polygon against the
+ the pOl)'gons her polygon. We extend this test so that if the plane intersects the poly-
:,‘ P plant of a,no.ije the polygon along the plane. Using this test we can pick one polygon
, gon. WE a Jll the other polygons to it, splitting them into two groups, those in front
mdcomPa;:hind. For each of these two subgroups we can again select a polygon and
and ‘hw arate the subgroup. This process is repeated until all polygons have been
et t%-;:pson works in the same fashion as Hoare's Quicksort algorithm, repeatedly
"‘mcd'.ng the polygons into smaller and smaller groups. The result may be pictured as
| scpal‘&; wree. At each node of the tree is a polygon. In one subtree, or branch, are all
:b Exzol'ygons n front of the plane of this polygon, and in the other branch are those
) palygons which lie behind it. (See Figure 9-15.) Once we have created this tree, we
: :; ¢ m’perfom an in-order traversal to obtain the polygons in back-to-front order.

\:}f Before discussing the details of the algorithm, we note that it requires the collec-
ion and sorting of all the polygons before any of them are drawn. We shall need some
‘ storage area to collect the polygon instructions until we are ready to sort them. We
hall need to know when to start collecting polygons and also when all polygons have
been collected so that sorting can proceed. We shall also need to save more information
. about a polygon than just its vertices. We shall need to save the edge and fill styles for

=
2z,
=
-
S
>

. ta
o 103 m lcm?[;lma
LN ner's algonith®
| #eFegp) The idea s o

=

s v

G

A
/c
A

RN

B E

/ N/

C D F

\
iiGUREm]s ¢

Ordereq lree of polygons.

Scanned by CamScanner

A28 CHaPTER NinE

the polygon. The change-of-style commands will have to be inserted
order in which the polygons are actually drawn (not the order that the
the user). It will also be useful to save the equation for the plane of t
can be used in the polygon comparison.

Let’s first consider when to save and when to sort the polygons. In our ggot
we shall limit hidden-line processing to single display-file segments. we shall sy
all the objects within a segment, but we will not ch.eck to see if an objec i, ona Ml
ment hides an object in a different segment. With this organization, 3 Teasonable et
at which to sort and save the polygons is just before the display-file ‘egment s ¢
When the segment is closed, we know that all relevant polygons have beep, entere
no other display-file segment’s polygons will be around to confuse us. We shall
fore modify the CLOSE-SEGMENT algorithm to include a call to our hidden-gy
removal routine. We shall use the HIDDEN flag to tell us to save polygons, so pofu
gons will be saved any time this flag is TRUE; but with each CLOSE-SEGMENT, 3

lhe

collected polygons will be sorted and moved to the display file. This groups them ge.

Yy are en %
he Polygon, py

cording to segment. .
The modified CLOSE-SEGMENT routine calls the HIDDEN-SURFA
CHECK routine to actually do the sorting and saving. It looks as follows: G

9.5 Algorithm CLOSE-SEGMENT (Modification of algorithm 5.2)
Global NOW-OPEN the name of the currently open segment
FREE the index of the next free display-file cell
HIDDEN the hidden-surface removal flag -
SEGMENT-START, SEGMENT-SIZE arrays for start and size of the seg-
ments
BEGIN

IF NOW-OPEN = 0 THEN RETURN ERROR ‘NO SEGMENT OPEN’:
DELETE-SEGMENT(0);
IF HIDDEN THEN HIDDEN-SURFACE-CHECK;
SEGMENT-START(0] « FREE:;
SEGMENT-SIZE[0] « 0;
NOW-OPEN « 0;
RETURN;
END;

To save the polygons we shall use some new arrays. We shall use array$ ID. X .?l s
YD, and ZD to hold the polygon edge instructions (the polygon vertices). We shalllTOf)
this the D buffer. The arrays must be large enough to hold all of the vertices of 2[‘) Es.
the polygons being sorted. We shal] also use arrays POLY-START, POLY-S!
POLY-FILL-STYLE, POLY-EDGE-STYLE, POLY-A, POLY-B, POLY-C. POI? o |
POLY-FRONT, and POLY-BACK to form a table of information about €ach ROl)ge ,
There is one entry for each polygon drawn. POLY-START will indicate where 'r; :adges
buffer the vertices for the polygon may be found. POLY-SIDES is the numbero[ol |
on the polygon. POLY-FILL-STYLE and POLY-EDGE-STYLE remember ¢ %2 s, |
the polygon. The arrays POLY-A, POLY-B, POLY-C, and POLY-D contain [he.B ACK
cients for the equation of the plane of the polygon. POLY-FRONT and pOL

Scanned by CamsScanner

HIDDEN SURFACES AND LINes 329

ces of other polygon entries, They are the branches that will form our
.

- BACK-FACE-CHECK algorithm to save the polygons. The
e to caleulate the entire normal vector to the polygon plane (not
sodificatt ponent) and to check the solid flag, calling the SAVE-POLY-FOR-HSC
L i)

[

. P.\I\'v_un is filled.

\

IU\I !

. i
ouiné i

m Il‘\('K-l-‘:\('l*‘.-('lll':('l\'(|'()l.\'5|7,l':) (Revision of algorithm 9.3) Filters

orith
9.0 A\:?::,:, drawn clockwise |
out PO OLYSIZE the number of sides on the polygon
Argamet! XYL ZTT buffer artay storage of the vertex points
“l“'hf“ _‘t:()ll 1D a flag which indicates polygon filling
AL B, Cavectot for the normal to the plane of the polygon
Local 1. J tor stepping through the vertices

REGIN
A
B O
C ;.vr(\;
FOR 1 = 1 TO POLYSIZE DO
BEGIN
IF1 = POLYSIZE THEN J «= |
FLSEJ «1 + 1.
A=A+ (YT — YT * (ZT[1] + ZTU).
BB + ((ZT[= ZTP)D * (XT[1] + XTU):
Ce—C + ((XT[] - XTI * (YT[I] + YT
END;
IFC < 0 THEN RETURN;
IF SOLID THEN SAVE-POLY-FOR-HSC(POLYSIZE, A, B, C)
ELSE
BEGIN
VIEWING-TRANSFORM(POLYSI
FOR I = 1 TO POLYSIZE DO VIEWING-TRANSFO
YT(1)):
END;
RETURN:
END:

7E. XT[POLYSIZE], YT[POLYSIZE]):
RMT(1], XT(I],

The SAVE-POLY-FOR-HSC algorithm enters the polygon information into the

| f{‘:;}’gon table at POLY and into the D buffer starting at DFREE. Most of the entries arc
| ‘Bforward, As we saw in Chapter 8, the A, B, and C coefficients in the equation
’ ' or which is deter-

oy
mintz ?lane (Equation 8.4) can be the elements of the normal vect deee
g for “ BACK-FACE'CHECK. The fourth coefficient D may be found by su slmu
s is :;hy, and z in the equation the coordinates of a point known to be on the planc.
B at Is done for the POLY-D array. |
(each |~y Selting POLY-FRONT to POLY — 1, we form a linked list of all the polygon§
ot st to access the polygons

ed 1o ite . !
) 50rlin(:;,lo its predecessor). We shall usc the linked i

Scanned by CamScanner

330 cuarTER NiNE

9.7 Algorithm SAVE-
polygon table for the hidden-su
Arguments POLYSIZE the num

l’()LY-FOR'”SC(I.()I‘YSIZF" Ay B, C) Save a Du]y;mn
rface check 20N i,
ber of sides on the polygon
A. B. C a vector normal 10 the plane of the .P‘)lmlm
POLY index of the next free p«}lys(gn-wblc cell
bl "‘URRENT-FILL-STYLE the interior style of the polypon
EBERI‘ZNT-LH‘:JE-STYLE the edge style 'of the polygon
ﬁ" XT, YT, ZT arrays containing the Vc'm.ccs of one P"lYK'm
u)', XD, YD, ZD D-buffer arrays containing the vertices of
involved in the hidden-surface check
DFREE the next free D-buffer cell '
POLY-START, POLY-SIDES, P()LY-HLI.-.SIYLE. POLY-ED()E.STY E
POLY-A. POLY-B, POLY-C, POLY-D, POLY-FRONT, P()LY-BACK the
polygon table ' ¢
Local I for stepping through the polygon vertices
Constant POLYGON-TABLE-SIZE the size of the polygon-table array,
D-BUFFER-SIZE the size of the D buffer

v

:
the =
4

all p:_,],/g()m

BEGIN
IF POLY = POLYGON-TABLE-SIZE THEN
RETURN ERROR ‘POLYGON TABLE OVERFLOW':
POLY-START[POLY] « DFREE;
POLY-SIDES[POLY] « POLYSIZE:
POLY-FILL-STYLE(POLY] « CURRENT-FILL-STYLE:

POLY-EDGE-STYLE[POLY] «— CURRENT-LINE-STYLE;
POLY-A[POLY] « A;

POLY-B[POLY] « B:
POLY-C[POLY] « C:
POLY-D[POLY] «— ~ (A » XT
POLY-FRONT « POLY — |
POLY-BACK « 0

POLY — POLY + |

FORI = 11O POLYSIZE DO
BEGIN

IF DFREE > D-BUFFER-SIZE THEN

RETURN ERROR ‘D BUFFER OVERFLOW"
W .
IDIDFREE| : ~ 1y, o

XD[DFREE] : = XTI(I);
YD[DFREE] = YT,
ZD[DFREE] = ZT();

DFREE : = pp .
END: REE + .

(1] + B*YT[1] + C *» ZT[1));

wh _ pd
L”U:ACE-CHEC:(l "PPens when 4 display-file segment is closed es il ‘

” 2 M n
thing to sor, 9 algorithm g called. This procedure first de[ermslof‘ing
) *4ve. If 50, it picks one of the polygons to start ¢ e il
€ root of the sorted tree of polygons-

Scanned by CamScanner

HIDDEN SURFACES AND LiNs 331

saves them in the display file in back-to-front
' 3 order, and then re
and D buffer so that future polygons will be sorted as a newcl;c:LSClS

0.8 Algorithm HII')DEN-SURFACE-CH.ECK A routine to remove hidden surfaces
o pOLY index of next free cell in the polygon table
Glo SOLID the polygon-filling flag

DFREE the next free D-buffer cell

ROOTPOLY the root of the space partition tree

ocal
GIN
BEC oLy = 1 THEN RETURN;
0OTPOLY <= POLY — 1,

R
SORT-POLYGONS(ROOTPOLY);
S AVE-POLYGON S-IN-ORDER(ROOTPOLY);

poLY < i

DFREE < 13

RETURN:
END;

The sorting rou;ine is given in recursive form (it calls itself). Nonrecursive ver-
sions are possible. but they are more complex. The algorithm checks to see if there is
something to sort; f not, it returns. It uses a loop to step through the polygons in a
linked list. The index of the next polygon in the list is found in the POLY-FRONT array

lygon in the list (ROOT-NODE)

for the current polygon. It compares the first po
against all of the other polygons in the list (TEST-POLY). The COMPARE-POLYS pro-

cedure not only decides on which side of ROOT-NODE each TEST-POLY lies but also

links the TEST-POLY onto a sublist accordingly. When the Joop has finished, the list
i ist of the polygons in front of

will have been divided into two sublists. T
the ROOT-NODE, which will be attached to the ROOT-NODE's POLY-FRONT entry,
and there will be a list of those behind, attached to POLY-BACK for the ROOT-NODE.

The algorithm, then, recursively sOrts each of these two sublists.

9.9 Algorithm SORT-POLYGONS(ROOT-NODE) A routine to build 2 sorted binary

tree of polygons
Argument ROOT-NODE the polygon at the oot of the tre
Global POLY-FRONT, POLY-BACK links for the tree b
Local TEST-POLY, NEXT-POLY polygons to be comp
BEGIN
IF ROOT-NODE = 0 THEN RETURN;
TESTPOLY < POLY.FRONT[ROOT-NODEJ;
POLY-FRONT[ROOT-NODE] « 0:
WHILE TEST-POLY # 0 DO
BEGIN
NEXT-POLY « POLY-FRONT
COMPARE-POLYS(ROOT-NO
TEST-POLY « NEXT-POLY;
END;

e
ranches
ared to the root

[TEST-POLY):
DE, TEST-POLY):

.—~“.

Scanned by CamScanner

o VHAPLER NINE | ‘

SORT-POLYGONS(POLY-FRONT[ROOT-NODE));
SORT~POLYGONS(POLY-BACK[ROOT-NODE]);
RETURN:

END:;

There is actually a lot of work that goes on in the COMPARE-popy alon. B
It compares each vertex of the TEST polygon against the plane of the ROoyps i,
and decides which side it is on. But it will also split the TEST Polygon ingg txsgly ;
rate polygons if it is intersected by the plane. The.techniq.ue is very Similar 1 W *Pa
used for clipping. When clipping, we compare points against a clipping plape and o
keep those points which lie on one side. In COMPARE-POLYS we keep the Poim:nl 5
both sides but in two separate groups, so we end up with two polygons. As with cl%"‘
ping, when an edge crosses the plane, we calculate the intersection point, using itl
build an *“invisible" edge along the plane boundary. (See Figure 9.1, °

The algorithm determines on which side of the plane a point lies b
sign of the result of substituting the coordinates of the point into the
the plane (see Equations 8.69 and 8.70). It finds the first vertex point which s not op
the plane and then compares following vertices, checking for a change in sign which

indicates a crossing of the plane. If a side ever crosses the plane, then we will hay o
split the polygon. To do this, we form a new polygon starting at DFREE (the next free
cell in the D buffer). The new polygon begins with the first intersection point. We mys
also save the points for the other side of the split. This side will also include the inter.
section point. Since the split polygon can have more vertices that the original, we can-
not store them in place, so we use arrays IE, XE, YE, and ZE (the E buffer) to save the :
other half of the split polygon. The E buffer must be large enough to hold one poly- |

gon. After the first intersection is discovered, vertices are copied to either the D-buffer |

piece or the E-buffer piece. Intersection points £0 to both.

y Checking the
€Xpression for

FIGURE 9.16
Dividing the polygon along a plane.

Scanned by CamScanner

f \

E HIDDEN SL'RFACB AND LINg
. 1 l ‘ S

e 6 fisiding tbe sign of each verrey
Alt.n jgn between two Vertices; that is, we are cops;
;hang'es 'ir A'ﬂer stepping through all vertices, we must
et Pa,h'aractcrize the final edge, that is, to close the

We are acyy

deﬁng thee
consider the f

dge betweep, the

fof 1€ POlngn. nin
I
010 Algofm““. CO;\'IP:}RE.-POLYS(ROO’I‘, TEST) Finds on which sid
T.EST polygon lies anq links it to that branch., If the plane of ROOT ; side of ROOT the
ygon. then it is split Intersects the TEST
ot ROOT the polygon providing the pl ;
Amumenls . plane used in the ¢ .
g TEST the polygon being compared and linked (and :or?:;:,rllson .
Global POLY-START, POLY-SIDES, POLY-A, POLY-B, POLY.C)};(;F;_]\l(‘)D

POLY-FRONT the polygon table
ID. XD, YD. ZD the D-buffer arrays containi ,
DFREE the next free D-buffer celly PRIZInIng polygon vertices
IE. XE. YE. ZE the E-buffer arrays for vertices of split-off polygon
EFREE the next free E-buffer cell
Local FIRST-V index of the first vertex of the polygon
LAST-V index of the last vertex of the polygon
CROSS-V index of the vertex just before the polygon crosses the test plane
SPLIT-V index of the first vertex of the split polygon
J for stepping through the polygon vertices
STEST the first nonzero sign parameter
SLAST the sign parameter of the previous vertex
SNEW the sign parameter for the current vertex
U0, U, V test point parameters
W parameter for the intersection point
XP, YP, ZP the intersection point
CHANGED-BEFORE a flag to indicate the first time the polygon crosses
the plane
CROSSED a flag to indicate if the polygon edge crossed the plane
BEGIN
FIRST-V « POLY-START[TEST]:
~ LASTV « FIRST-V + POLY-SIDES[TEST] — L
CROSS-V « FIRST-V;
U0 < POLY-A[ROOT] * XD[FIRST-V] + POLY-B[ROOT
+ POLY-C[ROOT) ZD[FIRST-V] + POLY-D[ROOT}:
STEST « SIGNOF([UO];
find the first vertex not on the plane
U <o,
WHILE STEST = 0 AND CROSS-V < LAST-VDO
BEGIN
CROSS-V « CROSS-V + I
U « POLY-A[ROOT] * XD[CROSS
+ POLY-C[ROOT] * ZD[CROSS
STEST « SIGNOF(U);

] » YD[FIRST-V]

V] + POLY-B[ROOT! * YD[CROSSV]
.v] + POLY-D[ROOTI:

IF STEST = 0 THEN
BEGIN

in front
- o treat as 10
test polygon was contained in the plane §

Scanned by CamScanner

334 CHAPTER NINE

POLY-FRONT[TEST] < POLY-FRONT[ROOT};
POLY-FRONT[ROOT] « TEST,
RETURN;
END;
SLAST « STEST,
EFREE « I}
SPLIT-V « DFREE;
CHANGED-BEFORE « FALSE;
FOR J = CROSS-V + 1TO LAST-VDO
BEGIN
step through all vertices
V « POLY-A[ROOT] * XD[J] + POLY-B[ROOT] * YD[j)
+ POLY-C[ROOT] * ZD[J] + POLY-D[ROOT];
SNEW « SIGNOF(V),
IFSNEW = — SLAST THEN
BEGIN
point has crossed the plane, find intersection
CROSSED <« TRUE;
WeU/(U - V),
XP «— (XD[J] — XD[J = 1])*W + XD[J - 1];
YP «—(YDJ] — YD[J — 1]) *W + YD[J - 1];
ZP «— (ZD[J] — ZD[J — 1)) *W + ZD[J - 1];
CALL PUT-IN-D(ID[J], XP, YP, ZP);
CALL PUT-IN-E(ID[J], XP, YP, ZP);
SLAST < SNEW;
END
ELSE CROSSED « FALSE;
IF SNEW = STEST OR (SNEW = 0 AND SLAST = STEST) THEN
BEGIN
point belongs on the first side of the plane
IF CROSSED THEN IE[EFREE — 1] « I;
IF CHANGED-BEFORE THEN PUT-IN-E(ID[J], XDUJJ. YDU1. 20
ELSE CROSS-V « CROSS-V + I;
END;
ELSE
BEGIN

point belongs on the second side of the plane
CHANGED-BEFORE « TRUE;
IF CROSSED THEN ID[DFREE - 1] « I
CALL PUT-IN-D(ID[J], XD[J]. YD[J]. ZD[J]):
END;
UevV:
END;
now we must close the polygon
IF SLAST # STEST THEN
BEGIN
WV/(V - Uy
XP « (XD[FIRST-V] — XD[J]) «+ W + XD[JJ;
YP < (YD[FIRST-V] - YD[J]) + W + YDUJJ:
ZP < (ZD[FIRST-V] — ZD(J)) « W + ZDUJJ;

Scanned by CamScanner

HIDDEN SURFACES AND LINg
1 W LINES

335
CALL PUT-IN-D(ID[FIRST-V], Xp yp ZP).
CALL PUT-IN-E(1, XP, YP, Zp). .
END:
finally. hang the polygon(s) on the ROOT node
(F SPLIT-V # DFREE THEN SET-UP-SPLIT-POLY(ROO
ADJ UST-ORIGINAL-POLY(ROOT, TEST, FIRST-v, CR(;;SFE/S?”I:SEPUT.V‘ P
RETURN; ' ST
END:

Once the polygon has been le':sted (and split if necessary), two routines ar d
o clean things up. If the polygon is split, then the vertices for one half are co;fieliisirn
he D puffer. But we do not have a corresponding polygon-table entry. The routine
SEr.U?-SPLlT-POLY forms this table entry. It also links the polygon onto either the
pOLY-FRONT or POLY-BACK branch of the ROOT polygon, depending on whether it
lies in front or in back of the ROOT polygon plane.

9.11 Algorithm SET-UP-SPLIT-POLY(ROOT, TEST, SPLIT-V, STEST) Completes
a polygon-table entry for the split-off polygon and attaches it to the root polygon
Arguments ROOT the root polygon
TEST the original test polygon
SPLIT-V index of the first vertex of the split-off polygon
STEST indicates on which side of the root the split polygon lies
Global POLY-START, POLY-SIDES, POLY-FILL-STYLE, POLY-EDGE-STYLE,
POLY-A, POLY-B, POLY-C, POLY-D, POLY-FRONT, POLY-BACK the
polygon table
POLY index of the next free polygon-table cell
BEGIN
POLY-START(POLY] « SPLIT-V;
POLY-SIDES[POLY] < DFREE - SPLIT-V;
POLY-FILL-STYLE[POLY] « POLY-FILL-STYLE[TEST];
POLY-EDGE-STYLE[POLY] « POLY-EDGE-STYLE[TEST];
POLY-A[POLY] « POLY-A[TEST];
POLY-B[POLY] « POLY-B[TEST];
POLY-C[POLY) « POLY-C[TEST];
POLY-D[POLY) « POLY-D[TEST];
POLY-BACK[POLY] « 0;
IF STEST < 0 THEN
BEGIN _
POLY-FRONT[POLY] « POLY-FRONT[ROOT;
POLY-FRONT[ROOT] « POLY;
END
ELSE
BEGIN
POLY-FRONT[POLY] « POLY-BACKI[R
POLY-BACK[ROOT] « POLY;
END;
POLY — POLY + 1;
RETURN;
END:

OO0T];

Scanned by éamScanner

.] NINE
cpartt
e

{) Battet
v ‘"“!‘_‘vffs‘ﬁ-r‘-
LIRS R
SRy
R(\ﬁﬂ\' I’an
{
(o u\ml

T
'u\h’l‘m ,,,.u"""""

spht [” -
piece [.. DIRED

DFREE

EFREE

Before After

FIGURE 9-17
Case where the number of sides increases with the split.

The second cleanup routine is called ADJUST-ORIGINAL-POLY. If the polyge
was split, then the points for one of the subpolygons may be found partly in the Dby
fef and partly in the E buffer. The D buffer holds the vertices up to the first interseclit
:ﬂ'“““he ’;QOT polygon plane. The remainder is in the E buffer, These two pats
N ‘n'.l‘“"“_ med. If this subpolygon now has fewer vertices than the original, then

crices in the E buffer can be copied back into the original D-buffer locations: If

however, he size of th . E
‘ e pol and the
buffer piece are copied Polygon has grown, then both the D-buffer piece ‘

: 10 a new D-buffer location. T is linked onto the aPP
priate by 1on. The result is lin

ranch of the ROQT polygon. (See Figures 9-17 and 9-18.)

9.2 Algorithm ADJUST.

STEST) Comb;
in
polygon es al] ve

Argumenys ROOT (he Toot polygon
lT:ﬁ(SST Tgl:}c.original test polygon
CROSG, \: ex of the first vertex of the polygon lane
STEgy € Vertex just before the polygon crosses the test P an
ICates on which sige of the root the split polygo” *

A'A
ORIGINAL-POLY (ROOT, TEST, FIRST-V o oS;e %
riices of the polygon in the D buffer and attaches it t©

Scanned by CamScanner

HIDDEN SURFACES AND Lings 337

’//
DB‘JHC{ ///
ARSTY AR \ \\ \\
crOSSY S
o,
Polﬂ"‘ //
////,
____4
r—-—ﬁ
i —
P [peree | -
EFREE .
Before After
FIGURE 9-18

Case where the number of sides does not increase with the split.

1
Global POLY-START, POLY-SIDES, POLY-FRONT, POLY-BACK from the po ygon

table
ID, XD, YD, ZD the D- -puffer arrays

DFREE the next free D-buffer cell
IE, XE, YE, ZE the E-buffer arrays
EFREE the next free E-buffer cell
Local J an index for stepping through the vertices
SIDES the number of sides on the polygon
BEGIN
SIDES « EFREE + CROSS-V ~ FIRST-V:
IF SIDES < POLY-SIDES[TEST] THEN
) i space
the adjusted polygon will fit in the original D-buffer sp
FORJ = lTOEFREE - 1DO
BEGIN
lD[CROSS-V + J] < IE(J):
XD[CROSS-V + J] < XE[):
YD[CROSS-V +J] « YEUL

Scanned by CamScanner

338 CHAPTER NINE

ZD[CROSS-V + J] « ZE[J];
END;
END
ELSE

BEGIN
POLY-START(TEST] « DFREE;

FOR J = FIRST-VTO CROSS-V DO PUT-IN-D(ID(J], XDU, v
FORJ = 1TO EFREE DO PUT-IN-D(IE(J], XE(J], YEjy), ziz[”).“]‘ 2y,
END; o
POLY-SIDES(TEST) « SIDES;
IF STEST < 0 THEN

BEGIN
POLY-FRONT(TEST] <« POLY-BACK[ROOT];

POLY-BACK|ROOT] « TEST;
END
ELSE
BEGIN
POLY-FRONT[TEST] « POLY-FRONT[ROOT]:
POLY-FRONT[ROOT] « TEST:
END;
RETURN;
END;

. The comparison algorithms use the following utility routines to characterize the
sign of a number and to save a vertex in the D buffer or E buffer.

9.13 Algorithm SIGNOF(X) Returns — 1, 0, or 1 to indicate the sign of X
Argument X a value from which the si gn is to be extracted

gonstant ROUNDOFF some small number greater than any round-off error
EGIN

SIGNOF « 0:

IFX < —~ROUNDOFF THEN SIGNOF « -1;

IFX > ROUNDOFF THEN SIGNOF <« 1;
RETURN:
END:

9.14 Algorithm PUT-IN-D(OP, X, Y, Z) Saves an instruction in the D buffer
» Y, Z a display-file instruction
ID, XD, YD, ZD the D-buffer arrays

DFREE the next f; ’
BEGIN Xt free D-buffer cell

ID[DFREE] <~ OP:
XD[DFREE] «— X; -
ZD(DFREE] « 7.
DFREE « DFREE + I

RETURN:
END:

Scanned by CamScanner

RFACES AN
DLINes 339

. .IN-E(OP, X, Y, Z) S i
orithm PUT-IN (y Xy aves an instruction j
9.5 Q:E“S op. X, Y.Za display-file instruction o
Arg l [E. XE, YE, ZE the E-buffer arrays

Globd EFREE the next free E-buffer cell

n the E buffer

RETURN;
END;

Once we have the qued tree of polygons, we can traverse it to enumerate them
o-front order. This is an in-order traversal of the tree which is most simply ex

in back-t . : :
s the following recursive algorithm,

pressed a

916 Algorithm SAVE-POLYGONS-IN-ORDER(ROOT) Enter polygons into the
display file in back-to-front order
Argument ROOT the root polygon of the spatially sorted tree
Global POLY-FRONT, POLY-BACK arrays of the polygon table for the branch links
BEGIN
[FROOT = 0 THEN RETURN;
SAVE-POLYGONS-IN-ORDER(POLY-BACK[ROOT]);
SEND-TO-DF(ROOT);
SAVE-POLYGONS-IN-ORDER(POLY—FRONT[ROOT]);
RETURN;
END;

t there is something in the tree. If so, it recursively

enters into the display file (in back-to-front order) all of the polygons behind the
ROOT polygon. It next enters the ROOT polygon into the display file. Finally, it enters
all of the polygons in front of the ROOT polygon by means of another recursive call.

In SEND-TO-DF we first make sure that the proper edge and fill styles are in ef-
f?' Then we enter the polygon-drawing command. Finally, We enter the polygon
Sides.

The algorithm first checks tha

917 Algorithm SEND-TO-DF(POLYGON) Enter = polygon into the display fi
Argument POLYGON the polygon to be entered
Global POLY-START, POLY-SIDES array
ID, XD, YD arrays that m
Local I for stepping through the
F the final vertex of the polygon
BEGIN
CHECK-STYLE(POLYGON):
F < POLY-START[POLYGON] *+
enter the polygon instruction

VlEWlNG-TRANSFORM(POLY-SIDES[POLY

POLY-SIDES[POLYGON] - L

GONIJ. XD(F]. YD(F]:

Scanned 'by CamSc

‘

anner

340 CHAPTER NINE

enter the polygon sides .
FORI = POLY-START[POLYGON]T’O FD\(I)D“])‘
VlEWlNG-TRANSFORM(lD[ll, XD(1]. '
RETURN;
END;

Il style is done through the ,5

Checking for the proper edge and fi
utility.

9.18 Algorithm CHECK-ST\’LE(POL\’GON) Makes sure that the polygon js o

in the correct style '
Argument POLYGON the polygon to be <‘me.n
Global CURRENT-FILL-STYLE the interior style of the polygon

CURRENT-LINE-STYLE the edge style of the polygon
POLY-FILL-STYLE, POLY-EDGE-STYLE the style entries in the g

table
BEGIN
IF CURRENT-LINE-STYLE # POLY-EDGE-STYLE[POLYGON] THEN
BEGIN
DISPLAY-FILE-ENTER(POLY-EDGE-STYLE[POLYGON));
CURRENT-LINE-STYLE « POLY-EDGE-STYLE[POLYGON];
END;
IF CURRENT-FILL-STYLE # POLY-FILL-STYLE[POLYGON] THEN
BEGIN
DISPLAY-FILE-ENTER(POLY-FILL-STYLE[POLYGON])):
CURRENT-FILL-STYLE « POLY-FILL-STYLE[POLYGON];
END;
RETURN;
END;

All that remains for our hidden-surface check is an initialization procedure

ltJaS;] it to set the default edge and fill styles, and we empty the D buffer and pol
e.

9.19 Algorithm INITIAL]

ZE-9 Initializatj . .
Global CURRENT. Initialization for hidden-surface routines

FILL-STYLE the interior style of
yle of the polygon
(I;URRENT-L[NE-STYLE the edge style of the polygon
FREE the next free D-buffer cell

POLY ;
i index of the next free polygon-table cell

lNlTIALIZE-gA;
CURRENT.L]NE_STYLE -0

CURRENT-FILL.ST
POLY‘—]; YLE « = 16;

RETURN;
END;

This completes the : ph
system does not take f; "algomhms needed for hidden-surface removal. OYf gr? with
Ul advantage of 1he power of the binary space pamuon.

Scanned by CamScanner

HIDDE N 1
DEN SURE ACES AND
QLINES J‘"

.o parameters we re 1 :
o of \le“f]r::'hpdicpla\'-ﬁlc cezr:um the applications progr
qng 12 . segments and causing us to r: \M 10 redraw the
> somt the [‘\\l
yeons,

P st '
¢ v the View changes, and > obiects i
} not the abjects in the scene. 1}
seene, then the so
sorts

. . pack of the root poly e
TR ; ?d 100 <ublists F([;\: gon, bUl_ it will not change the w:

os ** g ake ad s. For some applications which \h‘n\\‘ dkv Wy that the

4., we can t e advantage of this, doing the sort ol mc:‘m views

) voonce, building

< a

e vl T ree < then traversed in the appropn ~
: pnate order for each scene. To d
A . t'.

e ’,!.n [?‘-’t ®
a }Au“)" s‘ﬂﬁed ree 3nd hl
R s 7 .

" .‘1",'

\ ajor 3pplicalion of computer £ra
~,~'Jazcr can aid in the design process in many are
g . cuits. The machine can maintain a dat

Design components and properties of mating parts
part can be constructed and its behavior studied via computer

t is often quite helpful to be able to draw and to view the part,

1o this 13 where computer graphics cOmes in.
ded design syste g machine parts. Such a

Consider 3 computer-ai

g ide a set of primitive shapes and operations for combining them 10

;‘.J‘J“t the desired object. oct. if shown in wire frame, may be 100

enfusing. To make 2 realistic ing object W& should remove hidden lines and sur-
1 different directions 0 as 10 in-

faes. We should also

cect all sides of it. We might even employ clipping planes 0 inspect the interior. To do

this on our system We would first set the viewing and clipping parameter for the de-

ured view. \\.'e would next turn on the HIDDEN flag and open a display-ﬁle segment.

We would then draw the part using POLYGON—ABS-3 and POLYGON-REL-B_ calls.
rface software will pro-

Fnally, we would close and display the segment. The hidden-su

ece a realistic image.

phics is in computer-aided design (CAD). The
as from architecture to machine
a base describing the object
may also be avail-

heinf designed-
e, A model for the
<molation. OF course. |
m for designin

FURTHER READING i
. . er ni
Trt first solution to the hidden-lin€ problem was escribed 1D [R(])Bg3lk_o tce remova
% olutions are described in [APPE7): (GAL69). 2nd (L U0 e e is
* diseussed in {LOUT0). The 7 buffer is described in (CAT? (]1 ccribed in (BOUTOL
;E;f'ngiled in [CAR76]. Other scan-lin algorith™® are G <t decompOs the
.;,ul\Am' and [WYL67). Some of the hidden-sY e bijects convex and P
\!{;;Rons into tnangles or trapezoids- This ensure . ﬂ;e P hods for S decorm
F-x.',s.‘: uniformity which makes them easi€r '© 'ri:‘:‘; priority order anddlhf1
."“mdcscribe . d] 1 maybefounl
, oeortoed 1 (JACS80] and s algor .
et DA R N e
pr.csent.e ' excell madsc;o r version

J. Bi tion |
of nary space parufion 1S An €
FuCs3l: ;
dinl 4in [SU’W'*]' with

diff

e]

"mpa!::": views of a scene is descr!)
of hidden-surface techniques fou

?-.‘g'_ H . i -

' » each ume. Different views may ¢
s may change whether a subl;

i IS Uf pn] V-

dden-surface remov st be 1
moval must be incorporated into the applica

Scanned by CamScanner

