PRODUCT MOMENT CORRELATION

CORRELATION

- It measures the extent to which two or more than two variables are related.
- Correlation shows strength and direction of correlation.
- There are three possible outcome of a correlational study
 - 1. Positive Correlation ($\uparrow\uparrow$ or $\downarrow\downarrow$)
 - 2. Negative Correlation $(\uparrow\downarrow)$
 - 3. Zero Correlation (no)
- Range : -1 to +1

STRENGTH OF CORRELATION

Negative Range	Strength of association	Positive Range
-1.00	Perfect Correlation	+1.00
-0.80 - 1.00	Very High Correlation	+0.80 - 1.00
-0.60 - 0.80	High Correlation	+0.60 - 0.80
-0.40 - 0.60	Average Correlation	+0.40 - 0.60
-0.20 - 0.40	Low Correlation	+0.20 - 0.40
-0.20 and below	Very Low Correlation	+0.20 and below

PRODUCT MOMENT CORRELATION (r)

- Devised by Karl Pearson, also known as Pearson Product Moment Correlation or Pearson Method
- It is an index of the degree of linear relationship between two variable.

-Uses :-

- 1. Prediction
- 2. Validity
- 3. Reliability
- 4. Theory verification

1. REAL MEAN METHOD

$$\mathbf{r} = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}}$$

r = Pearson Correlation

 $x = X - \overline{X}$ i.e. Deviation of a score of X-series from its mean $y = Y - \overline{Y}$ i.e. Deviation of a score of Y-series from its mean $\sum xy =$ Total of x multiplied by y $\sum x^2 =$ Sum of square deviation of x $\sum y^2 =$ Sum of square deviation of y

0	2	-6	-2	36	4	12
10	6	4	2	16	4	8
4	2	-2	-2	4	4	4
8	4	2	0	4	0	0
8	6	2	2	4	4	4
30	20			64	16	28

$$\bar{X} = \frac{\sum X}{N} = \frac{30}{5} = 6$$
$$\bar{Y} = \frac{\sum Y}{N} = \frac{20}{5} = 4$$
$$r = \frac{\sum Xy}{\sqrt{\sum x^2 \sum y^2}} = \frac{28}{\sqrt{64 \times 16}} = \frac{28}{32} = 0.875$$

2. DEVIATION FROM ZERO METHOD

$$\mathbf{r} = \frac{\sum XY - NXY}{\sqrt{(\sum X^2 - N\bar{X}^2)(\sum Y^2 - N\bar{Y}^2)}}$$

r = Pearson Correlation

- $\sum XY$ = The sum of the products of the scores X multiplied by score Y
- N = Number of subjects
- \overline{X} = Mean of X-series
- \overline{Y} = Mean of Y-series

 $\sum X^2$ = Sum of square deviation of x

- $\sum Y^2$ = Sum of square deviation of y
- \overline{X}^2 = The square of the mean of the X-Series.

 \overline{Y}^2 = The square of the mean of the Y-Series.

0	2	0	4	0
10	6	100	36	60
4	2	16	4	8
8	4	64	16	32
8	6	64	36	48
30	20	244	96	148

$$\bar{X} = \frac{\sum X}{N} = \frac{30}{5} = 6$$
 $\bar{Y} = \frac{\sum Y}{N} = \frac{20}{5} = 4$

 $\mathbf{r} = \frac{\sum XY - N\bar{X}\bar{Y}}{\sqrt{(\sum X^2 - N\bar{X}^2)(\sum Y^2 - N\bar{Y}^2)}} = \frac{148 - 5 \times 6 \times 4}{\sqrt{(244 - 5 \times 6^2)(96 - 5 \times 4^2)}} = \frac{148 - 120}{\sqrt{(244 - 180)(96 - 80)}} = \frac{28}{32}$ = **0.875**

3. ASSUMED MEAN METHOD

$$\mathbf{r} = \frac{\frac{\Delta xy}{N} - C_X C_y}{\sigma_x \, \sigma_y}$$

$$C_X = \frac{\sum x}{N}$$
 $C_y = \frac{\sum y}{N}$ $\sigma_x = \sqrt{\frac{\sum x^2}{N}} - c_x^2$ $\sigma_y = \sqrt{\frac{\sum y^2}{N}} - c_y^2$

r = Pearson Correlation

.

x = X - A i.e. Deviation of a score of X-series from assumed mean of that series.

y = Y - A i.e. Deviation of a score of Y-series from assumed mean of that series.

 $\sum xy =$ Total x multiplied by y

- N =Number of subjects
- $C_X =$ Correction of X-series
- $C_{y} =$ Correction of Y-series
- σ_x = Standard Deviation of X-series
- σ_{v} = Standard Deviation of Y-series

N .

24.5							
	0	2	-6	-2	36	4	12
	10	6	4	2	16	4	8
	4	2	-2	-2	4	4	4
	8	4	2	0	4	0	0
3	8	6	2	2	4	4	4
10	30	20	0	0	64	16	28

$$\overline{X} = \frac{\sum X}{N} = \frac{30}{5} = 6 \qquad A_x =$$

$$\overline{Y} = \frac{\sum Y}{N} = \frac{20}{5} = 4 \qquad A_y = 0$$

$$C_X = \frac{\sum x}{N} = \frac{0}{5} = 0 \qquad \qquad C_X^2 = 0$$

6

$$A_{\rm ev} = 4$$

$$\sigma_x = \sqrt{\frac{\sum x^2}{N} - c_x^2} = \sqrt{\frac{64}{5} - 0} = 3.577$$

$$\sigma_y = \sqrt{\frac{\Sigma y^2}{N} - c_y^2} = \sqrt{\frac{16}{5} - 0} = 1.788$$

$$\mathbf{r} = \frac{\frac{\sum xy}{N} - C_X C_y}{\sigma_x \sigma_y} = \frac{\frac{28}{5} - 0 \times 0}{3.577 \times 1.788} = \frac{5.6}{6.395} = 0.875$$

4. REDUCED SCORE METHOD

$$r = \frac{N \sum xy - \sum x \sum y}{\sqrt{[N \sum x^2 - (\sum x)^2][N \sum y^2 - (\sum y)^2]}}$$

r = Pearson Correlation

x = X - A i.e. Deviation of a score of X-series from reduced mean of that series. y = Y - A i.e. Deviation of a score of Y-series from reduced mean of that series. $\sum xy = \text{Total } x$ multiplied by y N = Number of subjects $\sum x^2 = \text{Sum of squares of } X \text{ scores}$ $\sum y^2 = \text{Sum of squares of } Y \text{ scores}$ $\sum x = \text{Sum of } X \text{ scores}$ $\sum y = \text{Sum of } X \text{ scores}$

	0	2	-6	-2	36	4	12
	10	6	4	2	16	4	8
	4	2	-2	-2	4	4	4
	8	4	2	0	4	0	0
	8	6	2	2	4	4	4
No.	30	20	0	0	64	16	28

 $\bar{X} = \frac{\sum X}{N} = \frac{30}{5} = 6$

Reduced Mean = 6

 $\bar{Y} = \frac{\sum Y}{N} = \frac{20}{5} = 4$

Reduced Mean = 6

 $\mathbf{r} = \frac{N\sum xy - \sum x\sum y}{\sqrt{[N\sum x^2 - (\sum x)^2][N\sum y^2 - (\sum y)^2]}} = \frac{5 \times 28 - 0 \times 0}{\sqrt{(5 \times 64 - 0^2)(5 \times 16 - 0^2)}} = \frac{140 - 0}{\sqrt{320 \times 80}} = \frac{140}{160} = \mathbf{0.875}$

5. DIFFERENCE METHOD

$$\mathbf{r} = \frac{\sum x^2 + \sum y^2 - \sum d^2}{2\sqrt{\sum x^2 \sum y^2}}$$

r = Pearson Correlation

 $\sum x^2$ = Sum of squares of deviation of scores of X-series from the mean $\sum y^2$ = Sum of squares of deviation of scores of Y-series from the mean $\sum d^2$ = Sum of squares of difference between x and y deviations

0	2	-6	-2	36	4	-4	16
10	6	4	2	16	4	2	4
4	2	-2	-2	4	4	0	0
8	4	2	0	4	0	2	4
8	6	2	2	4	4	0	0
30	20	0	0	64	16		24

 $\bar{X} = \frac{\sum X}{N} = \frac{30}{5} = 6$ $\bar{Y} = \frac{\sum Y}{N} = \frac{20}{5} = 4$ $\mathbf{r} = \frac{\sum x^2 + \sum y^2 - \sum d^2}{2\sqrt{\sum x^2} \sum y^2} = \frac{64 + 16 - 24}{2\sqrt{64 \times 16}} = \frac{56}{2 \times 32} = 0.875$

THANK YOU

