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A I()O. candle power lamp hangs 2 meters vertically above the centn
of a circular table of 2 metres diameter. Determine the intensny of 1)
fumination at a point on the edge of the table. (Delli 19549y

[Ans. ]7.88 lumens/sq motg

. Two lamps of 100 CP and 25 CP are placed one metre apart. At wha

points on the line passing through them is the ilumination due to el

of them the same ? Madras 17"
{Ans. (i) 66.67 cm from 100 CP lamp in between the [t

line joining the two sources (i) 1 metre from v ¢ I

lamp and 2 metres from 100 CP Lo

Write short notes on :
(i) Flicker photometer (Mysore 1191

(i) Lummer-Brodhum photometer.

NATURE OF LIGHT

7.1 NEWTON’S CORPUSCULAR THECRY

The branch of optics that deals with the production, emission and
propagation of light, its nature and the study of the phenomena of inter-
ference, diffraction and polarisation is called physical optics. The basic
principles regarding the nature of light were formulated in the latter half
of the seventeenth century. Until about this time, the general belief was
that light consisted of a stream of particles called corpuscles. These cor-
puscles were given out by a light source (an electric lamp, a candle, sun
etc.) and they travelled in straight lines with large velocities. The originator
of the emission or corpuscular theory was Sir Isaac Newton. According
to this theory, a luminous body continuously emits tiny, light and elastic
particles called corpuscles in all directions. These particies or corpuscles
are so small that they can readily travel through the interstices of the par-
ticles of matter with the velocity of light and they possess the property
of reflection from a polished surface or transmission through a transparent
medium. When these particles fall on the retina of the eye, they produce
the sensation of vision. On the basis of this theory, phenomena like rec-
tilincar propagation, reflection and refraction could be accounted for, sat-
isfactorily. Since the particles are emitted with high speed from a luminous
body, they, in the absence of other forces, travel in straight lines according
to Newton’s second law of motion. This explains rectilinear propagation
of light.

72 REFLECTION OF LIGHT ON CORPUSCULAR
THEORY
Let SS’ be a reflecting surface and IM the path of a light corpuscle
approaching the surface SS”. When the corpuscle comes within a very small
distance from the surface (indicated by the dotted line AB) it, according
to the theory, begins to experience a force of repulsion due to the surface
(Fig. 7.1).
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The velocity v of the corpuscle at M can be resolved into two com
ponents x and y parallel and perpendicular to the reflecting surface. The
force of repulsion acts perpendicular to the surface S’ and consequently
the component y decreases up to O
and becomes zero at O the point of
incidence on the surface SS°. Be-
yond Othe perpendicular compo-
nent of the velocity increases up to
N. its magnitude will be again ¥y at
N but in the opposite direction. The
parallel component x remains the
same throughout. Thus at N, the
corpuscle again possesses two com-
ponents of velocity x and y and the
resultant direction of the corpuscle
is along NR. The velocity of the
corpuscle will be v. Between the Fig. 7.1
surfaces AB and S, the path of
the corpuscle is convex to the reflecting surface.’Beyond the point N, the
particle moves unaffected by the presence of the surface SS’.

x = ysini = vsinr, L=
Further, the angles between the incident and the reflected paths of
the corpuscles with the normals at M and N are equal. Also, the incident
and the reflected path of the corpuscle and the normal lie in the same
plane viz. the plane of the paper.

7.3 REFRACTION OF LIGHT ON CORPUSCULAR
* THEORY

Newton assumed that when a light corpuscle comes within a very
small limiting distance from the refracting surface, it begins to experience
a force of attraction towards the surface. Consequently the component of
the velocity perpendicular to the surface increases gradually from AB to
A'B.-§S’ is the surface separating the two media (Fig. 7.2). IM is the
incident path of the corpuscle travelling in the first medium with a velocity
v and incident at an angle i. AB to A’ B’ is a narrow region within which
the corpuscle experiences a force of attraction. NR is the refracted path
of the corpuscle. Let v sin i and v cos i be the components of the velocity
of the corpuscle at M parallel and pesyendicular to the surface. The ve
locity parallel to the surface increases by an amount which is independent
of the angle of incidence, but which is different for different materials.
Let v and v’ be the velocity of the corpuscle in the two media and r the
angle of refraction in the second medium.
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As the parallel component of the velocity remains the same,
vsini = v’sinr

or

velocity of light in the second medium
= velocity of light in the first medium
= 4, (refractive index of the second
medium with reference to the
the first medium)

Thus, the sine of the angle of incidence bears a constant ratio to
the sine of the angle of refraction. This is the well known Snell’s law./ of
refraction. If i > 7, then v " > v. L.e., the velocity of light in a denser medium
like water or glass is greater than that in a rarer medium such as air.

But the results of Foucauit and Michelson on the velocity of l'ighx
show that the velocity of light in a denser medium is less than thaF in a
rarer medium. Newton’s corpuscular theory is thus untenable. This is not
the only ground on which Newton’s theory is invalid. In the year '1 800,
Young discovered the phenomenon of interference of light. He experimen-
tally demonstrated that under certain conditions, light when added to light
produces darkness. The phenomena belonging to this class cannot be e_x-]
plained, if following Newton, it is supposed that light consists of material
particles. Two corpuscles coming together cannot destroy each other.

Another case considered by Newton was that of simultaneous reﬂc:c-
tion and refraction. To explain this he assumed that the particles had fits
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so th i
s Conz:;iggme V‘:e;:: lrfl a state favourabie to reflection and others were in
n suitable for transmission. No e i interfer:
’ sion. xplanation of interference, di
Frastion and pojarisas interference, dit
2! zation was attempted beca i ‘
use very little 5 k
about these phenomena i h corpuseuln
at the time of Newton. F
ooy s ncr s ‘ n. Further, the corpuscul
ny plausible explanation about igi
: ny pl the origin of the force
of repulsion or attraction in a direction normal to the sur?ace he o

74 ORIGIN OF WAVE THEORY

Th s '
plain th:l::(s)t“;"‘;x‘;;@l)lefi;esfs of any theory consists in its ability to ex
rimental facts, with minimu
From thi ' ! , m number of hypotheses.
this point of view, the corpuscular theory is above all prejuclijices and

with its halp rectilinear i i i
e propagation, reﬂec.txon and refraction could be ex-

theorszfv :sb(a)ut th:: gxit(_li]dle of the seventeenth century, while the corpuscula
ccepted, the idea that light might b otio
e : ght be some sort of wave moti
the():)yegf)ufnlvto{»ﬁgaxﬁr\l ground. In 1679, Christian Huygens proposed the wz;(\jn
1ght. According to this, a lumino dy i )
: ; : this, us body is a source of dis
: ;2;: :lzmhadl}ypo;hetxcal medium called ether. This medium pervadc::n;l
‘ - The disturbance from the source is in
roush Space and the e 1e sour propagated in the form of waves
ergy is distributed equally, i irecti
theoe wanes oy stri qually, in all directions. When
: 5 g energy are incident on the e h i
excited and the sensation of vision i Treso virations b i
: ision is produced. These vibrations i
ed an i : . Thes S i :
gl);ép:(}hfmcalﬁzther dmedmm according to Huygens are similar to thosenptt:(
in solids and liquids. They are of a mechani )
ool s and liqy . mechanical nature. The hypo-
is attributed the property of tr: itti
waves, which we perceive as light. 3 these wates o be
°S, v ght. Huygens assumed thes
longitudinal, in which the vibrati s Dl s b
: L ch the vibration of the particles i ¢ i
rection of propagation of the wave. g " 15 parelel to the

cou]dézzrfrxlrig ?Ihat energy is transmitted in the form of waves, Huygens
isfactorily explain reflection, refracti ’ ‘
ould ly , action and double refracti
- st ° ‘ . e refraction no-
1arizml'n cxy?tals like quartz or calcite. However, the phenomenon of po
COnceix\?en discovered by him could not be explained. It was difﬁcultptu
unsymmetrical behaviour of longitudi (
‘ . ! gitudinal waves about th 1S ¢
propagation. Rectilinear i 1 be expiaime
. propagation of light also could i
N \ . X uld not be explained
o lzasrs of wave theory, which otherwise seems to be obvicl))u% ac
oot gw : co;gu§cular theory. The difficulties mentioned above were over
o n,m 1()63,1!?“611 and Young suggested that light waves are transverse
. gitudinal as suggested by Huygens. T .
vbratione rendinal . ygens. In a transverse wave, the
) er particles take place in a directi i
the e T : a direction perpendicular to
propagation. Fresnel could also lai i
Bty \ ; ou so explain successfully the
o e;ir propagation of h'ght by combining the effect of all the secmid'u:
starting from the different points of a primary wave front ‘
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7.5 WAVE MOTION

Before proceeding to  study the various optical phenomena on the
basis of Huygens wave theory, the characteristics of simple harmonic
motion (the simplest form of  wave motion) and the composition or
superposition of two or more simple harmonic motions are discussed. The
propagation of a simple harmonic wave through a medium can be trans-
verse or longitudinal. In a transverse Wave, the particles of the medium
vibrate perpendicular to the direction of propagation and in a longitudinal
wave, the particles of the medium vibrate parallel to the direction of propa-
gation. When a stone is dropped on the surface of still water, transverse

waves are produced. Propagation of sound through atmospheric air is in the
ated through a medium.

form of longitudinal waves. When a wave is propag
articles of the medium are displaced from their mean positions of rest
forces come into piay. These restofing forces are due to the
elasticity of the medium, gravity and surface tension. Due to the periodic
motion of the particles of the medium, a wave motion is produced. At any
instant, the contour of all the particles of the medium constitutes a wave.
Let P be a particle moving on the circumnference of a circle 0
7.3). Let ® be the uniform angula

the p
and restoring

f radiss

o with a uniform velocity v (Fig.
velocity of the particle (v = « w). The cir-

cle along which P moves 1s catled the circle ¥
of reference. As the particle FPomoves el :\
round the circle continuously with uniform M “’"T;;,"/:*\
velocity, the foot of the perpendicular A, vi- vl 2

brates along the diameter YY' or (XX M=l
the motion of P is uniform, then the motion © /?
of M is periodic ie,. it takes the same time /
to vibrate once between the points ¥ and ~— e

Y’ Al any instant, the distance of M from e

the centre O of the circle is called the dis-

Fig. 1.3

placement. If the particle moves from X t0
P in ume ¢, then £ POX = £LMPO = 6= wt

from the AMPO,
. . oM
sin) =sinwr = W(T

J

OM ="y = asinot
OM is calied the displacement of the vibrating partic
ment of a vibrating particle at any instant can be defined as its distunce
from the mean position'éf rest. The maximum displacement of a vibrating
particle is called its amplitude.

or
le. The displace

L Displacement = y = a sinwt AN




260 A Textbook of Optics

2. Y 2y _
2t ap = °
or x_Y _ ’
a b 0
b
or y=1, (V)

‘ This_ represents the equation of a straight line BD (Fig. 7.9) i.e., the
particle vibrates simple harmonically along the line DB.

(I a=mn;sina=0; A E B8
coso =—1
SR

This represents equation of a straight line AC (Fig. 7.9).

i) 1f SE o B,
(i) o 2or 2,smoz--l,
cosax =0
Sp

This represents the equation of an ellipse EHGF (Fig. 7.9) with a
and b as the semi-major and semi-minor axes.

Giv) If o= 125 or 32—"
and a=b
x
then ;2‘+§2 =] O|
or 2+y = a :
This represents the equation of a circle of G
radius a (Fig. 7.10). Fig. 7.10
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@ If o= %or :7(—:5 the resultant vibration is an oblique ellipse

KLMN as shown in Fig. 7.11 ()

A s E B A B
=7
i
i
H!— SF  HF F
[ H =
! \
! ]
J L
D G C D G C
0] (i)
Fig. 7.11
. 3n Sn R .
On the other hand if a. = Y or =% the resultant vibration is again

an oblique ellipse KLMN is shown in Fig. 7.11 (ii). The cycle of changes
is repeated after every time period.

7.12 HUYGENS PRINCIPLE

According to Huygens, a source of light sends out waves in all di-
rections, through a hypothetical medium called ether. In Fig. .12 (), §
is a source of light send-
ing light energy in the
form of waves in all di- X
rections. After any given X, N7
interval of time (), all NG
the particles of the me- \\(
dium on the surface XY “
will be vibrating in Ve
phase. Thus, XY is a por- =
tion of the sphere of ra- 8 S
dius vt and centre S. v is
the velocity of propaga-
tion of the wave. XY is /+\(\
called the primary wave- ~TNA
front. A wavefront can )
be defined as the locus .
of all the points of the Y
medium which are vi- ®
brating in phase and are '
also displaced at the

X, )l<2 X X

Fig. 7.12
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same time. If the distance of the source is small [Fig. 7.12 (§)] the wave-
front is spherical. When the source is at a large distance, then any small
portion of the wavefront can be considered plane [Fig. 7.12 (ii)]. Thus
rays of light diverging from or converging to a point give rise to a spheri-
cal wavefront and a parallel beam of light gives rise to a plane wave front

According to Huygens principle, all points on the primary wavefront
(1, 2, 3 etc., Fig. 7.12) are sources of secondary disturbance. These sec-
ondary waves travel through space with the same velocity as the original
wave and the envelope of all the secondary wavelets after any given in-
terval of time gives rise to the secondary wavefront. In Fig. 7.12 (i), XY
is the primary spherical wavefront and in Fig. 7.12 (if) XY is the primary
plane wavefront. After an interval of time 7, the secondary waves travel
a distance vf. With the points 1, 2, 3 etc. as centres, draw spheres of
radii v’. The surfaces XY, and XY, refer to the secondary wavefront. XY
is the forward wavefront and XY, is the backward wavefront. But accord-
ing to Huygens principle, the secondary wavefront is confined only to the
forward wavefront X ¥, and not the backward wavefront X)Y,. However,
no explanation to the absence of backward wavefront was given by Huy-
gens.

7.13 REFLECTION OF A PLANE WAVE FRONT AT A
PLANE SURFACE

Let XY be a plane reflecting surface and AMB the incident plane
wavefront. All the particles on AB will be vibrating in phase. Let { be
the angle of incidence (Fig. 7.13).

In the time the disturbance at
A reaches C, the secondary waves
from the point B must have trav-
elled a distance BD equal to AC.
With the point B as centre and ra-
dius equal to AC construct a sphere. ,
From the point C, draw tangents S0
CD and CD’. Then BD = BD’.

In the A s BAC and BDC

BC is common

BD = AC
and £ BAC = £BDC = 90
~. The two triangles are congruent,
LABC =i = £LBCD =r.
i=r
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Thus, the angle of incidence is equal to the angle of reflection.
Hence, CD forms the reflected plane wavefront. It can be shown that all
the points on CD form the reflected plane wavefront. In the time the dis-
turbance from F reaches the point C, the secondary waves from E must
have travelled a distance EN = FC. With E as centre and radius FC draw
a sphere and draw tangents CN and CN ' to the sphere. It can be shown
that the triangles EFC and ENC are congruent.

AC = AF+FC

But AF = ME

and FC = EN
AC = ME+EN

Thus, all the secondary waves from different points on AB reach the
corresponding points on CD at the same time. Therefore, 'CD forms the
reflected plane wavefront and also the angle of incidence is equal to the

angle of reflection.

7.14 REFLECTION OF A PLANE WAVEFRONT AT A
SPHERICAL SURFACE
Let APB be a convex reflecting surface and QPR the incident plane
wavefront (Fig. 7.14). By the time the disturbance at Q and R reaches
the points A and B on the re-
flecting surface, the secondary

waves from P must have trav- . @ l\A
elled a distance PK back into — :“

i \
the same medium such that QA Y
= RB = PL = PK. < ;L "

Then AKB forms the re- > P--r-—-#—-—--a

flected spherical ~wavefront : ]
whose centre of curvature is F. N /
Similarly, the secondary waves . il,
corresponding to the points ly- — A /g
ing on the incident wavefront ‘
QPR will reach the surface Fig. 7.14

AKB in the same time after re- . ‘
flection. F is called the focus of the spherical mirror APB. PF is the focal

length of the mirror.
In Fig. 7.14, APB is a small arc of a circle of radius PO = R and
ALB is a chord. PL is called the sagitta of the arc. From geometry,
AL* = PL(2R-PL)
= 2R.PL-PL?
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JAMES CLERK MAXWELL (1831-1879)

He did fundamental work in colour vision and colour photography. He e well
known for the discovery of the Electromagnetic Theory of Fipht
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LWAC = LP+u PQ+ QN
But, AC = KM (approximately)
WKM = LP+p PO+ ON
W[KP+PQ+ QM) = LP+uPQ+QON

ol w[KP+QM] = (KP—- KL) +(QM + MN) ()]
Here AL = CM = h (approximately)
K h?
K B
KL = 2u and M =5
Substituing these values in equatxon )]
R R h2 h2 +_hi
W 2R *2r, | T 2R 2" i
1 1 1 1 1 1
LU SR N PN LTS
R R R, R v ou
1 1
or v_u (u 1)[R1+Rz]
According to the convention of signs, u is —ve, © is —ve R is — ve
and R, is +ve
1.1 11
_v+u - (u—l)( —R1+RZ)
11 I 1 ..
——— = -0 5 -5
or =% (! )[ R R, J (ir)
If U = o0, U = f

.(dii)

1
1
=
f‘:;\
£
|
N
N’

7.22 NATURE OF LIGHT

(i) Corpuscular theory. Rectilinear propagation of light is a natural
deduction on the basis of corpuscular theory. This theory can also explain
reflection and refraction, though the theory does not clearly envisage why,
how and when the force of attraction or repulsion is experienced perpen-
dicular to the reflecting or refracting surface by a corpuscle. Newton as-
sumed that the corpuscles possess fits which aliow them easy reflection
at one stage and easy transmission at the olicr Avvording to Newton's
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corpuscular theory the velocity of light in a denser medium is higher than
the velocity in a rarer medium. But the experimental results of Foucault
and Michelson show that the velocity of light in a rarer medium is higher
than that in a denser medium. Interference could not be explained on the
basis of corpuscular theory because two material particles cannot cancel
one another’s effect. The phenomenon of diffraction viz., bending of light
round corners or illumination of geometrical shadow cannot be conceived
according to corpuscular theory, because a corpuscle travelling at high
speed will not be deviated from its straight line path. Certain crystals
like quartz, calcite etc. exhibit the phenomenon of double refraction. Ex-
planation of this has not been possible with the corpuscle concept. The
unsymmetrical behaviour of light about- the axis of propagation (viz. po-
larization of light) cannot be accounted for by the corpuscular theory.

(if) Wave theory. Huygens wave theory could explain satisfactorily
the phenomena of reflection and refraction. Applying the principle of sec-
ondary wave points, rectilinear propagation of light can be correlated. The
phenomenon of interference can also be understood considering that light
energy is propagated in the form of waves. Two wave trains of equal fre-
quency and amplitude and differing in phase can annul one an sther’s effect
and produce darkness. Similar to sound waves,bending of waves round ob-
stacles is possible, thus enabling the understanding of the phenomenon of
diffraction. Double refraction can also be explained on the basis of wave
theory. According to Huygens, propagation of light is in the form of lon-
~ gitudinal waves. But in the case of longitudinal waves, one cannot expect
the unsymmetrical behaviour of a beam of light about the axis of propa-
gation. This difficulty was overcome when Fresnel suggested that the light
waves are transverse and not longitudinal. On the basis of this concept,
the phenomenon of polarization can also be understood. Finaily, on the
basis of wave theory it can be shown mathematically, that the velocity of
light in a rarer medium is higher than the velocity of light in a denser medium.
This is in accordance with the experimental results -on the velocity of light.

(iii) Conclusion. The controversy between the corpuscular theory and
the wave theory existed till about the end of the eighteenth century. At
one time the corpuscular theory held the ground and at another time the
wave theory was accepted, the discovery of the phenomenon of interfer-
ence by Thomas Young in 1800, the experimental results of Foucault and
Michelson on the velocity on light in different media and the ‘revolutionary
hypothesis of Fresnel in 1816 that the vibration of the ether particles is trans-
verse and not longftudinal gave, in a way, a solid ground to the wave theory.

The next important advance in the nature of light was due to the
work of Clerk Maxwell. Maxwell’s electromagnetic theory of light lends
support to Huygens wave theory whereas quantum theory strengthens the
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particle concept. It is very interesting to note, that light is regarded as a
wave motion at one time and as a particle phenomenon at another time.

EXERCISES VII
1. What is Huygens principle in regard to the conception of light waves ?
Using Huygens conception show that u is equal to the ratio of wave
velocities in the two media.
2. Obtain an expression for refraction of a spherical wave at a spherical
surface.
State Huygens principle for the propagation of light. Using the same,
deduce the formula connecting object and image distances with the con-
stants of a thin lens.
4. Explain how the phenomena of reflection and refraction of light are ac-
counted for on the wave theory and point out the physical significance
of refractive index. (Mysore 1991)
5.  What is a wavefront ? How is it produced ? Derive the lens formula
for a thin lens on the basis of the wave theory of light.

6. Write a short note on the wave theory of light. How is ‘refraction cx-

w

plained on this theory ? (Delhi 1992)
7. Explain Huygens principle. Derive the refraction formula for a thin lens
on the basis of wave theory. (Agra 1992)

8. Write a short discussion on the nature of light. Deduce with the help
of Huygens wave theory of light, an expression for the focal length of
a thin lens in terms of the radii of curvawre of its two surfaces and
the refractive index of the material of which it is made.

(Rajasthan 1991)

9.  Write short notes on :
() Wave theory of light. (Punjab 1985)
(i) Huygens principle. [Delhi (Hons.) 1993]
(iiiy Newton’s corpuscular theory.

10. Show how the wave theory and the corpuscular theory of light account
for (a) refraction and (b) total intemal reflection of light. How was the
issue decided in favour of the wave theory ? (Rajasthan 1990)

11. Discuss the nature of light. How do you explain the phenomenon of
reflection, refraction and rectilinear propagation of light on the basis of
wave theory 7 ' (Mysore 1990 ; Rujasthan 1986)

12. Write an essay on the nature of light. (Agra 19806)

13. What is Huygens principle ? Obtain the laws of reflection and refraction
on the basis of wave theory of light. (Gorakhpur 1987)
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14. Apply Huygens principle to derive the relation
1 1 1
— —_ 1 —
tweoftd)

for a thin lens. (Mysore 1990) 8
15. State and explain Huygens ‘principle of secondary waves. Apply this

principle for explaining the simultaneous reflection and refraction of a

plane light wave from a plane surface of separation of two optical media.

[Delhi 1984 ; -Delhi (Hons.) 1984) o s S
16. Explain Huygens principle of wave propagation and apply it to prove INTERFERENCE

the laws of reflection of a plane wave at a plane surface.

. o Dol BSclHons) 1991) 8.1 {TRODUCTION _

17. State the principle of superposition. Give the mathematical theory of in- . . i f light has proved the validity of

terference between two waves of amplitude @y and a» with phase dif- The phenomenon of interferepce of hig Pd strated his ex-

ference ¢. Discuss some typical cases. [Rajasthan 1985) the wave theory of light. Thomas Yoqu successfully demons rmam o

18. Deduce the laws of reflection with the help of Huygens theory of sec- periment on interference of light n 1802' ]hgn twoh - Tisplacement
ondary wavelets. (Rajasthan 1985) trains act simultaneously on any particle in ' a mfi'um’ the disp

-19. What is Huygens principle 2 How would you explain the phenomenon
of reflection and refraction of plane waves at plane surfaces on the basis
of wave nature of light ? [Delhi (Sub.y 1986]

20. State and explain Huygens principle of secondary waves.
(Delhi 1988)
21. State and explain Huygens principle of secondary waves. v
[Delhi ; 1992]

—— CREST
w—w TROUGH

Fig. 8.1

of thd paﬁicle at_any instant is due to the superposition of all the_wave
‘ trains. Also, after the superposition, at the region of cross over, the wave

trains emerge as if they have not interfered at all. Each wave train retains
its individual characteristics. Each wave train behaves as if others are ab-
sent. This principle was explained by Huygens in 1678.

. B ——————————————




280 A Textbook of Optics

The phenomenon of interference of light is due to the superposition
of two trains within the region of cross over. Let us consider the ‘waves
produced on the surface of water. In Fig. 8.1 points A and B are the two
sources which produce waves of equal amplitude and constant _phase dif-
ference. Waves spread out on the surface of water which are circular in
shape. At any instant, the particle will be under the action of the displace-
ment due to both the waves. The points shown by circles in the diagram
will have minimum displacement because the crest of one wave falls on
the trough of the other and the resultant displacement is zero. The points
shown by crosses in the diagram will have maximum displacement be-
cause, either the crest of one will combine with the crest of the other or
the trough of one will combine with the trough of the other. In such a
case, the amplitude of the displacement is twice the amplitude of either
of the waves. Therefore, at these points the waves reinforce with each
other. As the intensity (energy) is directly proportional to the square of
the amplitude (/ o« A?) the intensity at these points is four times the in-
tensity due to one wave. It should be remembered that there is no loss
of energy due to interference. The energy is only transferred from the
points of minimum displacement to the points of maximum displacement.

/sz YOUNG’S EXPERIMENT

' In the year_1802, Young demonstrated the experiment on the inter-
ference of light. He allowed sunlight to fall on a pinhole S and then at
some distance away on two pinholes A and B (Fig. 8.2).

—— CRESTS
~--~ TROUGHS

8
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A and B are equidistant from § and are close to each other. Spherical
waves spread out from S. Spherical waves also spread out from A and
B. These waves are of the same amplitude and wavelength. On the screen
interference bands are produced which are alternatively dark and bright.
The points such as E are bright because the crest due to one wave co-
incides with the crest due to the other and therefore they reinforce with
each other. The points such as F are dark because the crest of one falls
on the trough of the other and they neutralize the effect of each other.
Points, similar to E, where the trough of one falls on the trough of the
other, are also bright because the two waves reinforce. -

It is not possible to show interference due to two independent sources
of light, because a large number of difficulties are involved. The two
sources may emit light waves of largely different amplitude and wave-
length the phase difference fetween the two may change with time.

“COHERENT SOURCES //

]

Two sources are said to be coherent if they emit light waves of the
same frequency, nearly the same amplitude and are always in phase with
each other. It means that the two sources must emit radiations of the same
colour (wavelength).‘ln actual practice it is not possible to have two in-
dependent sources which are coherent. But for experimental purposes, two
virtual sources formed from a single source can act as coherent sources.
Methods have been devised where (i) interference of light takes place be-
tween the waves from the real source and a virtual source (i) interference
of light takes place between waves from two sources formed due to a sin-
gle source. In all such cases, the two sources will act, as if they are per-
fectly similar in all respects.

Since the wavelength of light waves is extremely small (of the order
of 107 cm), the two sources must be narrow and must also be close to
each other. Maximum intensity is observed at a point where the phase dif-
ference between the two waves reaching the point is a whole number mul-
tiple of 2r or the path difference between the two waves is a whole
number multiple of wavelength. For minimum intensity at a point, the
phase difference between_the two waves reaching the point should be an
odd number multiple of & or the path difference between the two waves
should be an odd number multiple of half wavelength.

4~ PHASE DIFFERENCE AND PATH DIFFE?W@
~If the path difference between the two waves is A, the phase dif-
ference = 2.

Suppose for a path difference x, the phase difference is &
For a path difference A, the phase difference = 2n

~
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tJ
x
[

e 2nx
-. For a path difference x, the phase difference = N

e A B S s
st

4Phase dxfterence 5 = *inﬁ = —7: X (palhdlfference)

M ANALYTICAL. TREATMENT OF INTERFERENCE

S Cbnsuier a monochromatic source of hOht s emlmnv waves of wave-
length A and two narrow pinholes A and B (Fig. 8.3). A and B are equi-
distant from S and act as two virtual coherent sources. Let a be the
amplitude of the waves. The phase difference between the two waves
reaching the point P, at any instant, is 6.

b

sk—-
SCREEN
- D
Fig. 8.3
If y, and y, are the dlspl%SgEnts
y, = asin wt
y, = asin (Wt + d)
y=y +y =asinot+asin(of+ )
y=asinwt + asin®tcosd + acoswtsind
= asin‘wt(l + cosd) + acosd)tsin 8.
Taking a(l + cosd) = Rcos O D)
and asind® = Rsin0 . ()
= Rsinmtcbse + Rcoswtsin®
= Rsin(wt + 0) (i)

which represents the equation of simple harmonic vibration of amplitude R.

Squaring (i)'and (ii) and adding,
R*sin’® + R?cos?® = a’sin®& + a* (1 '+ cos §)’
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or R?

asin?d + @ (1 + cosd + 2cosd)

R =dsin®d + a + a*cos’ 8 + 2a%cos B

il

242 + 2a7cosd = 22° (1 + cos d)

=
i
S EVe7]

3
242, 2 cos? 3= 44* cos®

The intensity at a point is given by the square of the amplitude

or I = 4a®cos’ = )

\, Specxal cases : (i) When the phase difference 8=0,2x, 2(211:)
o (2m), or the path difference x = 0,4, 2A, ... nA.

I = 4a°

Intensity is maximum when the phase difference is a whole number -

multiple of 2x or the path difference is a whole number multiple of wave-

length.
(ii) When the phase ditference, 8 = m, 3w, .. (2n + 1) &, or the path
: _ A 3h Sk A
, difference x = 7 o g 2n+ 1) 2
[=0

Intensity is minimum when the path difference is an odd number
muluple of half wavelength. £\

4 ¥ Energy distribution. From equation (iv), it is fount that the in-
tensity at bright points is 4a” and at dark points it is zero. According to

II 44

B $-03% 4 —wo| t 2xandn 5K
~4n -2n

Fig. 8.4

/ the law of conservation of energy, the energy cannot be destroyed. Here

p also the energy is not destroyed but only. transferred from the points of

minimum intensity to the points of maximum intensity. For, at bright
.”J'Mu., ‘
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points, the intensity due to the two waves should be 24’ but actually it
is 4a’. As shown in Fig. 8.4 the intensity varies from 0 to 4a’, and the
average is still 2% It is equal to the uniform intensity 2a* which will be
present in the absence of the interference phenomenon due to the two
waves. Therefore, the formation of interference fringes is in accordance with
the law of conservation of energy.

8,6 THEORY OFM’II\WITERFERENCE FRINGES A

“Bomsider a narow monochromatic sourcé S and two pinholes A and
B, equidistant from S. A and B act as two coherent sources separated by
a distance d. Let a screen be placed at a distance D from the coherent

B
oh-- == ]n] '
d FRINGE
WIDTH
DARK
BRIGHT
D
Fig. 85

sources. The point C on the screen is equidistant from A and B. Therefore,
the path difference between the two waves is zero. Thus, the point C has
maximum intensity. ]

Consider a point P at a distance x from C. The waves reach at the
point P from A and B.

d d
Here, PQ = x— 2 PR = X+2
2 2
2 ) d d
(BP)! - (AP)* = |D*+ x+5 4 |- D+ x=3
(BP)* - (AP)* = 2xd
2xd
BP—-AP = Bp AP
But BP = AP = D  (approximately
. xd  xd .
- Path difference = BP—-AP = D - D 0]

Phase difference %% (%} . (i)

e T
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(i) Bright fringes. .If the Path Vdifference is a :ﬁ(y_lg_g\;_m_ber multiple
of wavelength A, the point P is bright.

I f
: % =ni
where n=20123...
nAD
or X = P i)

This equation gives the distances of the bright fringes from the point
C. At C, the path difference is zero and a bright fringe is formed.

AD

When n=1, x1=7
n= 2, x2=2%j£

3LD

n=3, x}:—z—,—

;x_nXD

. ll— d

Therefore the distance between any two consecutive bright fringes

. 2AD AD AD .
L X, X, =—'—d~——7=7 . (V)
(i) Dark friligw. If the path difference is an Mg_e_r multiple

of half wavelength, the point P is dark.

xd A _
D —(2n+l)2 wheren = 0,1,2,3...
o oo Grt0AD e

This equation gives the distances of the dark fringes from the point C.

When, n=0.x =

n =2, x, =
and ¢ = QEDAD
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The distance between any two consecutive dark fringes,
I 5AD 3AD _AD .
| B 2504 TT2d T d -
The distance between any ‘two consecutive bnght or dark fringes is
known. as fnnge width. Therefore, alternately bright and dark: parallel
fringes are formed. The fringes are formed on both sides of C. Moreover,
from equations (v) and (vi), it is clear that the width of the bright fringe
is equal to the width of the dark fringe. All the fringes are equal in width
and are independent of the order of the fringe. The breadth of a bright
or a dark fringe is, however ecLaL[to half the fringe width and is equal
AD = AD ‘
to 27 The fringe w1dth B y
Therefore, (i) the wlgh,of/the fringe is directly proportional to the
wavelength of light, B o A. (ii) The widtu of the fringe is directly pro-
portional to the distance of the screen from the two sources, B o< D. (iif)
the width of the fringe is inversely proportional to the distance between
the two sources, 3 o< é Thus, the width of the fringe increases (a) with
increase in wavelength (b) with increase in the distance D and (c) by bring-
ing the two sources A and B close to each other.
Example 8.1. Green light of wavelength 5100 A from a narrow slit
is incident on a double slit. If the overall separation of 10 fringes on a
screen 200 cm away is 2 cm. find the slit separation.

[Delhi B.Sc. (Hons.)]

_
d
Here A = 5100x10"%cm, d=7
‘ D = 200 cm
108 = 2cm
or B=02cm
| _ D
B
d = 5100 x 10~* x 200
0.2
d = 0.051 cm

-Example 8.2. Two coherent sources are 0.18 mm apart and the fringes
are abserved on a screen 80 cm away. It is found that with a certain mono-
chromatic source of light, the fourth bright fringe is situated at a distance
of 10.8 mm from the central fringe. Calculate the wavelength oj light.
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Here, D = 80cm, d = 0.18 mm = 0.018cm
n =4, x = 108mm = 1.08cm, A =7?
=N AD
T d
xd 1.08 x0.018 _ _y
or A= D - “Taxs0 - 6075 x 107" cm
= 6075 A

Example 8.3. In Young's double slit expertment the separation of the
slits is 1.9 mm and the fringe spacing is 0.31 mm at a distance of 1 metre
from the slits. Calculate the wavelength of light.

Here . B = 031 mm = 0.031 cm
d=19 mm = 0.19cm
D=1m = 100cm
AD
B = d
d
or A= EIS-
A = 0.031x0.19°
- 100

A = 5890 x 10~%cm = 5890 A

Example 8.4. Two straight and narrow parallel slits 1 mm apart are
illuminated by monochromatic light. Fringes formed on the screen held
at a distance of 100 cm from the slits are 0.50 mm apart. What is the

wavelength of light ? [Delhi 1977}
Here , B = 0.50mm = 0.05cm
d=1mm =0lcm
D = 100cm
AD
="
d
or A= %’
_ 005x0.1
100
A=5x%x10"°
= 5000 A
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Example 8.5. A Young’s double slit experiment is arranged such that

the distance between the centers of the two slits is d and the source sli,
emitting light of wavelength A , is placed at a distance x from the double

slit. If now the source slit is gradually opened up, for what width will
the fringes first disappear ? [Delhi (Hons) 1992]

5 TS1

]

61

B
;

Fig. 8.6

A and B are two extreme points of the source § separated by distance

Here 6, =-—(—;’;) when x >> L

The fringe pattern first disappears when the central maximum of one
pattern overlaps on the first minimum of the second pattern. The first mini-
mum occurs at a distance given by

AD
7]
X = =+ —-X—
Also D 0=% > d
For source A, these minima occur at an angle
A
4 —
5 * 2d

The fringe width is very large when d is very small. As d increases,
the first minimum of § ,» moves towards the zeroeth maximum of Sz. These

two meet when d = d‘l

Here 92 = 91+—2—a—

or L_
2x
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)
(\-

X
(%)

_| Ax
T 24,

Example 8.6. A light source emits light of two wavelengths
A =4300A and A, = 5100A. The source is used in a double slit in-
terference experiment. The distance between the sources and the screen
is 1.5 m and the distance between the slits is 0.025 mm. Calculate the
separation between the third order bright fringes due to these two wave-

lengths.

L

D=15m

d = 0025 mm = 25X 10"* m
A, =4300 A =43x107" m
)\'2

5100 A =5.1x1077" m

Here

n=73
nA D

d

(. 3x15 14 10-T
—(——~——~25x10_6)[5.1x10 43x1077 |

= 0.0144 m

= 144 cm
Hence, the separation between the two fringes is 1.44 cm.
Example 8.7. Two coherent sources of monochromatic light of wave-
length 6000 A produce an interference pattern on a screen kept at a dis-
tance of 1 m from them. The distance between two consecutive bright
fringes on the screen iy 0.5 mm. Find the distance between the two co-
[IAS]

herent sources.

Here A=6000A=6x10"m

D=1m
B=05mm=5x10""m
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d= 6x10""x1
5x1074
d=12%x10"3m
= 1.2 mm

Example 8.8. Light of wavelength 5500 A from a narrow slit is in-
cident on a double slit. The overall separation of 5 fringes on a screen
200 cm away is 1 cm, calculate (a) the slit separation and (b) the fringe
width.

Here x=nZD
n=
D=200cm =2m
A=550A=55x10""m
x=1lcm=10"7"m
d =1
A
@ =nxD
d= 5%55%x107"%2
1072
d=55%x10"m
d = 0.055 cm
®) - oB==
B=%cm
B=02cm

8.7 FRESNEL’S MIRRORS

Fresnel produced the interference fringes by using two plane mirrors
M, and M, arranged at an angle of nearly 180° so that their surfaces are
nearly (not exactly) coplanar (Fig. 8.7).
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A monochromatic source of light S is used. The pencil of light from
S incident on the two mirrors, after reflection, appears to come from two
virtual sources A and B at some distance d apart. Therefore, A and B act

Ny
Il///////,/ Y /G
x Alk:: 3333 a M E
RS NBY/ N
i el L0
\\ H
\
by ——pie y2
e D
Fig. 8.7

as two virtual coherent sources and interference fringes are obtained on
the screen. These fringes are of equal width and are alternately dark and
bright.

Theory. A and B are two coherent sources at a distance d apart. The
screen is at a distance D from the virtual sources. The two reflected beams
from the mirrors M, and M, overlap between E and F (shown as shaded
in the diagram) and interference fringes are formed.

(For complete theory read Article 8.6)
Here, D =Y +Y,

Fringe width B = LdQ
A point on the screen will be at the centre of a bright fringe, if its
nAD
d

centre of a dark fringe, if its distance from C is

(2n+ 1) AD
2

distance from C is where n = 0, 1, 2, 3 etc, and it will be at the

where n =0, 1,2, 3. . .. el

For the fringes to be formed, the following conditions must be sat-
isfied. The two mirrors M, and M, should be made from optically flat glass
and silvered on the front surfaces. No reflection should take place from
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the back of the mirTors. The polishing should extend up to the line of
intersection of the two mirrors and the line of intersection must be parallel
to the line source (slit).

The distance between the two virtual sources A z.md B can be c.al‘
culated as follows. Suppose the distance between the points of intersection
f the mirrors and the source Sis Y, 4 .
0 o is known. The angle of separation between A and B is 26.

d=120y

When white light is used the central fringe C is white w:hereas.the
other fringes on both sides of C are coloured because the frmge width
(B) depends upon the wavelength. Only the first few coloured fringes are
observed and the other fringes overlap. Therefore, the num})er of fringes
seen in the field of view with a monochyomaﬁc source of light are more,

than sith white light.
FRESNEL’S BIPRISM

Fresnel used a bipdsm to show interference pher.umenon. The
biprism abc consists of WWW& 11’\130
tually, it is constructed as a single prism of c?bmse an&le’ n'z‘ abouf
(Fig. g7A).The acute angle O on both sides is about“3_g.\1pe prism is
placed with its refracting edge parallel to the line :spurcc S (slit) such that
Sa is rormal to the fa of the prism. en lght falls from Son the
fower portion of the lzi“prism it is bent upwards and appears to come from

|
D 4

EYE PIECE

‘o yz
D —t

Fig. 8.7A

——— Y1

L o

WB. Similarly light falling from S on the upper portion
of the prism is bent downwards and appears 0 come from the virtual

sSource 1\- “lelef()le /‘ a“d B a&; as two C()helelll SOU!(.Q . 4} ‘h o

S bupp Se (b

dlslall(,e betwce" /‘ a.“d B = d. “ a screen 18 [)ld.(,ed at (,, lnt(;r'(.lc“(l
« - - I g
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fringes of equal width are produced between E and F but beyond E and
F fringes of large width are produced which are due to diffraction. MN
is a stop to limit the rays. To observe the fringes, the screen can be re-
placed by an eye-piece or a low power microscope and fringes are seen
in the field of view. If the point C is at the principal focus of the eyepiece,
the fringes are observed in the field of view.

Theory. For complete theory refer to Article 8.6. The point C is equi-
distant from A and B. Therefore, it has maximum intensity. On both sides
of C, alternately bright and dark fringes are produced. The width of the

bright fringe or dark fringe, B= qu Moreover, any point on the screen

will be at the centre of a bright fringe if its distance from C is

= %Q where n = 0, 1, 2, 3 etc. The point will be at the centre of

a dark fringe if its distance from C is
@n+1)AD
od
where n = 0, 1, 2, 3 erc.

Determination of wavelength of light. Fresnel’s biprism can be used
to determine the wavelength of a given source of monochromatic light.

A fine vertical slit S is adjusted just close to a source of light and
the refracting edge is also set parallel to the slit S such that bc is horizontal

FOCAL
b !/ PLANE
» =
“so !
~ a )
d §~-- O e = 1]
o\~ |
1 7 +EVE PIECE
v ! CROSS WIRES|
d
—yi—
Fig. 8.8

(Fig. 8.8). They are adjusted on an optical bench. A micrometer eyepiece
is placed on the optical bench at some distance from the prism to view
the fringes in its focal plane (at its cross wires).

Suppose the distance between the source and the eyepiece = D and
the distance between the two virtual sources A and B = d. The eyepiece
is moved horizontally (perpendicular to the length of the bench) to de-
termine the fringe width. Suppose, for crossing 20 bright fringes from the
ficld of view, the eyepiece has moved through a distance .
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. . |
Then the fringe width, B = 20
But the fringe width B = Xd—D
- Bd :
A= D . ()]

In equation (i) B and D are known. If 4 is also known, A can be

calculated. ,

etermination of the distance between the two virtual sources (d).
For this purpose, we make use of the displacement method. A convex lens
is placed between the biprism and the eyepiece in such a position, that
the images of the virtual sources A and B are seen in the field of view
of the eyepiece. Suppose the lens is in the position L, (Fig. 8.9). Measure
the distance between the images of A and B as seen in the eyepiece. Let
it be d,

In this case,

— === ‘ ...(ii)

d u m

Now move the lens towards the eyepiece and bring it to some other
position L,, so that again the images of A and B are seen clearly in the

b

[¥ e —

A

Be

T
3

Fig. 89

field of view of the eyepiece. Measure the distance between the two im-
ages in this case also. Let it be equal to d,.
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Here, v=mandu = n,
d,
== 3 = % ) (i)
From equations (i) and (iii),
dd
172
PO
or d= \Jdldz

Here d, will be greater than d, and d is the geometrical mean of
d, and d,. Therefore d can be calculated. Substituting the value of d, B
and D in equation (#), the wavelength of the given monochromatic light
can be determined.

The second method to find d is to measure accurately the refracting
angle «. As the angle is small, the deviation produced 6 = (u—1)o.
Therefore the total angle between Aa and Ba is 20 = 2 (u~1) o If the

distance between the prism and the slit S is y then d = 2(n-1) ay,
Therefore d can be calculated. ,

8.9 FRINGES WITH WHITE LIGHT USING A BIPRISM

When white light is used, the centre of the fringe at C is white while
the fringes on both sides of C are coloured because the fringe width ()
depends upon wavelength. Moreover, the fringes obtained in the case of
a biprism using white light are different from the fringes obtained with
Fresnel’s mirrors. In a biprism, the two coherent virtual sources are pro-
duced by refraction and the distance between the two sources depends
upon the refractive index, which in turn depends upon the wavelength of
light. Therefore, for blue light the distance between the two apparent
sources is different to that with red light. The distance of the n th fringe
from the centre (with monochromatic light)

=L SD, where d = (2u-1) oy,
x= MM
2(u-nay,
Therefore for blue and red rays, the n th fringe will be,

nA, D

x, = _zm (i)
nA D .

X = (i)

rT 2 - Doy,
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Example 8.9. A biprism is placed 5 cm from a slit illuminated by
sodium light (A = 5890 A). The width of the fringes obtained on a screen
75 cm from the biprism is 9.424 x 107 cm. What is the distance between

the two coherent sources ? {Nagpur 1984)
Here - A = 5890x107% cm
d=17 Pp=9424x10"% cm’
D =5+75=80cm
AD
B="
or d= 5890 % 10~ % x 80
T 9.424x107?
or d =005 cm

Example 8.10. The inclined faces of a glass prism (U = 1.5) make
an angle of 1° with the base of the prism. The slit is 10 cm from the
biprism and is illuminated by light of A = 5900 A. Find the fringe width
observed at a distance of 1 m from the biprism. ,

[Delhi B.Sc.(Hons.) 1991]

=22

d=2u-1)ay,

Here p=15
a=1"= —1%6 radian
y, =10 cm; y, =100cm
D=y+y,= 10+ 100 = 110 cm
A = 5900x10°% cm.
B=27?
B = 5900x 1078 x 110 x 180 X7

2(1.5-1)x22x10
= 0.037 cm

Example 8.11. In a biprism experiment with sodium light, bands of
width 0.0195 cm are observed at 100 cm from the slit. On introducing
a convex lens 30 cm away from the slit, two images of the slit are seen
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0.7 cm apart, at 100 cm distance from the slit. Calculate the wave length -

of sodium light. {Rajasthan, 1985}
AD
B = d
or A= %4
Here f = 0.0195 cm
D = 100 cm.
For a convex lens
! v
0= 0 u+v = 100 cm
u = 30 cm
or 01 _10 cm
o 30
or O =030 cm

i.e. Distance between the two coherent sources,
d=0 =030 cm

_ 0.0195x0.30 _ 8
A= S = 5850x 107" em

or A = 5850 A

Example 8.12. Interference fringes are observed;with a biprism of
refracting angle 1° and refractive index 1.5 on a screen 80 cm away from
it. If the distance between the source and the biprism is 20 cm, calculate "
the fringe width when the wavelength of light used is (i) 6900 A and

(ii) 5890 A (Kanpur, 1986)
AD
B = d
d=2(p-NHay,
Here p=15
oo F
o=1°= 180 radian

Y, = 20cm; y, = 80 cm
D=y+y, = 20+ 80 = 100cm
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A=6900A or 6900x10°* cm

B = AD
2(u-Doy,
B = 6900 x 10~*x 100 x 180 x 7

2(15-1)x22x20
B = 0.01976 cm

(i) A = 5890 A
or x = 5890x 10-% cm
' AD
b= ey,
or B = 5890 x 10~*x 100 x 180 x 7
2(1.5-1)x22x20
or B = 0.01687 cm

Example 8.13. A biprism is placed at a distance of 5 cm in front
of a narrow slit, illuminated by sodium light (\ = 5890 x 10~* cm) and
the distance between the virtual sources is found to be 0.05 cm. Find the
width of the fringes observed in an eyepiece placed at a distance of 75 cm
from the biprism. (Mysore 1981)

Here . A =15890x10"%cm, d=005cm
D =5+75=80cm
Width of the fringe

p =MD _ 5890x10°*x80
T 0.05

B=9424x10"% cm

| Example 8.14. In a biprism experiment the eyepiece was placed at
| a distance of 120°cm from the source. The distance between the two virtual
sources was found to be 0.075 cm. Find the wavelength of light of the
source If the eyepiece has to be moved through a distance 1.888 c¢m for
20 fringes to cross the field of view.

il

Here, n =20
I = 1888 cm
. . l 1.888
| ~. Fringe width B = w29 M

d=0075cm, D =120 cm

‘ -
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_Bd _ 1888 0075 _ y
A= D = 20 X 120 = 5900x10"% cm

= 5900 A

Example 8. 15. In an experiment with Fresnel’s biprism, fringes for
light of wavelength 5 x 107° cm are observed 0.2 mm apart at a distance
of 175 cm from the prism. The prism is made of glass of refractive index
1.50 and it is at a distance of 25 cm from th illuminated slit. Calculate
the angle at the vertex of the biprism.

Here ¥, = 25cm, ¥, = 175 cm
B=02mm=002cm
A=35x%x10"%cm

p = 150
o=7?
d=2(n-1o-y ..{§)
But B = 'A%)-
or d = —EQ .(if)

From equations (i) and (if)

AD :
§ = 2m-Doy,

Also D =y+y,

Ay +y
——(%t—)z)-—"-ﬂu-l)avy,

AOvty)  5x1073(25+175)

or T Pu-D)y, T 2x002(15-1)25
= (.02 radian
The vertex angle 0 = (x—20) radian = (x-0.04) radian
8 = 177° 42’ '

Example 8.16. Calculate the separation between the coherent
sources formed by a biprism whose inclined faces make angles of | degree
with its base. The slit source is 20 cm away from the biprism and u of
the biprism material = 1.5.
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d=2(p-1) oy,

o n .
Here p=15 aoa=1 = 120 radian
20 cm

]
n

_2(05-)nx20 _2x0.5x22%20
180 B 7% 180

035 cm

Example 8.17. Calculate the separation between the coherent
- sources formed by a biprism whose inclined faces make angles of 2° with
its base, the slit source being 10 cm away from the biprism

(= 1.50) . (Delki 1974, 1977)
d=2(Hu-Day,
Here pu = 150

Cho _ 2X® W .

0 =20 = T2 = g, radian

¥, = 10 cm

4= 213=-Dx10 _ 2x05xnx10 i

90 90

= 0.35 cm :

Example 8.18. In a biprism experiment, the eye-piece is placed at
a distance of 1.2 m form the source. The distance between the virtual
sources was found to be 7.5 x 10° m. Find the wavelength of light, if
the eye-piece is to be moved transversely through a distance of 1.888 cm

"1 Jor 20 fringes. (Delhi 1985)

| AD l
I = ——— = -

| B="a: b=y ?
| L_AD
L n d i
' ld

! A= nD

"= 1.888cm = 0.01888 m
d=175%x10""m

]
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20
12 m

0.01888 x7.5%x10~*
20%x1.2

= 5900x 10" m
= 5900 A

Example 8.19. The inclined faces of a biprism of refractive index
1.50 make angle of 2° with the base. A slit illuminated by a monochromatic
light is placed at a distance of 10 cm from the biprism. If the distance
between two dark fringes observed at a distance of I cm from the prism
is 0.18 mm, find the wavelength of light used.

Here,

[Delhi (Hons) 1991]

o2l . a-Bd

B =018 mm=018x10"" m

d=2u-hHoy ‘

m=15

a=2°=g>—<—n=—n—radian
180 9

10cm=01m; y,=1m

e
i

D:)'l+yz=0.1+1=l-lm
A =2 ~
_2(15-1) mx01 _ "
J= D) = 3.49% 10"
_Bd
A= D
-3 -3
A= 5711 A

8.10 DETERMINATION OF THE THICKNESS OF A THIN
SHEET OF TRANSPARENT MATERIAL

The biprism experiment can be used to detcrmine the thickness of
a given thin sheet of transparent material e.g., glass or mica.
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of V and R. Interference occurs between the beams from V R and those /|
from V' R’. The violet fringes are produced by V and V' while the rfﬂ/

Jringes are produced by R and R’

Suppose, VV’'=d and RR' = d, , M/

l r
If [—7— = Z the fringe width B will be the same and interference
\ .

fringes due to different colours will overlap and white achromatic fringes
are produced in the field of view. The white and dark fringes are seen
through the eyepiece or can be produced on the screen.

Instead of a diffraction grating, a prism of small angle can also be used.

8.15 INTERFERENCE IN THIN FILMS

Newton and Hooke observed and developed the interference phe-
nomenon due to multiple reflections from the surface of thin transparent
materials. Everyone is familiar with the beautiful colours produced by a
thin film of oil on the surface of water and also by the thin film of a
soap bubble. Hooke observed such colours in thin films of mica and simi-
tar t)/lin transparent plates. Newton was able to show the interference rings
whén a convex lens was placed on a plane glass-plate. Young was able

"o explain the phenomenon on the basis of interference between light re-

flected from the top and the bottom surface of a thin film. It has been
observed that interference in the case of thin films takes place due to
(1) reflected light and (2) transmitted light.

8),6 INTERFERENCE DUE TO.REFLECTED LIGHT
{THIN FILMS)

Consider a tran$parent
film of thickness t and refrac-
tive index u. A ray “SA incident
on the upper surface of the film
is partly reflected along AT and -
partly refracted along AB. At B
part of it is reflected along BC
and finally emerges out along

tween the two rays AT and CQ
can be calculated. “"Draw LN
normal to AT and AM normal

Fig: 8. 15

AM N
.to BC. The angle of incidence is i and the angle of refraction is r. Also

pro‘cﬁée CB to meet AE produced at P. Here ZAPC = r (Fig. 8.15).
~ 2

¥
i
o
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The optical puath difference
u (AB+ BC) - AN

Her B smz AN
ere, : H=Gnr ™ oM
AN = n.CM

X = p(AB+BC)—u‘~KCM
= L (AB+BC~CM) = pu(PC—~CM)

= W.PM
In the AAPM,
cosr = L/
AP
or PM = AP.cosr = (AE+ EP)cosr
= 2tcosr
(. AE = EP =1)
X = WPM = 2urcosr ()

This equation (i), in the case of reflected light does not represent
the correct path difference but only the apparent. It has been established
on"the basis of electromag,netlc “theory that, when light is reflected from
thf@rff’ace of an optically denser “medium (air"medium interface) a phase

. y . A )
change 7 equivalent to a path difference - occurs.

! . R T
Therefore, the correct path difference in thls_ case,

. A' e .
x = 2utcosr—= ’ ..(lf)

(1) If the path differefice x = n A wheren =0, 1, 2, 3, 4 etc., con-
structiye interference takes place and the film appears bright.

" Zutcosr—& = nh
2 .
A
or 2utcosr = 2n+ 1) 5 (D

(2) If the path difference x = (2n+ 1)1‘ where n = 0, 1, 2 ..efc
destructive interference takes place and the film appears dark.
2urcos r —}” = (2n+ 1)~
or utcosr = (n+ 1) A (i)

Here n is an integer only, therefore (n + 1 ) can also be taken
as n.
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2urcosr = nh (V)
where n=01273,4,...et.

It should be remembered that the interference pattern will not be per-
fect because the intensities of the rays AT and CQ will not be the same
and their amplitudes are different. The amplitudes will depend on the amount
of light reflected and transmitted through the films. It has been found that
for normal incidence, about 4% of the incident light is reflected and 96%
is transmitted. Therefore, the intensity never vanishes completely and perfectly
dark fringes will not be observed for the rays AT and CQ alone. But in the
case of multiple reflection, the intensity of the minima will be zero.

Consider reflected rays 1, 2, 3 etc. "as shown in Fig. 8.16. The am-
plitude of the incident ray is a. Let r be the reflection coefficient, 7 the
transmission coefficient from rarer to denser medium and ¢ the transmis-
sion coefficient from denser to rarer medium.

The amplitudes of the reflected rays are. ar, arrt ©art, atr't ...
etc. The ray 1 is reflected at the surface of a denser medium. It undergoes
a phase change %. The rays 2, 3, 4 etc. are all in phase but out of phase
with ray 1 by &

The resultant amplitude of 2, 3, 4 etc. is given by

A=airf +atbt vatr't +. .

A=atlrl+7+r+...]

As r is less than 1, the terms inside the brackets form a geometric

series.

- 1) et
A—at!’r‘:l_’l]—[]_'l]
a e %‘ 37 ar’t /atr‘r

atr atr°

, L)
alt atrt atr't \

Interference

According to the principle of reversibility.,

' =1-r
_a(d=r)r _
A= (-7 = ar

Thus, the resultant amplitude of 2, 3, 4,..etc. is equal in magnitude
of the amplitude of ray 1 but out of phase with it. Therefore the minima
of the reflected system will be of zero intensity.

8.17 INTERFERENCE DUE TO TRANSMI D LIGHT

(THIN FILMS)

Consider a thin transparent film of ‘thickness ¢ and refractive index
i, A ray SA after refraction '
goes along AB. At B it is partly
reflected along BC and partly
refracted along BR. The ray
BC after reflection at C, finally
emerges along DQ. Here at B
and C reflection takes place at
the rarer medium (medium-air
interface). Therefore, no phase
change occurs. Draw BM nor-
mal to CD and DN normal to
BR. The optical path difference

[SEpre)

between DQ and BR is given Fig. 8.17.
by, o
x = WBC+CD) -BN
. _sini _ BN -
Also K= Gnr = MD or BN = u.MD
In Fig. 8.17,
Z/BPC =rand CP=BC = CD
BC+CD = PD
x = p(PD)- WMD) = W(PD-MD) = pPM
In the ABPM, cosr = %M};" or PM = BP.cosr
But, BP =2t
PM =2tcosr
x = WPM = 2tcosr i)
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(i) For bright fringes, the path difference x = nk
nia (D)
0,1,2,3.. . ctc.

2urcosr

i

where n

(ii) For dark fringes, the‘path difference x = (2n+ l)%

2utrcosr = 2’l;l)l
where n=01273,...et.

In the case of transmitted light, the interference fringes obtained are
less distinct because the difference in amplitude between BR and DQ is

-very large. However, when the angle of incidence is nearly 45°, the fringes

are more distinct.

8.18 INTENSITIES OF MAXIMA AND MINIMA IN THE
INTERFERENCE PATTERN OF REFLECTED AND
TRANSMITTED BEAMS IN THIN FILMS

The intensity of the transmitted beam is given by (vide theory of
Fabry-Perot Interferometer)

| = 0
T A sin® 5
(1-1)?2 2
Here § is the phase difference, #* is the reflection coefficient and /
is the rmaximum intensity. ‘

For values of 8 = =, 3m, 5metc.

sinzg =1
For r =004 [{i.e. Reflectance of 4% )
] = . I,
d 1 4 x0.04
(1=0.04)
1' = (0.8521 10
Taking 1, =1
I =8521%
and I = 100-8521 = 14.79%
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(1) In the reflected system, the intensity of the interference maxima
will be 14.79% of the incident intensity and the intensity of the minima

will be zero (Fig. 8 18).

Uy
o o Ty e
n
o
7
. o»

Fig. 8.18

(2) In the transmitted system, the intensity of the maxima will be
100% and intensity of the minima will be 85.21%. It means the visibility
of the fringes is much higher in the reflected system than in the transmitted
system. Thus the fringes are more sharp in reflected light.

8.19 COLOURS OF THIN FILMS

When white light is incident on a thin film, the light which comes
from any point from it will not include the colour whose wavelength sat-
isfies the equation 2l 7 cos r = n, in the reflected system. Therefore, the
fitm will appear coloured and the colour will depend upon the thickness
and the angle of inclination. If r and ¢ are constant, the colour will be
uniform. In the case of oil on water, different colours are seen because
r and ¢t vary. This is clear from the following solved example. °

. Example 8.29. A parallel beam of light (A = 5890 x10°% cm) is in-
cident on a thin glass plate (W = 1.5) such that the angle of refraction
into the plate is 60°. Calculate the smallest thickness of the glass plate
which will appear dark by reflection. (Punjab 1973)
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8.20 NECESSITY OF A BROAD SOURCE

Interference fringes obtained in the case of Fresnel’s biprism, inclined
mirrors and Lloyd’s single mirror . were '
produced by two coherent sources. The
source used is narrow. These fringes can
be obtained on the screen or can be viewed
with an eyepiece. In the case of interfer-
ence in thin films, the narrow source limits
the visibility of the film.

Consider a thin film and a narrow
source of light at § (Fig. 8.19). The ray 1
produces interference fringes because 3

Fig. 8.19.

and 4 reach the eye whereas the ray 2.
meets the surface at some different angle and is reflected along 5 and 6.

Here, 5 and 6 do not reach the eye. Similarly we can take other rays in-
cident at different angles on the film surface which do not reach the eye.
Therefore, the portion A of the film is visible and not the rest.

If an extended source of light is used (Fig. 8.20), the ray 1 after
reflection from the upper and the lower surface of the film emerges as

4
Fig. 8.20

3 and 4 which reach the eye. Also ray 2 from some other point of the
source after reflection from the upper and the lower surfaces of the film
emerges as 5 and 6 which also reach the eye. Therefore, in the case of
such a source of light, the rays incident at different angles on the film
are accommodated by the eye and the field of view is large. Due to this
reason, to observe interference phenomenon in thin films, a broad source
of light is required. With a broad source of light, rays of light are incident
at different angles and the reflected parallel beams reach the eye or the
miéroscope objective. Each such ray of light has its origin at a different

point on the source.
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8.21 FRINGES PRODUCED BY A WiZD(,E SHAPED THIN

FILM

Consider two plane surfaces OA and OB inclined at an angle 8 and
enclosing a wedge shaped air film. The thick-
ness of the air film increases from O to A
(Fig. 8.21). When the air film is viewed with
reflected monochromatic light, a system of
equidistant interference fringes are observed
which are parallel to the line of intersection
of the two surfaces. The interfering rays do AIR FILM
no enter the eye parallel to each other but .
they appear to diverge from a point near the
film. The effect is best observed when the an- .
gle of incidence is small. Fig. 8.21.

Suppose the n th bright fringe occurs at P, (Fig. 8.22). The thickness
of the air film at P = P Q . As the angle of incidence is small,

EYE

o A

cosr = |
Applying the relation for a bright fringe,
2utcosr = (2ﬁ+1)%
Here, for air @ = 1 and cosr = 1 Poem B
and t=PQ0 . Pn
2P0 =@+ ) & \ -
U ¥ 2 Qn Qn+1 Qaem
P X e

The next bright fringe (n+1) will

nccur at PnH, such that Fig 8.22

2P0, = [2(n+1)+1]%

1

or _ 2P 0. ={(2n +3)-2): (i)

n+l

Subtracting (i) from (if)

A
A ..(iii)

Thus the next bright fringe will occur at the point where the

thickness of the air film increases by % Suppose‘ the (n+m) th bright
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fringe is at P, . Then, there will be m bright fringes between
P and P, such that

Pn#m Qn#m—Pn Qn = _m—2'2‘: -..(i\’)
If the distance 00, =x
mt
P. Q. -PQ
e - n+m *=n+m nn ____2_ = M ”.(v)
Qn Qn#m x 2x
o x = 22%“ ..(vi)

Therefore, the angle of inclination between OA and OB can be
known. Here, x is the distance corresponding to m fringes. The fringe
width

X A
. B = m~ 20
8.22 TESTING THE PLANENESS OF SURFACES

If the two surfaces OA and OB are perfectly plane, the air-film gradu-
ally varies in thickness from O to A. The fringes are of equal thickness
because each fringe is the locus of the points at which the thickness of
the film has a constant value (Fig. 8.23).

This is an important application of the phe- ~ FRINGES OF EQUAL
nomenon of interference. If the fringes are THICKNESS
not of equal thickness it means the surfaces
are not plane. The standard method is to
take an optically plane surface OA and the
surface to be tested OB. The fringes are ob- ) 2
served in the field of view and if they are

of equal thickness the surface OB is plane. Fig. 8.23.

If not, the surface OB is not plane. The sur-

face OB is polished and the process is repeated. When the fringes observed
are of equal width, it means that the surface OB is plane.

Example 8.36. Two glass plates enclose a wedge shaped air film,
touching at one edge and are separated by a wire of 0.05 mm diameter
at a distance of 15 cm from the edge. Calculate the fringe width. Mono-
chromatic light of A = 6,000 A from a broad source falls normally on the
film. (Rajasthan 1989)

x =15 cm, A= 6000A = 6000x107% cm
AB = 0.005 cm

(vii)
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Fringe width, B = —2—;\19—
B
/—r///’j ?
0.005 cm
g AIR FILM 4
0] A
be x=15cm >
Fig. 8.24
9 = AB _ 0.005
OA "~ 15
B:'—l—z 6000 x 1078 x 15
20 2 % 0.005
= 0.09 cm

Example 8.37. Light of wavelength 6000 A falls normally on a thin
wedge shaped film of refractive index 1.4, forming fringes that are 2 mm
apart. Find the angle of the wedge. [Delhi (Hons.) 1986}

I N
S 26p S 2up
Here A = 6000A = 6000x10°* cm
pu=14 ; f=2mm=02cm
0 = 6000 x 10~*
T 2x14x02

6 = 1.07 x10~* radian

Example 8.38. A glass wedge of angle 0.0] radian is illuminated
by monochromatic light of wavelenth 6000 A falling normally on it.
At what distance from the edge of the wedge, will the 10 th fringe be

observed by reflected light. (Punjab 1984)
Here 6 = 0.01 radian, n = 10,
A = 6000x10"% cm
2t=nk
But 0 = i
or t=0x
20x =n\
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6x1075cm ; p = 1.33

Am _ 6x107°x11
T 2ux 2x133x12

= 2,0625% 10-° radian.
t=x0

x =12 cm
8 = 2.0625 x 107 radian.
t=2475%x10"* cm.

Example 844. A beam of monochromatic light of wavelength
5.82x 10°7 m falls normally on a glass wedge with the wedge angle of
20 seconds of an arc. If the refractive index of glass is 1.5, find the number
of dark interference fringes per cm of the wedge length. (IAS, 1987)

® = 20 seconds of an arc

20X .
= G0x 60 180 i
~ A=582%x100"m ; p=15
j Q? B = A _5.82><10—7X60X60X180
3 v T 20p 2x20xmX 1.5
o/

2x107% m = 0.2 cm
Number of fringes per cm = 0—2 = 5 percm

Example 8.45. Two pieces of plane glass are placed together with
a piece of paper between the two at one edge. Find the angle in seconds,
of the wedge shaped air film between the plates, if on vzewmg the film
normally with monochromatic light (blue) of wavelength 4800 A there are
18 bands per cm. (Delhi, 1992)

Fringe width,

5-Leme L m

=18 ™7 1800
A A

P=26 ~®=2p

Here A=4800 A =48%x107" m

Interference

_ 4.8x1077x 1800
2x1

4.32 x 107* radian

_ 4.32x 1074 x 180 x 60 x 60
3.14

sec. of an arc

89 seconds of an arc

NEWTONS’S RINGS

When a plano-convex lens of long focal length is placed on a plane
glass plate, a thin film of air is enclosed between the lower surface of
the lens and the upper surface of the plate. The thickness of-the air film
is very small at the point of contact and“gradually increases from the centre

e —

45

A 4 A
I\7
w

Py
g

~—AIR FILM
G zzz DTTIIHT IOV

Fig. 8.25

outwards. The fringes produced with monochromatic light are circutar.
The fringes are concentric circles, uniform in thickness and with the
point of contact as the centre. When viewed with white light, the
tringes are coloured. With monochromatic light, bright and dark circular
fringes are produced in the air film. )

Q is a source of monochromatic light at the focus of the lens L, (Fig.
8.25). A horizontal beam of light falls on the glass plate B at 45°. The
glass plate B reflects a part of the incident light towards the air film en-
closed by the lens L and the plane glass plate G. The reflected beam from
the air film is viewed with a microscope. Interference tukes place and dark
and bﬁght circular fringes are produced. This is due to the interference
between the light reflected from the lower surface of the lens and the upper
surface of the glass plate G.
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Theory. (i) Newton’s rings by re_ﬂ“tﬁ“’;ﬂ'&'ﬂ Suppose the radius

of curvawre of the lens is R and the air film is of thickness ¢ at a distance
of OQ = r, from the point of contact O.

4

REFLECTED \
LIGHT

» !
SR VAN i
Gl /q?n'fm l

Yo [ oy
Fig. 8.26
Here, interference is due to reflected light. Therefore, for the bright
rings | o
A A .
2utc086=(2n—-1)-2- (D)
where n=1223...etc
Here, 0 is small, therefore cos9 = 1
For air, p=1
A
2t =(2n-1) 3 . (i)
For the dark rings,
2utcos® = nh
or 2t = nh
where - n=201273... etc ..(iii)
In Fig. 8.26,
EP xHE = OE X (2R - OE)
But EP=HE=r, OE=PQ =1
and 2R-1t = 2R (approximately)

P = 2Rt
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or t =

Substituting the value of ¢ in equations (i) and (iii),
For bright rings

p =Gz _21 AR {iv)
;= 2n -21 AR )

For dark rings,
' r=nAR ..(vi)
r=<nAR o o ..(vii)

When n = 0, the radius of the dark ring is zero'and the radius of

the bright ring is \, %E Therefore, the centre is dark. Alternately dark
and bright rings are produced (Fig. 8.27). :

_Result.  The radius of the dark ring is proportional to (i) \Nn (i)
\/7? and (i) VR. Similarly the radius of the bright ring is proportional to

() \/g%"—l () VX and (i) \R.

If D is the diameter of the dark ring, .
D =2r=2nkR ...(viii)
For the central dark ring

n=20
D = 2VNnAR =

This corresponds to the centre
of the Newton's rings. While count-
ing the order of the dark rings I, 2,
3, ew. the central ring is not
counted.

Therefore for the first dark
ring,

S
3
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For the second dark ring, n = 2,
D, = 2N2AR
and for the n th dark ring,
D = 2\NnkR
Take the case of 16 th and 9 th rings,
D = 2VI6AR = 8VAR,
D, = 2V9AR = 6 VAR

9
The difference in diameters between the 16 th and the 9 th rings,

D,-D, = 8VAR -6 AR = 2VAR

Similarly the difference in the diameters between the fourth and first
rings,

D,~D, = 2VAAR -2VAR = 2VAR

Therefore, the fringe width decreases with the order of the fringe
and the fringes got closer with increase in their order.

For bright rings,

P = 9132—122‘5 (ix)

or D?=2Q@2n-1) AR w(X)
r, = (_Zn_—le - {xi)

In equation (ix), substituting n = 1,2,3 (number of the ring)
the radii of the first, second, third etc., bright rings can be obtained
directly.

(it) Newton’s rings by tral;riit/tgq light. In the case of transmitted
light (Fig. 8.28), the interference fringes
are produced such that for bright rings, /

2putcos® = n A oo (xid)

and for dark rings \

2ur cosQ =Q2n-1) % . (xdif)

Here, for air TRANSMITTED
LIGHT

and cos0 =1 Fig. 8.28
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For bright rings,
2t = nA

1

A
and for dark rings 2t =(2n-1) 3

Taking the value of ¢ = -2% where r is the radius of the ring and

R the radius of curvature of the lower surface of the lens, the radius for
the bright and dark rings can be calculated.
For bright rings,
P = nAR .(xiv)

For dark rings,

P = Q”—"—zl)-M )

where n=1273..etc
When, n = 0, for bright rings
r=20.

Therefore, in the case of New-
ton’s rings due to transmitted light, the
central ring is bright (Fig. 8.29) ie.,
just opposite 10 the ring pattern due to

reflected light.
Example 8.46. A thin equiconvex lens of focal length 4 metres and

reflective index 1.50 rests on and in cemact with an optical flat, and using
light of wavelength 5460 A, Newton's rings are viewed normally by re-
flection. What is the diameter of the 5 th bright ring ?

Thp diameter of the n th bright ting is given by

D =\2(n-1)kR
Here n =5, A= 5460%x10°%
f =400 cm, g = 1.50
1 (1 1
— -1 —_
7 {1 )LRx le
Here Ix‘l = R, R2 =—R
i 72
i
- \ J
| 2
200 = (1.50 - l)(R)
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R = 400 cm
D, =V2x(2x5-1)x5460x 107" x 400

D, = 0.627 cm

‘ ﬂé‘% DETERMINATION OF THE WAVELENGTH OF

SODIUM LIGHT USING NEWTONS’S RINGS

The arrangement used is shown ih Fig. 8.25. § is a source of sodium
light. A parallel beam of light from the lens L, is reflected by the glass
plate B inclined at an angle of 45° to the horizontal. L is a plano-convex
lens of large focal length. Newton’s rings are viewed through B by the
travelling microscope M focussed on the air film. Circular bright and dark
rings arc seen with the centre dark. With the help of a travelling micro-
scope, measure the diameter of the n th dark ring.

Suppose, the diameter of the n th ring = D

2=k
B D,
ut, r, = —2-
(D)
i nAR
or ﬁf. A4mR ' 0
Measure the diameter of the n+m th dark ring.
Let it be D ,_
o,V
@) = (n+m) AR
4
or D, ) =4(n+m) AR (i)
Subtracting (i) from (ii)
(Dn+m)2 - (D:) = 4mm
ﬁ:ﬁ:":
. Ry,
. = amR (i)

Hence, A can be calculated. Sup;;ose the diameters of the 5 th ring

and the 15 th ring are determined. Then, m = 15-5 = 10.

\ - S - D)
4 x 10R

The radius of curvature of the lower surface of the lens is determined
with the help of a spherometer but more accurately it is determined by

(V)

Boy's method. Hence the wavelength of a given monochromatic source
of light can be determined.

Example 8.47. A plano-convex lens of radius 300 cm is placed on
an optically flat glass plate and is illuminated by monochromatic light.
The diameter of the 8 th dark ring in the transmitted system is 0.72 cm.
Culculate the wavelength of light used.

[Delhi B.Sc.(Hons) 1986}

For the transmitted system,

P2 = Q_"_:_U_M
2
Here n=8 D=072cm r=036cm
R=300cm A=2?
27 2x(036)
2n-1)R 2%x8-1)300
= 5760x10°% ¢cm
or A = 5760 A

Example 8.48. In a Newton's rings experiment the diameter of the
15 th ring was found to be 0.590 cm and that of the 5 th ring was
0.336 cm. If the radius of the plano-convex lens is 100 cm, calculate the
wavelength of light used.

Here D, = 0336 cm D, = 0.5% cm.
' R=100cm ; m =10,
o, )y-m)y D -D
4mR 4x 10xR
A= (0"293); O’ X(OI'SSQZ = 5880x 10* cm
A = 5880 A

Example 8.49. In a Newion's rings experiment, the diameter of the
5 th ring was 0.336 cm and the diameter of the 15 th ring = 0.590 cm.
Find the radius of curvature of the plano-convex lens, if the wavelength
of light used is 5890 A.

Here D, = 0336 cm., D,, = 0.590 cm,
and m=10, A =580x10%cm, R=7?
_ (@, )-d)y Di-D
- AmA T 4x10xA
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_(0.590)* - (0.336)*
T 4% 10x5890%x1078

= 99.82 cm

Interference

Example 8.50. In a Newton's rings experiment, find the radius of
curvature of the lens surface in contact with the glass plate when with
a light of wavelength 5890x 107% cm, the diameter of the third dark
ring is 3.2 mm. The light is falling at such an angle that it passes
through the air film at an angle of zero degree to the normal.

[Rajasthan, 1987]

For dark rings

. _
P=n\R; R= =y
32
Here r= —2— mm = 1.6 mm = 0.16 cm
n=3:A=5890x10"%
R = g0.1622
T 3x5890x107?
R = 1449 cm

vﬂés REFRACTIVE INDEX OF A LIQUID USING
NEWTON’S RINGS

The experiment is performed when there is an air film between the
plano-convex lens and the optically plane glass plate. These are kept in
a meta) container C. The diameter of the n th and the (n+m) th dark
rings are determined with the help of a travelling microscope (Fig. 8.30).

For air, (Dn‘m)z =4 (n+m) AR ; Di = 4nAR
| - D, -D! = 4mAR )

| The liquid is poured in the container C without disturbing the ar-
rangement, The air film between the lower surface of the lens and the
upper surface of the plate is replaced by the liquid. The diameters of the
| n th ring and the (n+m) th ring are determined.

‘ For the liquid, 2 pzcos® = nk for dark rings

P2
or 2ut = nh. But, ¢ = R

v

G S - --.—_-4C
LTI ST AL A

I
ﬁl
; I

Fig. 8.30

If D’ is the diameter of the n th ring and D is the diameter of
the (n+m) th ring

4(n+m) AR Dy = 4nAR

then, (Dnm) = m m

or o,,)y-oy= i”%’i i)
: 4mAR

or H= —(*B—;"—jn')—i—_"a,:‘)‘ ...(lll)

Ifm MR D . and D’" are known JL can be calculated. If A is not
known, then divide (iii) By (i)

(D, y-(D) . .
m L0v) k
n+n n 02 I_
Graphical method. The diameters

of the dark rings are determined for vari-
ous orders, varying from the n th ring J
to the (n +m) th ring, first with air as — — e
the medium and then with the liquid. A 01234567883

po=

graph is plotted between D2 along the
y-axis and m along the x-axis, where
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m = 0,1,2, 3. .. etc. The ratio of the slopes of the two lines (air and lig-
uid)‘, gives the refractive index of the liquid.
- AB
H=g
Example 8.51. In a Newton's rings experiment the diameter of the
10 th ring changes from 1.40 cm to 1.27 cm when a liguid is inrroduced
between the lens and the plate. Calculate the refractive index of the liquid.

{(Nagpur 1985)

4n AR :
For liquid medium D? = -"—L:— ()

4n AR (i)

1

- . 2
For air medium D2

s

Dividing (ii) by (i)

Here Dl = 127 cm, D: = 140 cm
1.40
“‘(1.27} 1.215

Example 8.52. In a Newton's rings arrangement, if a drop of water
(1 = 4/3) be placed in between the lens and the plate, the diameter of
the 10 th ring is found to be 0.6 cm. Obtain the radius of curvature of
the face of the lens in contact with the plate. The wavelength of light used

is 6000 A. (Delhi 1983)
4n AR “Di
2 _ MAR _ —n
D* = or R Ry
4
Here n= 3 D =06 cm
n=10, A = 6000 A = 6x107° cm
R =7
) 4 x (0.6
R (0.6)

T 3X4x10x6x 1077
= 200 cm

Interference 337

Example 8.53. Newton's rings are formed by reflected light of wave-
length 5895 A with a liquid between the plane and curved surfaces. If
the diameter of the 5 th bright ring is 3 mm and the radius of curvature
of the curved surface is 100 cm, calculate the reflective index of the liquid.

(Gorakhpur 1986)

Here, for the n th bright ring,

_(2n-1 AR
B 2r

Here n=5, A=5895x10"% cm, R=100 ¢m, r=-§-mm =0.15cm

H= 7
_ (2x5-1)x5895%x 10"%x 100
Ho= 200157

p = 1179

Example 8.54. In a Newton's rings experiment the diameter of the
15 th ring was found to be 0.590 cm and that of the 5 th ring was 0.336
cm. If the radius of the plano-convex lens is 100 cm, calculate the wave-
length of light used. (Delhi ; 1984)

Here D, =0.336 cm = 336x 107> m
D_=0590cm =590x10"*m

ts

}\' - (DrH»m)z_Di - Df<“D§
4m R 4xXI0xR
3 = 3:9x107%)? - (3.36x 10~%)
4x10x1
=5880x10"" m
A = 5880 A

Example 8.55. In a Newton’s rings experiment the diameter of the
12 th ring changes from 1.50 cm to 1.35 cm when a liguid is introduced
between the lens and the plate. Calculate the refractive index of the liquid.
: (Delhi 1990)

For liquid medium

4nh
D} = —= (D)
. m (
For air medium

D,

I

4nAR - (i)
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Dividing (i) by (i)

Here D| = 1.35 ¢m
D3 = 1.50 ¢m
(150

H=1735

= 1235

Example 8.56. Newron's rings are observed in reflected light of
A = 5.9% 10-% cm. The diameter of the 10 th dark ring is 0.5 cm. Find

the radius of curvature of the lens and the thickness of the air film.
(Delhi, 1991)

(i) Here. 7 =n\R
A=59%x10"%cm=59x10"" m
n =10
R = 25%x107%?
10x59%x10°7 -
R = 1.059 m
(i) Thickness of the air film = ¢
2t =nh
L
2
_10x59%x1077

- 2
t=295x10"%m
8.26 NEWTON’S RINGS FORMED BY TWO CURVED
SURFACES

Consider two curved surfaces of radii of curvature R and R, in con-
tact at the point O. A thin air film is enclosed between the two surfaces
(Fig. 8.32). The dark and bright rings are formed and can be viewed with
a travelling microscope. Suppose the radius of the n th dark ring = r. The

thickness of the air film at P, is
PQ = PT-QT

Interference

From geometry, !
- ‘
PT = 2R, !
i
P i
d = o i
an or 2R2 !
PP o T
PQ = ‘2'E: - *2“R—2 o e R e |
But PQ =
u Q=1 Fig. 8.32.
For reflected light,
2urcos © = nA, for dark rings.
Here, for air w=1
cosB =1
2t = nA
PP
or 2 | =
(ZR. 2R, ) m
1 1
F[RI—RZ:I—nX (D)
where n=201273...etc
For bright rings,
2urcos 8 = 2n+ 1A
3 2
Taking =1
and cosO = |
2 = (2n+ DA
2
1 1 2n + DA
o 1 1y _( ) ..
r A r’(Rl R ) > (i)

where n = 0,1,2,3. .. etc.
For the 10 th bright ring, the value of n = 10—-1 =9

- For n th bright ring,
11 - -
r:(__ J=[[2(n 1)+1]x}= (2n21)x i)

R, "R, 2
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(b) What do you mean by the term coefficient of finesse ?

(¢) Prove that the fringes obtaincd with Fabry Perot interferometer are
sharper than those obtained with Michelson interferometer.
[Delhi (Hons), 1992}

(a) Distinguish between spatial and temporal coherence.

(b) What are coherence length and coherence time ? Why is it impos-
sible to observe interference between light waves emitted by independent
sources ? [Delhi (Hons), 1992]

Give a complete description of Michelson’s interferometer. Discuss how

the wavelength of monochromatic radiation can be determined in the

[Osmania, 1992]

Discuss briefly the various methods for obtaining coherent sources of
light in the laboratory. [Osmania, 1992)

Show that the distance between the two virtual coherent sources in Fres-
nel’s biprism arrangement is 2d(n — 1)@ where d is the distance between
the source and the biprism, 8 is the angle of the biprism and n is the
refractive index of the material of the biprism. [Osmania, 1992]

laboratory with the help of this interferometer.

AN

9.1 INTRODUCTION
It is a matter of common experience that the path of light entering -
a dark room through a hole in the window illuminated by sunlight is
straight. Similarly, if an opaque obstacle is placed in the path of light, a
sharp shadow is cast on the screen, indicating thereby that light travels
in straight lines. Rectilinear propagation of light can be easily explained
on the basis of Newton’s corpuscular theory. But it has been observed that
when a beam of light passes through a small opening (a small circular
ole or a narrow slit) it spreads to some extant into the region of the geo-
metrical shadow also. If light energy is propagated in the form of waves,
then similar to sound waves, one would expect bending of a beam of light
round the edges of an opaque obstacle or illumination of the geometrical
shadow.
Each progressive wave, according to Huygens wave theory produces
secondary waves, the envelope of which forms the secondary wavefront.
In Fig. 9.1 (@), S is a source of monochromatic light and MN is a small
aperture. XY is the screen placed in the path of light. AB is\the illuminated
portion of the screen and above A and below B is the reg\i%n\of the geo-
metrical shadow. Considering MN as the primary wavefront, according to
Huygens’ construction, if secondary wavefronts are drawn, one would ex-
pect encroachment of light in the geometrical shadow. Thus, the shadows
formed by small obstacles are not sharp. This bending of light round the
edges of an obstacle or the encroachment of light within the geometrical -
shadow is called diffraction. Similarly, If an opaque obstacle MN is placed
in the path of light {Fig. 9.1 (b), there should be illumination in the geo-
metrical shadow region AB also. But the illumination in the geometrical
-shadow of an obstacle is not commonly observed because the light sdurces
are not ‘point sources and secondly the obstacles used are of very large
size compared to the wavelength of light. If a shadow of an obstacle is
cast by an extended source, say a frosted electric bulb, light from every
point on the surface of the bulb forms its own diffraction pattern (bright
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and dark diffraction bands) and these overlap such that no single pattern
can be identified. The term diffraction is referred to such problems in
which one considers the resultant effect produced by a limited portion of
a wavefront.

(@) Y () Y

Fig. 9.1

Diffraction phenomena are part of our common experience. The lu-
minous border that surrounds the profile of a mountain just before the sun
rises behind it, the light streaks that one sees while looking at a strong
source of light with half shut eyes and the coloured spectra (arranged in
the form of a cross) that one sees while viewing a distant source of light
through a fine piece of cloth are all examples of diffraction effects.

Augustin Jean Fresnel in 1815, combined in a striking manner Huy-
gens wavelets with the principle of interference and could satisfactorily
explain the bending of light round obstacles and also the rectilinear propa-
gation of light.

.w};é FRESNEL’S ASSUMPTIONS

According to Fresnel, the resultant effect at an external point due
to a wavefront will depend on the factors discussed below :-

In Fig. 9.2, S is a point source of monochromatic light and MN is
a small aperture. XY is the screen and SO is perpendicular to XY. MCN

is the incident spherical wavefront due to the point source S. To obtain
the resultant effect at a point P on the screen, Fresnel assumed that 41y

a wavefront can be divided into a large number of strips or zones called
Fresnal’s zones of small area and the resultant effect at any point will de-
pend on the combined effect of all the secondary waves emanating from
the various zones ; 2) the effect at a point due to any particular zone
will depend on the distance of the point from the zone ; (3) the effect
at P will also depend on the obliquity of the point with reference to the
zone under consideration, e.g. due 10 the part of the wavefront at C, the
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effect will be maximum at O and decreases with increasing obliquity., It
is maximum in a direction radially outwards from C an it decreases in
the opposite direction. The effect at a point due to the obliquity factor is
proportional to (1 +cos 8) where £ PCO = 0. Considering an elementary
wavefront at C, the effect is maximum at O Dbecause
6 = Oandcos ©® = 1. Similarly, in a direction tangential to the primary
wavefront at C (along CQ) the resultant effect is one half of that along

Fig. 9.2

CO because 0 = 90"and cos 90 = 0. In this direction CS, the resultant
effect is zero since 6 = 180° and cos 180 = — 1 and 1 + cos 180 = 1
— 1 = 0. This property of the secondary waves eliminates one of the dif-
ficulties experienced with the simpler form of Huygens principle viz., that
if the secondary waves spread out in all directions from each point on
the primary wavefront, they should give a wave travelling forward as well
as backward. as the amplitude at the rear of the wave is zero there will
evidently be no- back wave. '

9.3 RECTILINEAR PROPAGATION OF LIGHT
ABCD is a plane wavefront perpendicular to the plane of the paper

X1 !
!

Ma

Fig. 9.3
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418

r? '
= 0
n -
S = ET ()
1 1 1
Also v 0" 7
1. 1_1
v, u
1. 1_1
v, « f
Here v, =03m and v, = 0.6m
11 A
03 a1~ ’Jl .1
1 1 3\ .
006 u = T ..(iv)
* 1
Multiplying equation (iii) by 3 and equating with (iv),
1 3 1 1
01 u_ 006 u
u=-03m (V)

Negative sign shows that the point source is to the left of the zone

plate and its distance is 0.3 m.
Substituting the value of u and A in equation (iii)

___l__+__l__ _5x1077
03 03 A »
r, = 274%x10 “m . . (Vi)

From equation (i)

-d4y2
PR CHLES O

5x10°7

Example 9.6. A zone plate is made by arranging the radii of the
circles which define the zones such that they are the same as the radii
of newton’s rings formed between a plane surface and the surface having

radius of curvature 200 cm. Find the principal focal length of the zone
_ plate. [Delhi (Hons) 1992]

419

Diffraction

For Newton’ rings,
radius of the n th ring,

r = \n kR

r, = VAR D)
For a zone plate, the principal focal length

i }

f= 2 (1))
From (i) and (i)

s=28or
But R =200cm =2m

fi=2m

h kaESNEL AND FRAUNHOFER.DIFFRACTION.

SR IR

Diffraction phenomena can conveniently be divided into two groups
viz, (i) Fresnel diffraction phenomena and (i) Fraunhofer diffraction phe-
nomena. In the Fresnel class of diffraction, the source or the screen or
both are at finite distances from the aperture or obstacle causing diffrac-
tion. In this case, the effect at a specific point on the screen due to the
exposed incident wavefront is considered and no modification is made by
lenses and mirrors. In such a case, the phenomenon observed on the screen
is called Fresnel diffraction pattern\ In the Fraunhofer class of diffraction
phenomena, the source and the screen on which the pattern is observed
are at infinite distances from the aperture or the obstacle causing diffrac-
non Fraunhofer dlffractlon pattern can be easily observed i in practice. The

e ey g e e,

fraction phenomena do not reqmre any lenses Theoretical treatment of
Fraunhofer diffraction phenomena is 51mpler Fresnel class of diffraction

phenomena are treated first in this chapter.
9.8 DIFFRACTION AT A CIRCULAR APERTURE

" Let AB be a small aperture (say a pin hole) and § is a point source
of monochromatic light. XY is a screen perpendicular to the plahe of the
paper and P is a point on the screen. SP is perpendicular to the screen.
O is the centre of the aperture and r is the radius of the aperture. Let
the distance of the source from the aperture be a (SO = a) and the dis-
tance of the screen from the aperture be b (OP = b). P 0Q, is the incident

spherical wavefront and with reference to the point P, O is the pole of
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ﬁfé in the region of the geometrical shadow. The intensity distribution due to
i Fresnel's diffraction at a straight edge is given in Fig. 9.17 on page 429,

22 FRAUNHOFER DIFFRACTION AT A SINGLE SLIT

\ To obtain a Fraunhofer diffraction pattern, the incident' wavefront
l‘ ! must be plane and the diffracted light is collected on the screen with the
help of a lens. Thus, the source of light should either be at a large distance
from the slit or a collimating lens must be used.

In Fig. 9.33, S is a narrow slit perpendicular to the plane of the paper
and iluminated by monochromatic light. L, is the collimating lens and AB
is a slit of width a. XY is the incident spherical wavefront. The light pass-
ing through the slit AB is incident on the lens L, and the final refracted
beam is observed on the screen MN. The screen is perpendicular to the

Ly ,
X A N AW. > A
I C,,‘ C 9
[] A <
a - i r M \\- P
S > » O ====Ii 1 <
0 <N
- .\ <
\4 B‘ ————— ;.-le’/

3¢ af

4

Y

Fig. 9.33

plane of the paper. The line SP is perpendicular to the screen. L and Lz
are achromatic lenses.

A plane wavefront is incident on the slit AB and each point on this
wavefront is a source of secondary disturbance. The secondary waves trav-
elling in the direction parallel to OP viz. AQ and BV come to focus at
P and a bright central image is observed. The secondary waves from points
equidistant from O and situated in the upper and lower halves 0A and
OB of the waterfront travel the same distance in reaching P and hence
the path difference is zero. The secondary waves reinforce one another
and P will be a point of maximum intensity.

Now, consider the secondary waves travelling in the direction AR,
inclined at an angle O to the direction OP. All the secondary wave trav-
elling in this direction reach the point P’ on the screen. The point P will
be of maximum or minimum intensity depending on the path difference
between the secondary waves originating from the corresponding points
of the wavefront. Dtaw OC and BL perpendicular to AR.

o
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Then, in the AABL

o AL _AL
smy = AB T a
or AL = asin 9

where a is the width of the slit and AL is.the path difference between
the secondary waves originating from A and B. If this path differena? %s
equal to A the wavelength of light used, then P’ will be a point of mini-
mum intensity. The whole wavefront can be considered to be of two halves
OA and OB and if the path difference between the secondary waves from
A and B is A, then the path difference between the se wndary waves from

A and O will be % Similarly for every point in the upper half OA, there

is a corresponding point in the lower half OB, and the path difference be-
.o A .

tween the secondary waves from these points is > Thus, destructive in-

terference takes place and the point 7 will be of minimum intensity. If
the direction of the secondary waves is such that AL = 2 A, then also the
point where they meet the screen will be of minimum intensity. This is
s0, because the secondary waves from the corresponding points of the

lower half, differ in path by % and this again gives the position of mini-
mum intensity. In general

asin® =ni

sin ©

n

where O gives the direction of the n th minimum. Here n is an integer.
n

. A L
If, however, the path difference is odd multiples of > the directions of

the secondary maxima can be obtained. In this case,

A
asin Gn = (2n+ I)-z-

or sing = Zn+hA
n 2a
where n =12 3etc.

Thus, the diffraction pattern due to a single slit consists of a central
bright maximum at P followed by secondary maxima and minima on both
the sides. The intensity distribution on the screen is given in Fig. 9.34.
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P corresponds to the position of the central bright maximum and the points
on the screen for which the path difference between the points A and B

INTENSITY
~3n-~-2x -n P b4 2'11 3'7[
3% -22 A A 2A 3%
a a ‘a a a 4
Fig. 9.34

is A, 2A etc., correspond to the positions of secondary mimma. The sec-
ondary maxima are of much less intensity. The intensity falls off rapidly
from the point P outwards.

If the lens L. is very near the slit or the screen i far away from

the iens sz ther

. X
sin@ = f A
where f is the focal length of the lens L,
A A
But, sin @ = — {0
ol
x_ A
5 a
fA
or x o=
a
where x is the distance of the secondary minimum from the point F.
Thus, the width of the central maximum = 2x.
(i)

or 2x = 21x
a
The width of the central maximum is proportional to A, the wave-
length of light. With red light (longer wavelength), the width of the central
maximum is more than with violet light (shorter wavelength). With a nar-
‘row slit, the width of the central maximum is more. The diffraction pattern
consists of alternate bright and dark bands with monochromatic light. With
white light, the central maximum is white and the rest of the diffraction
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*
bands are coloured. From equation (ii), if the width a of the slit is large,

sin 8 is small and hence 6 is small. The maxima and minima are very
close to the central maximum at P. But with a narrow slit, ¢ is small and
arge. This results a distinct diffraction maxima and minima

hence 0 is |
on both the sides of P.

Example 9.9. Find the half angular of the
bright maximum in the Fraunhofer diffraction pattern of a slit of width
12x 1077 the slit is illuminated by monochromatic light of

wavelength 6000 A.

central

width

cm when

Here sind = —
a

where © is half angular width of the central maximum.
a = 12x10"%em A = 0000 A = 6 10 em.

(.50

Ao 6x1077
Sx 1078

or
sht a

Example Y10, Jn Frawihojer diffraction due o @ HATTOW
soroen s pluced 2 moaway from the lens to obtagin the pattern. If the sliz
width is 0.2 min and the first minimea lie 5 mm on either side of the centrul
maximum, find the wavelength of light. [Delhi (Sub) 1977]

In the case of Fraunhofer diffraction at a namow rectangular

aperwure,
asin® = nA
n =1
asiné = A
sin€ = :
D
ax
D= A
- ax
A D
Here a = 02mm = 002cm
x=5mm = 05¢cm
D=2m=200cm
3 = 0.02x0.5
200
A =5x10"%cm
A = 5000 A
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i at an angle @ from the point 8 upwards, the path difference changes and
i hence the phase difference also increases. Let o be the phase difference
i between the secondary waves from the points B and A of the slit (Fig.
‘ 9.27). As the wavefront is divided into a large number of strips,the re-
Hi sultant amplitude due to all the individual small strips can be obtained
by the vector polygon method. Here, the amplitudes are small and the
I phase difference increases by infinetesimally small amounts from strip to
0 strip. Thus, the vibration polygon coincides with the circular arc OM (Fig.
it 9.35). OP gives the direction of the initial vector and NM the direction
of the final vector due to the secondary waves from A. K is the centre
of the circular arc.

‘ < MNP = 2q
{l ZOKM = 2
It In the A OKL

oL

sinot =~~~ : OL = rsino
r

' where r is the radius of the circular arc '

I Chord OM = 2 0L = 2rsin o o (D
The length of the arc OM is proportional to the width of the slit.
! -~ Length of the arc OM = Ka

where K is a constant and a is the width of the slit.

: Also, o = f}_ryO_l\LI - Ka
radius r
| Ka 3
or 2r = o (7))

Substituting this value of 2r in equation ()
Chord OM = %.sina

But, OM = A where A is the amplitude of the resultant.

A = (Kg)S0Q
(¢
A=A K i)
[0

Thus, the resultant amplitude of vibration at a point on the screen

o sin o . . S
1s given by A T and the intensity / at the point is given by

P vt e

-
&
i
r
&
L
¢
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2
, ,sinfo sin o (V)
[ = = A() aZ ) o

The intensity at any point on the screen js proportional to

-«
5

(§iwn_g j A phase difference of 2 corresponds to a path difference of
o

L. Therefore a phase difference of 2 is given by

20 = 2i—t,asine L {v)

where a sin 0 is the path difference between the secondary waves from
A'and B (Fig. 9.35).
(V)

a:-’-t-.asine

A

Thus, the value of o depends on the angle of diffraction 8. The

value of ﬂ‘;ﬂ for different values of 8 gives the intensity at the point
a . . . - - -
under consideration. Fig. 9.34 represents the intensity distribution. It is
sin’ o -axi function of o or sin 6 (along

a graph of — (along the Y-axis), as a fun
the X;axl&)
443 FRAUNHOFER DIFFRACTION AT A SINGLE SLIT
{CALCULUS METHOD)

Fig. 9.36

Let a monochromatic parallel beam of light be incident on tl}e slit
AB of width a. The secondary waves travelling in the same direction as
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the incident light come to focus at the point 2. The secondary waves trav-
elling at an angie 8 come to focus at P’ (Fig. 9.36).

Consider the screen to be at a distance r from the slit. The centre
of the slit O is the origjn of coordinates. Consider a small element dz of
. Gy . . R
the wavefront with coordinates {0, 7). The coordinates of the point P’ are
(x,, z,) [Fig. 9.37]. The distance of the element from the point P’is p.

f

1< fvi
4

1
!
L; 4
: P’ =r

i

Fig. 9.37
The displacement at the point P * due to the element dz at any instant

is given by,

] {v o
dy = Kdzsin 27:* T ;' \, A8
(R

The resultant displacement at P’ due to the whole wavefront,

2 7
. L
', - . e #
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4 : !
3
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2%, 2 |
I R e ()
p’ = r|:¢ = + rz} i
In the case of Fraunhofer diffraction, the screen is at a very large
2
zZ

distance from the slit, therefore r >> z and S is negligible.

z
But, -- = §in @
r

p =r—zsin@

Substituting this value of p in equation (%)

2
{ r  sin®
) Kf sm[ | 7 2 J
a
2
/
KA { r asng
' e L eos 2T -
> 2rsin® [ !\ 7T A 22
(¢ _r_asin®)] -
—CObzni‘i”‘;\ 5 u
,l
’ N
y o= “‘bzﬁ(Zsm QKEI ;I;; - ::" }min T’?tf -
- 2nsin 8 ‘L l\ TR )/j \
r \ ; oy
¢ ior ., [ mesan @
Vo= “K‘A l sin 27 ( “,I‘; = sy T j
Tsin g VA i
L ] )

asin®
masin® _ o

Let 'y
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s ¥ ig“ : J (i)

) The amplitude at P’ is

sin o
Ka
a

)and the intensity at P’,

Moy
I
8
2
~—
z.
SRES
Q
N’

, sin’ o .
1" = 10[”?*‘] ..(vii)
Here I = K’a’ and is the value of the intensity at P, for o = 0
sinet _
o

} a—0
Wmml Maximum. For the point P on the screen (Fig. 9.27).

8=0;
and hence a=0:
sin o

~ The value of when & — 0 is equal to 1. Hence, the intensity

2
sin O N .
at P = 10[—(7} = IO which is maximum.

(e

i)/ Secondary Maxima. The directions of secondary maxima are
given ¥y the equation

ing = 2ntD2
sing, = 2%

Substituting this value of Gn in equation (v) (page 457)

T oa@n+l)A

[

"

A 2a
3
- Q:’L‘%.QE - (viid)

-
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Substituting n = 1, 2, 3 etc. in equation (vii), the values of o are

given by

: =, et
T2 20 2

_3n
)
2
sin &
and I= 0" o
3]
sm—;E 1T 4,
=h| T3 |73 | Tow
5 2
_h
T2

(b) For the secondary- maximum,

st
=73
) 2
sin o
and I=1 -—&—]

Sr ,
sm—i' RS c ‘410
=1, “5p 5 251°
| 2 2
b
T o6l

Thus. the secondary maxima are of decreasing intensity and the di-
f the 7 i i i ive ve.
rections of these maxima are obtained from the equation given abo

The intensity at P’ is given by -

, sir’ a
] = I” (12 N
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= o 2 8In (£ Cos o — (sin’ &) 20, jl

ol o L dot
4

For I’ to be maximum

oy

dl’
da

0

o (2 sin o cos o) — (sin’ot) 20
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tano = o
If graphs are plotted for y = aandy = tan o it will be found that
: § the secondary maxima are nct exactly midway between two minima. The
positions of the secondary maxima are slightly towards the ceniral maxi-
mum (Fig. 9.38).

{ii{) Secondary Minima. The directions of the secondary minima are

given by the equation

asin® = A

Spbstituting the value of asnan cauation (v

it
(1 = L nAom NI
i)»
.. N . Y v e St . . -~
Substituting po= 1020 detc in vguation ]
T S A { G o e o
HERE A g1 ih -
Ll . .
Coi T o=t
Y (¥4 t
- J
eoshwn for

in Fig 934, the positions of the SecONGary minin @
the values of
IEREI S AL b e

¢ refer © the values of sin 8

£ VUNHOFER DIFFRACTION AT & UIRCULAR
ATERTURE

CG39 AR s a circelar aperture of W

3 38

& oo
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of the aperture and P is a point on the screen. CP is perpendicular to
the screen. The screen is perpendicular to the plane of the paper. A plane
wayefront is incident on the circular aperture. The secondary waves trav-
elling in the direction CO come to focus at P. Therefore, P corresponds
to the position of the central maximum. Here, all the secondary waves
emanating from points equidistant from Q travel the same distance before
reaching P and hence they all reinforce one another. Now consider the
sgconflary waves. travelling in a direction inclined at an angle 0 with the
dlrect.xon CP. All these secondary waves meet at P on the screen. Let
the dist'ance PP be x. The path difference between tflxe secondary waves
emanating from the points B and A (extremities of a diameter) is AD.

From the A ABD,
AD = dsin 6

- .Arguing.as in Article 9.22, the point P, will be of minimum intensity
if this path difference is equal to integral multiples of A ie.

dsin® = nk )

The point P, will be of maximum intensity if the path difference is

equal to odd multiples of % Le.,
dsing = Zn+rl)A i
; 3 ...(i)

' If P, is a point of minimum intensity, then all the points at the same
fixstance from P as P, and lying on a circle of radius x will be of minimum
intensity. Thus, the diffraction pattern due to a circular aperture consists
of a central bright disc called the Aliry’s disc, surrounded by alternate dark
and bfight concentric rings called the Airy’s rings. The intensity of the
?ark r::gs is zero and that of the bright rings decreases gradually outwards

rom P

' Further, if the collecting lens is very near the slit or when the screen
1s at a large distance from the lens,

. P
sinB = 0 = } ... (iHp)
Also, for the first secondary minimum,
dsin® = A
o -qgot
sin® = 0 = 4 ..(fv)
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From equations (i) and (iv)

S

A
d
or X = y v
where v is the radius of the Airy’s disc. But actually, the radius of the
first dark ring is slightly more than that given by equation (v). According
to Alry, it is given by ‘

_1ap i
d

The discussion of the intensity distribution of the bright and dark
rings is similar to the onc given for a rectangular shit. With increase in
the diameter of the aperture, the radius of the central bright ring decreases.

. Example 9.16. In Fraunhofer diffraction pattern due to a single slit,
the screen is at a distance of 100 cm from the slit and the slit 1s illu-
minated by monochromatic light of wavelength 5893 A. The width of the
slit is 0.1 mun. Calculate the separation between the central muximum il

the first secondary minimum. (Mysore)

For a rectangular slit,
S
' d

f=100cm, A = 5893 A

Here

= 5893 x 10 % cm,

|

d=01mm=00lcmx =7

100 % 5893 x 107* -
= 0.0l = .5893 cm

9.26 FRAUNHOFER DIFFRACTION AT DOUBLE SLIT

In Fig. 9.40, AB and CD are two rectangular slits parallel to one
another and perpendicular to the plane of the paper. The width of each
slit is @ and the width of the opague portion is b. L is a collecting lens
and MN is a screen perpendicular to the plane of the paper. P is a’point
on the screen such that OP is perpendicular to the screen. Let a plane
wavefront be incident on the surface of XY. All the secondary waves trav-
elling in a direction parallel to OP come to focus at P. Therefore, P cor-
responds to the position of the central bright maximum.




10.1 INTRODUCTION

Expgnments on interference aoad diffraction have shown that fight is
a forn of wave motion. These zifects do not tell us about the type o;f
wave motion iLe., whether the light waves are longitudinal or transverseé
oT whﬂeti,}er the vibrations are linear, circuiar or torsional. The phenomenor;
of polarization has helped to esiablish beyond doubt that light waves are
transverse waves.

162 POLARIZATION OF TRANSVERSE WAVES

'Let a rope AB be passed through two parallel slits S, and S The
rope is attached to a fixed point at B [Fig. 10.1(a)]. Hold the end il and

Fig. 10.1

move the rope up and down perpendicular to AB. A wave emerges along
CD and it is due to transverse vibrations parallel to the slit . The slit
S, allows tbe wave to pass through it when it is parallel to S . It is observed
tbat the slit S, does not allow the wave to pass through ilt when it is at
right angles to the slit S, [Fig. 10.1(b)].
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If the end A is moved in a circular manner, the rope will show cir-.
cular motion up to the slit §,. Beyond S, it will show only linear vibrations
parallel to the slit S, because the slit S, will stop the other components.
If §, and §, are at right angles to each other the rope will not show any
vibration beyond S,.

If longitudinal waves are set up by moving the rope forward and
backward along the string, the waves will pass through S, and S, irrespec-
tive of their position.

POLARIZED POLARIZED
4 LIGHT ({\ LIGHT
I
source || S s |
) v

HHEH T
1 RAN U ¥
o

A
Fig. 10.2

A similar phenomenon has been observed in light when it passes
through a tourmaline crystal.

Let light from a source S>fall on a tourmaline crystal A which is
cut parallel to its axis (Fig. 10.2). The crystal A will act as the slit 5.
The light is slightly coloured due to the natural colour of the crystal. On
rotating the crystal A, no remarkable change is noticed. Now place the
crystal B parallel to A.

(1) Rotate hoth the crystals together so that their axes are always par-
allel. No change is observed in the light coming out of B [Fig. 10.2 ()]

(2) Keep the crystal A fixed and rotate the crystal B. The light trans-
mitted through B becomes dimmer and dimmer. When B is af right angles
1o A, no light emerges out of B [Fig. 10.2 (in)].

If the crystal B is further rotated, the intensity of light coming out
of it gradually increases and is maximum again when the two crystals are
parallel.

This experiment shows conclusively that light is not propagated
as longitudinal or compressional waves. {i’ we consider the propagation
of light s a longitudinal wave motion then no extinction of light should
occur when the crystal’ B is rotated.
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It is clear that after passing through the crystal A, the light waves
vibrate only in one direction. Therefore light coming out of the crystal
A is said to be polarized because it has acquired the property of one
sidedness with regard to the direction of the rays. ‘

"This experiment proves that light waves are transverse waves, oth-
erwise light coming out of B could never be extinguished by simply ro-
tating the crystal B.

\./103 PLANE OF POLARIZATION

When ordinary light is passed through a tourmaline crystal, the light
is polarized and vibrations are confined to only one direction perpendicular
to the direction of propagation of light. This is. plane polarized light and

PLANE OF VIBRATION .
G {/ H

¥\ PLANE OF
="~ & POLARIZATION

Fig. 103

it has acquired the property of one sidedness. The plane of polarization
is that plane in which no vibrations ogggﬂ'lhe plane ABCD in Fig. 103
is the plane of polarization. The vibratiofis occur at right angles to the
plane of polarization and the plane in which vibrations occur is known
as plane’ of vibration. The plane EFGH in Fig. 10.3 is the plane of vi-
bration.

Ordinary light from a source has very large number of wavelengths.
Moreover, the vibrations may be linear,
circular or elliptical. From our idea of Y
wave motion, circular or elliptical vi- -
brations consist of two linear vibrations
at right angles to each other and having

a phase difference of 12[-

Therefore any vibration can be
resolved into two component vibrations at
right angles to each other. As light waves
are transverse waves the vibrations can
be resolved into two planes xx’ and »w
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at right angles to each other and also perpendicular to the direction
of propagation of light (Fig. 10.4).

In Fig. 10.5(i), the vibrations of the particles are represented parallel
(arrow heads) and perpendicular to the plane of the paper (dots).

S L T N O B R U
R 2N AR T T T A e {0
- S S
T 2 T T e e LU
(i)

Fig. 10.5

In Fig. (10.3) (ii) the vibrations are shown only parallel to the plane of
the paper. In Fig. (10.5) (iii) the vibrations are represented only perpen-
dicular to the plane of the paper.

\m/AP()LARIZATION BY REFLECTION

Polarization of light by reflection from the surface of glass was dis-
covered by Malus in 1808. He found that polarized light is obtained when
ordinary light is reflected by a plane sheet of glass. Consider the light .
incident along the path AB on the glass surface (Fig. 10.6). Light is

_PLANE POLARIZED
/ LIGHT

TOURMALINE
~ CRYSTAL

Fig. 10.6

reflected along BC. In the path of BC, place a tourmaline crystal and rotate
it slowly. It will be observed that light is completely extinguished only
at one particular angle of incidence. This angle of incidence is equal to -
57.5° for a glass surface and is known as the polarizing angle. Similarly
polarized light by reflection can be produced from water surface also.
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The production of polarized light by glass is explained as follows.
The vibrations of the incident light can be resolved into components
parallel to the glass surface and perpendicular to the glass surface. Light
due to the components parallel to the glass surface is reflected whereas
light due to the components perpendicular to the glass surface is trans-
mitted.

Thus, the light reflected by glass is plane polarized and can be
detected by a tourmaline crystal.

The polarized light has been analysed by using another mirror by
Biot.

10.5 BIOTS POLARISCOPE

It consists of two glass plates M| and M, (Fig. 10.7). The glass plates
are painted black on their back surfaces so as to avoid any reflection and
this also helps in absorbing refracted
light. A beam of unpolarized light
AB is incident at an angle of about
57.5° on the first glass surface at B
and is reflected along BC (Fig.
10.8). This light is again reflected at
57.5° by the second glass plate M,
placed parallel to the first. The glass
‘plate M is known as the polarlzer
and M, as the analyser.

When the upper plate M, is ro-
tated about BC, the intensity of the
reflected beam along CD decreases
and becomes zero for 90° rotation of
M, Remember, the rotation of the
plate M, about BC, keeps the angle
of mc1dence constant and it does not
change with the rotation of M,. Thus
we find that light travelling along

e e BC is plane polarized.

%j : '\;h : irror M_ is rotated
“ '“ hen the mirror M, is rotat.
LY further it is found that the intensity
of CD becomes maximum at 1807,
minimum at 270° and again maxi-
mum at 360°.

Fig. 10.7

The above experiment proves that when light is incident at an angle
¢ .5° on a glass surface, the reflected light consists of waves in which
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the displacements are confined to a certain direction at right angles to the
ray and we get polarized light by reflection.

M.
E””
C "
\\
M2 \\\
3 Ne

. Fig. 10.8
V‘/%RE\VSTER’S LAW

In 1811, Brewster performed a number of experiments to study the
polarization of light by refiection at the surfaces of different media.

He found that ordinary light is completely polarized in the plane of
incidence when it gets reflected from a transparent medium at a particular
angle known as the angle of polarization.

He was able to prove that the tangent of the angle of polarization
is_numerically equal to the refractive index of the medium. Moreover, the
reflected and the refracted rays are perpendicular to each other.

Suppose, unpolarized light is incident at an angle equal to the po-
larizing angle on the glass surface. It is reflected along BC and refracted
along BD (Fig. 10.9).

From Snell’s law
= — (D)
From Brewster’s {aw
W=tani = —— S (1))

Comparing (i) and (ii)

cosi = sinr = cos(g—r)
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. n , T
l=§"r, or I+r ==

N

Asi+r = 125 £ CBD is also equal to g Therefore, the reflected and

the refracted rays are at right angles to each other.

Fig. 109

From Brewster’s law, it is clear that for crown glass of refractive

index 1.52, the value of i is given by
i =tan""'(1.52) or i = 56.7°

However, 57° is an approximate value for the polarizing angle for
ordinary glass. For a refractive index of 1.7 the polarising angle is about
59.5° i.e., the polarizing angle is not widely different for different glasses.

As the refractive index of a substance varies with the wavelength
of the incident light, the polarizing angle will be different for light of dif-
ferent wavelengths. Therefore, polarization will be complete only for light
of a particular wavelength at a time i.e., for monochromatic light.

It is clear that the light vibrating in the plane of incidence is not
reflected along BC [Fig. 10.9). In the reflected beam the vibrations along
BC cannot be observed, whereas vibrations at right angles to the plane
of incidence can contribute for the resultant intensity. Thus, we get plane
polarized light along BC. The refracted ray will have both the vibrations
{?) in the plane of incidence and (ii) at right angles to the plane of in-
cidence. But it is richer in vibrations in the plane of incidence. Hence it
is partially plane-polarized.

10.7 BREWSTER WINDOW

One of the important applications of Brewster’s law and Brew-
ster’s angle is in the design of a glass window that enables 100%
transmissjon of light. Such a type of window is used in lasers and
it is called a Brewster window,
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When an ordinary beam of light is incident normally on a glass win-
dow, about 8% of light is lost by reflection on its two surfaces and about
92% intensity is transmitted. In the case of a gas laser filled with mirrors
outside the windows, light travels through the window about a hundred
times. In this way the intensity of the final beam i§ about
3 x 10~*because (0.92)'® = 3x 10~*. It means the transmitted beam has
practically no intensity.

To overcome this difficulty, the window is tilted so that the light
beam is incident at Brewster’s angle. After about hundred transmissions,
the final beam will be plane polarized.

ZERO

4

. ZERO
4 ’

Fig. 10.10

The light component vibrating at right angles to the plane of inci-
dence is reflected. After about 100 reflections at the Brewster window, the
transmitted beam will have 50% of the intensity of the incident beam and
it will be completely plane polarized. The net effect of this type of ar-
rangement is that half the amount of light intensity has been discarded
and the other half is completely retained. Brewster’s windows are used
in gas lasers.

10.8 POLARIZATION BY REFRACTION

It is found that at a single glass surface or any similar transparent
medium, only a small fraction of the incident light is reflected.

For glass (0 = 1.5) at the polarizing angle, 100% of the light
vibrating parallel to the plane of incidence is transmitted whereas for the
perpendicular vibrations only 85% ‘is transmitted and 15% is reflected.
Therefore, if we use a pile of plates and the beam of ordinary light is
incident at the polarizing angle on the pile of plates, some of the vibrations
perpendicular to the plane of incidence are reflected by the first plate and
the rest are transmitted through it. Wheii this beam of light is refiected
by the second plate, again some of the vibrations perpendicular to the
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plane of incidence are reflected by it and the rest are transmitted. The proc-
éss continues and when the beam has traversed about 15 or 20 plates, the
transmitted light is completely free from the vibrations at right angles to
the plane of incidence and is. having vibrations only in the plane of in-
cidence. Thus, we get plane-polarized light by refraction with the help of
a pile of plates, the vibrations being in the plane of incidence as shown
in Fig. 10.11. ‘

PILE OF PLATES

Fig. 10.11

The pile of plates consists of number of glass plates (microscope
cover slips) and are supported in a tube of suitable size and are inclined
at an angle of 32.5° to the axis of the tube. A beam of monochromatic
light is allowed to fall on the pile of plates at the polarizing angle. The
transmitted light is polarized perpendicular to the plane of incidence and
can be examined by a similar pile of plates which works as an analyser.

Note. (i) If light is polarized perpendicular to the plane of incidence,
it means vibrations are in the plane of incidence.

(#0) If light is polarized in the plane of incidence, it means vibrations
are perpendicular to the plane of incidence.

.9 MALUS LAW

When a beam of light, polarized by reflection at one plane surface
is allowed to fall on the second plane surface at the polarizing angle the
intensity of the twice reflected beam varies with the angle between the
planes of the two surfaces. In the Biot’s polariscope it was found that the
intensity of the twice reflected beam is maximum when the two planes
are parallel and zero when the two planes are at right angles to each’other.
The same is also true for the twice transmitted beam from ‘the polarizer
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and analyser. The law of Malus states that the intensity of the polarized
light_transmitted through the analyser varies as the square of the co-

and the plane of the polarizer, [n the case of the Biot’s polariscope this

angle is between the wo reflecting planes.

The proof of the iaw is based on the fact that any polarized vibration
may be resolved inte two rectarigular components : (i) parallel to the plane
of transmission of the analveer {(fi) at
right angles to it. ' P

N

Let OP = a te the amplitude of the /’f N
vibrations transmitted or reflected by the V4 p
polarizer and 9 is the angle between the ’ N
planes of the polarizer and the analyser |
(Fig. 10.12).

* Resolve OF into two components,
() a cos & along OA and o)
(i) a sin & along OB. Fig. 10.12

Only the a cos O component is transmitted through the analyser.
.. Intensity of the transmitted light through the analyser

E = (acos®) = a’cos’ 0.

But E=4d
where E is the intensity of incident polarized light

& = Ecos’®, and E, o cos* 0

When 8 = 0 ie., the two planes are paraliel

&1
it

E, because cos 0. = 1

When G

% the two planes are at right angles to each other

2
. n
E = E(cosi) = 0.

Example 18.1 [ the plane of vibration of the incident begm makes
an angle of 30° wirh the optic axis, compare the intensities of extraordinary
and ordinary light. ‘

Intensity of the extraordinary ray
I, = A’cos* 8
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Intensity of the ordinary ray

I, = A'sin@
E _ Acos?e _ cos’@
I, A'sin’@ T sim@
Here 6 = 30°
I
E==Et=3
Y

)

l/Ofﬁ’DOUBLE REFRACTION
Ve

Erasmus Bartholinus discovered, in 1669, that when a ray of light
is refracted by a crystal of calcite it gives two refracted “rays. This
phenomenon is called double refraction. Calcite or Iceland spar is crys-
tallised calcium carbonate (Ca CO,) and was found in large quantities in
Iceland as very large transparent crystals. Due to this reason calcite is also
known as Iceland spar. It crystallises in many forms and can be reduced
by cleavage or breakage into a rhombohedron, bounded by six paral-

. M—w\.
lelograms with _angles equal to 102° apd 78° (more accurately 101° 55’

and 78° 5’
JOptic Axis. At two opposite cor-

ners A and H, of the rhombohedron all
the angles of the faces are obtuse [Fig.
10.13 (a)]. These corners A and H are
known as the blunt corners of the crys-
tal. A line drawn through A making

equal angles with ‘each of the three
ehmémmmtic
amﬁmﬁmne
is_also an_optic_axis.} Therefore, optic i
axis is not a line but it is a direction.
Moreover, it is not defined by joining
the two blunt corners. Only in a special
case, when the three edges of the crys-
tal are equal, the line joining the two
blunt corners A and H coincides with
the crystatlographic axis of the crystal
and it gives the direction of the optic
axis [Fig. 10.13 (b)). If a ray of light
is incident along the optic axis or in a
direction parallel to the optic axis, then

Fig. 10.13
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it will not split into two ra)js?hus, the phenomenon of double refrac-
tion is absent when light is allowed to enter the crystal along the optic
axisJ .

The phenomenon of double refraction can be shown with the help
of the following experiment :

Mark an ink dot on a piece of paper. Place a calcite’ crystal over
this dot on the paper. Two images will be observed. Now rotate the crystal

Fig. 10.14

slowly as .shown in Fig. 10.14 (i). Place your eye vertically above the
crystal. It is found that one image remains stationary and the second image
rotates with the rotation of the crystal. The stationary image is known as
the ordinary image while the second one is known as the extraordinary

" image.

When a ray of light AB is incident on the calcite crystal making an
angle of incidence = i, it is refracted along two paths inside the ;rystal,
() along BC making an angle of refraction = r, and (ii) along BD making
‘an angle of refraction = r,. These two rays emerge out along DO and CE
which are parallel [Fig. 10.14 (ii)].
The ordinary ray has a refractive index W, = ::rl and the extraor-
- 1

. sin i . .
dinary ray has a refractive index B o= g It is found that the ordinary
, .
ray obeys the laws of refraction and its refractive index is constant. In
the case of the extraordinary ray, its refractive index varies with the angle

of incidence and it is not fixed.
In the case of calcite i, > p_because r, is less than r, [Fig. 10.14

(i1)). Therefore the velocity of light for the ordinary ray inside the crys-
tal will be less compared to the velocity of light for the extraordinary
ray. In calcite, the extraordinary ray travels faster as compared to the or-
dinary ray. Moreover. the velocity of the extraordinary ray is different in
different directions because its refractive index varies with the angle of
incidence.
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It has been found that bdth the’rays are plane polarized. The
vibrations of the ordinary ray are perpendicular to the principal section
of the crystal while the vibrations of the extraordinary ray are in the plane
of the principal section of the crystal. Thus, the two rays are plane
polarised, their vibrations being at right angles to each other.

Special Cases. (1) It should be remembered that a ray of light is
not split up into ordinary and extraordinary components when it is incident
on calcite parallel to its optic axis. In this case, the ordinary and the
extraofdinary rays travel along the same direction with the same velocity.

(2) When a ray of light is incident perpendicular to the optic axis
on the calorie crystal, the ray of light is not split up into ordinary and
extraordinary components. It means that the ordinary and the extraordinary
rays travel in the same direction but with different velocities.

10.i1 PRINCIPAL SECTION OF THE CRYSTAL

: A plane which contains the optic uxis and is perpendicular to the
opposite faces of the crystal is called the principal section of the crystal.
As a crystal has six faces, therefore, for every point there are three prin-
cipal sections. A principal section a]ways cuts the surface of a calcite crys-
tal in a parallelogram with angles 109° and 71°

10.12 PRINCIPAL PLANE

A plane in the crystal drawn through the optic axis and the ordinary
ray is defined as the principal plane of the ordinary ray, Similarly, a plane
in the crystal drawn through the optic axis and the extraordinary ray is
defined as the principal plane of the extraordinary ray. In general, the two
planes do not coincide. In a particular case, when the plane of incidence
is a principal section then the principal section of the crystal and the

;?ipa] planes of the ordinary and the extraordinary rays coincide.
1

3 NICOL PRISM

It is an optical device used for producing and analysing plane po-
larized light. It was invented by William Nicol, in 1828, who was an expert
in cutting and polishing gems and crystals- We have discussed that when
a beam of light is transmitted through a calcite crystal, it breaks up into
two rays : (1) the ordinary ray which has its vibrations perpendicular to
the principal section of the crystal and (2) the extraordinary ray which
has its vibrations parallel to the principal section.

The nicol prism is made in such a way that it eliminates one of
the two rays by total internal reflection. It is generally found that the or-
dinary ray is eliminated and, only the extraordinary ray is transmitted
through the prism.
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A calcite crystal whose length is three times its breadth is taken. Let
A’BCDEFG’H represent such a crystal having . .
A’ and G” as its blunt corners and A'CG’E is .
one of the principal sections with
ZACG = T0°.

The faces A’BCDand EFG’'H are
ground in such a way that the angle ACG be-
comes = 68° instead of 71n The crystal is
then cut along the plane AKGL as shown in
Fig. 10.15. The two cut surfaces are grounded

and pohshed optically. _ﬂal,and then cemented \ \
together by _Canada balsam whose refractive N ¥

ipdex lies between stween_the refractive indices for ¢ AN 74

_the ordinary and the exgraordinary rays for 8

calcite, /
Refractive index for the ordinary

1= 1.658
——————
Refractive index for Canada balsam

By = L35 Fig. 10.15
~— M

Refractive index for the extraordinary p,. = 1.486
m

A E
/ EXTRA-
/ ORDINARY

ORDINARY

Fig. 10.16

In Fig. 10.16, the section ACGE of the crystal is shown, The diagonal
AC represents the Canada balsam layer in the plane ALGK of Fig. 10.15.

" It is clear that Canada balsam acts as a rarer medium for an ordinary
ray and it acts as a denser medium for the extraordinary ray. Therefore,
when the ordinary ray passes from a portion of the crystal into th_e_ngpr
of Canada 5alsam it passes frqm a denser to a rarer medium. When the
angle of 1nc1dence is greéter than the critical angle, the ray is totally
mtemally reflected and We extraordinary ray is not
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the prism is clear from the following cases :-

afﬁ:_gted and is therefore transmitted through the prism. The working of

(1) Refractive index?)-r ordinary ray w;ith respect to Canada balsam

_ 1658
=K =T550
sing = L _ 1550
T p 1658

8 = 69°

If the angle of incidence for the ordinary ray is more than the critical
angle, it is totally internally reflected and only the extraordinary ray passes
through the nicol prism. Therefore, a ray of unpolarized light on passing
through the nicol prism in this position becomes plane-polarized.

(2) If the angle of incidence is less than the critical angle for the
ordinary ray, it is not reflected and is transmitted through the prism. In
this position both the ordinary and the extraordinary rays are transmitted
through the prism,

(3) The extraordinary ray also has a limit beyond which it is totally
internally reflected by the Canada balsam surface. The refractive index for
the extraordinary ray = 1.486 when the extraordinary ray is travelling at
right angles to the direction of the optic axis. If the extraordinary ray trav-
els along the optic axis, its refractive index is the same as that of the
ordinary ray and it is cqual to 1.658. Therefore, depending upon the di-
rection of propagation of the extraordinary ray W, lies between 1.486 and

1.658. Therefore for a particular case 1, may be more than 1.55 and the

angle of incidence will be more than the critical angle. Then, the extraor-
dinary ray will also be totally internally reflected at the Canada balsam
layer. The sides of the nicol prism are coated with black paint to absorb
the erdinary rays that are reflected towards the sides by the Canada balsam
layer.

(\/‘6{-14 NICOL PRISM AS AN ANALYSER

Nicol prism can be used for the production and detection of plane—i

polarizer light.

When two nicol prisms P, and P, are placed adjacent to each other
as shown in Fig. 10.17 (i), one of them acts as a polarizer and the other
acts as an analyser. Fig. 10.17 (i) shows the position of two parallel nicols

and only the extraordinary ray passés through both the prisms.

If the second prism P, is gradually rotated, the intensity of the

2
extraordinary ray decreases in accordance with Malus Law and when
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the two prisms are crossed [i.e., when they are at right angles to each
other, Fig. 10.16 (ii), then no light comes out of the second prism P. It
means that light coming out of P is plane polarized. When the po-
larized extraordinary ray enters the prism P, in this positions it acts as

POLARIZER Py ANALYSER P2

(i)

Fig. 10.17

an ordinary ray and is totally internally reflected by the Canada balsam
layer and so no light comes out of P,. Therefore, the prism P, produces
plane-polarized- light and the prism P, detects it.

Hence P and P, are called the polarizer and the analyser Tespec-
tively. The combination of P, and P, is called a polariscope.

MS HUYGENS EXPLANATION OF DOUBLE
REFRACTION IN UNIAXIAL CRYSTALS

Huygens explained the phenomenon of double refraction with the
help of his principle of secondary wavelets. A point source of light irr a
double refracting medium is the origin of two wavefronts. For the ordinary
ray, for which the velocity of light is the. same in all directions the wave-
front is spherical. For the extraordinary ray, the velocity varies with the
direction and the wavefront is an ellipsoid of revolution. The velocities
of the ordinary and the extraordinary rays are the same along the
optic axis. : o )
. _Consider a point source of light S in a calcite crys'talt[ﬁg.,;lﬂ.;j;&(g‘)]". S
The’sphere is the wave surfade for the ordinary ray and the ellipsoid is
- the wave surface for the extraoshinary 1ay. The ordinary wave sucface Yk
within the extraordinary wave surface. Such crystals are known as mega-
tive crystals. For crystals like quartz, which are known as positive crystals,




578 Polarization

the extraordinary wave surface lies within the ordinary wave surface
[Fig. 10.18 (b)]. :

NAGATIVE | POSITIVE )
CRYSTAL ! CRYSTAL |
(CALCITE) ! (QUARTZ) |
i |

OPTICI OPTICA
AXIS ¥ AXIS ¥
(@) ®)

Fig. 10.18

(1) For the negative uniaxial crystals, fi; > p.. The velocity of the
extraordinary ray varies as the radius vector of the ellipsoid. It is least
and equal to the velocity of the ordinary ray along the optic axis but it
is maximum at right angles to the direction of the optic axis.

(2) For the positive uniaxial crystals Mg > p, The velocity of the
extraordinary ray is least in a direction at right angles to the optic axis.
It is maximum and is equal to the velocity of the ordinary ray along the
optic axis. Hence, from Huygens’ theory, the wavefronts or surfaces in
uniaxial crystals are a sphere and an ellipsoid and there are two points
where these two wavefronts touch each other. The direction of the line
joining these two points (Where the sphere and the ellipsoid touch each
other) is the optic axis.

10.16 OPTIC AXIS IN THE PLANE OF INCIDENCE AND
INCLINED TO THE CRYSTAL SURFACE

(a) Oblique incidence. AB is the incident plane wavefront of the
rays falling obliquely on the surface MN of the negative crystal. The crys-
tal is cut so that the optic axis is in the plane of incidence and is in the
direction shown in Fig. 10.1Y. O, is the spherical secondary wavefront for
the ordinary ray and E, is the ellipsoidal secondary wavefront for the ex-
traordinary ray. CP is the tangent meeting the spherical wavefront at P
and CQ is the tangent meeting the ellipsoidal wavefront at Q.

According to Huygens’ construction, by the time the incident wave
reaches from B to C, the ordinary ray travels the distance AP and the
extraordinary ray travels the distance AQ. Suppose, the velocity of light
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in air is V and the velocities of light for the ordinary ray along AP and
the extraordinary ray along AQ are V, and V_ respectively. In this case,

AIR
M N

CRYSTAL
/

..(i)

Therefore (7))

BCYV
and | AQ = v L o= % ()

Here, 1 and p are the refractive indices for the ordinary and the

extraordinary rays along AP and AQ respectively. In Fig. 10.19, CP and
CQ are the ordinary and the extraordinary refracted plane wavefronts re-
spectively in the crystal. Therefore, the ordinary and the extraordinary rays
travel with different velocities along different direction. Here, the semi-

major axis of the ellipsoid is BC. and the semi-minor axis is PE, where
£ 0 o
M, 1s the principal refractive index for the extraordinary ray and

Be < B < By

- Note.The direction AE of the extraordinary ray is not perpendicular to the
tangent CQ , whereas the direction AD of the ordinary ray is perpendicular to the
tangent CP.
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and as glass windows in trains and aeroplanes. In aeroplanes, one of the
polaroids is fixed while the other can be rotated to control the amount
of light coming inside.

1030 FRESNEL’S RHOMB

Fresnel constructed a rhomb of glass whose angles are 54° and 126°
as shown in Fig. 10.38, based upon the fact that a phase difference of
% is introduced between the )
component vibrations (parallel
and perpendicular to the plane of
incidence) when light is totally
internally reflected back at glass-
air intzrface when the angle of
incidence is 54°.

A ray of light enters nor-
mally at one end of the rhomb
and is totally internally reflected
at the point B along BC. The an-
gle of incidence at B is 54°,
which is more than the critical -
angle of glass. Let the incident
light be plane polarized and let
the vibrations make an angle of
45° with the plane of incidence.
Its components (i) parallel to the
plane of incidence and (ii) perpendicular to the plane of incidence are
equal. These components after reflection at the point B undergo a phase
T
4
R . A
gora path difference of g s introduced between the components when
the ray BC. is totally internally reflected back along CD. Therefore the
final emergent ray DE has two components, vibrating at right angles to

Fig. 10.39

difference of = or a path difference of % A further phase difference of

each other and they have a path difference of % Therefore, the emergent

light DE is circularly polarized. Fresnel’s rhomb works similar to a quarter
wave plate.
If the light entering the Fresnel’s rhomb is circularly polarized, a fur-

ther path difference of % is introduced between the component vibrations.
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o A
The total path difference between the component vibrations is 2 Therefore

the emergent light is plane polarised and its vibrations make an angle of
45° with the plane of incidence.
When an elliptically polarized light is passed through a Fresnel's

rhomb, a further path difference of % is introduced between the component

vibrations (parallel and perpend'icular to the plane of incidence). The total
— . A
path difference between the component vibrations is 5 and the emergent
light is plane polarized. o
- Thus, Fresnel’s rhomb behaves just similar to a quarter wave plate.

A quarter wave plate is used only for light of a particular wavelength,
whereas a Fresnel’s rthomb can be used for light of all wavelengths.

1031 OPTICAL *ACTIVITY
When a polarizer and an ‘analyser are crossed, no light emerges
out of the analyser [Fig. 10.40 (i)]. When a quartz plate cut with its faces

PLANE POLARIZED N,

, N3
YA, & (X VAN \
VARREZAVA /
POLARIZER ’ 0 ANALYSER
Ny QUARTZ N2

wn

v

AN
L~/ U

(ii)

Fig. 10.40
parallel to the optic axis is introduced between N, and N, such that light
falls normally upon the quartz plate, the light emerges out of N,
[Fig. 10.40 @) ] .

The quartz plate turns the plane of vibration. The plane polarized
light enters the quartz plate and its plane of vibration is gradually rotated
as shown in Fig. 1041. ’

The amount of rotation through which the plane of vibration i$ turned
depends wpon the thickness of the quartz plate and the wavelength of light.
The action of turning the plane of vibration occurs inside the body of the
plate and not on its surface. This phenomenon or the property of rotating
the plane of vibration by certain crystals or substances is known as optical
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activity and the substance is known as an optically active substance. It
has been found that calcite does not produce any change in the plane of
vibration of the plane polarised light. Therefore, it is not optically active.

7] OPTIC AXIS

NN Y. S
MRAR AR 5% 2 ue

Pt LA d o wu .,
VIS P77

¥

Fig. 10.4]

Substances like sugar crystals, sugar solution, turpentine, sodium chlorate
and cinnabar are optically active. Some of the substances rotate the plane
of vibration to the right and they are called dextro-rotatory or right
handed. Right handed rotation means that when the observer is looking
towards light travelling towards him, the plane of vibration is rotated in
a clockwise direction. The substances that rotate the plane of vibration to
the left (anti-clockwise from the point of view of the observer) are known
as laevo-rotatory or left-handed.

It has been found that some quartz crystals are dextro-rotatory while
others are laevorotatory. One is the mirror image of the other in their ori-
entation. The rotation of the plane of vibration in a solution depends upon
the concentration of the optically active substance in the solution. This
helps in finding the amount of cane sugar present in a sample of sugar
solution. .

10.32 FRESNEL’S EXPLANATION OF ROTATION

A linearly poiarized light can be considered as a resultant of two
circularly polarized vibrations rotating in opposite direCtions, with the same
angular velocity. Fresnel assumed that a plane polarized light on entering
a crystal along the optic axis is resolved into two circularly polarized
vibrations rotating in opposite directions with the same angular velocity
or frequency.

In a crystal like calcite, the two circularly polarized vibrations travel
with the same angular velocity.
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In Fig. 1042, OL is the circularly polarised vector rotating in the
anti-clockwise direction and OR is the circularly polarized vector rotating
‘ in the clockwise direction. The resultant
* vector of OR and OL is OA. According to

Fresnel, when lineraly polarised light enters a

crystal of calcite along the optic ‘axis, the cir-

cularly polarized vibrations, rotating in oppo-
site directions, have the same velocity. The
resultant vibration will be along AB. Thus,
crystals like calcite do not rotate the plane of
vibration.

In the case of quartz, the linearly polar-
ized light, on entering the crystal is resolved
into two circularly polarized vibrations rotat-

Y ing in opposite directions. In the case of a

) right-handed optically active crystal, the

Fig. 1042 clockwise rotation travels faster while in a

t left-handed optically active crystal the anti-

‘clockwise rotation travels faster.

Considering a right-handed quartz crystal (Fig. 10.43) the clockwise
component travels a greater angle & than the anticlockwise component
when they emerge out of the crystal. The resultant of these two vectors
OR and OL is along OA’. Therefore, the resultant vibrations are along
A’'B’. Before entering the crystal, the plane of
vibration is along AB and after emerging out

of the crystal it is along A’B’. Therefore, the f\
plane of vibration has rotated through an angle T A
g. The angle, through which the plane of vi- L :
bration is rotated, depends upon the thickness 52 !
of the crystal. R
' Analytical Treatment for Calcite. : o
Circularly polarised light is the resultant of
two rectangular components having a phase ' y
. ST L
difference of 5
For clockwise circular vibrations, e ¢
X, = acosot B
f T asmet Fig. 10.43
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