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Black-body radiation

The subjects for consideration in this chapter are the black-body model, which is of
primary importance in thermal radiation theory and practice, and the fundamental
laws of radiation of such a system. Natural and artificial physical objects, which are
close in their characteristics to black bodies, are considered here. The quantitative
black-body radiation laws and their corollaries are analysed in detail. The notions of
emissivity and absorptivity of physical bodies of grey-body radiation character are
also introduced. The Kirchhoff law, its various forms and corollaries are analysed on
this basis.

6.1 THE IDEAL BLACK-BODY MODEL: HISTORICAL ASPECTS

The ideal black-body notion (hereafter the black-body notion) is of primary impor-
tance in studying thermal radiation and electromagnetic radiation energy transfer in
all wavelength bands. Being an ideal radiation absorber, the black body is used as a
standard with which the absorption of real bodies is compared. As we shall see later,
the black body also emits the maximum amount of radiation and, consequently, it is
used as a standard for comparison with the radiation of real physical bodies. This
notion, introduced by G. Kirchhoff in 1860, is so important that it is actively used in
studying not only the intrinsic thermal radiation of natural media, but also the
radiations caused by different physical nature. Moreover, this notion and its
characteristics are sometimes used in describing and studying artificial, quasi-
deterministic electromagnetic radiation (in radio- and TV-broadcasting and commu-
nications). The emissive properties of a black body are determined by means of
quantum theory and are confirmed by experiment.

The black body is so called because those bodies that absorb incident visible
light well seem black to the human eye. The term is, certainly, purely conventional
and has, basically, historical roots. For example, we can hardly characterize our Sun,
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which is, indeed, almost a black body within a very wide band of electromagnetic
radiation wavelengths, as a black physical object in optics. Though, it is namely the
bright-white sunlight, which represents the equilibrium black-body radiation. In
this sense, we should treat the subjective human recognition of colours extremely
cautiously. So, in the optical band a lot of surfaces really approach an ideal back
body in their ability to absorb radiation (examples of such surfaces are: soot, silicon
carbide, platinum and golden nicllos). However, outside the visible light region, in
the wavelength band of IR thermal radiation and in the radio-frequency bands, the
situation is different. So, the majority of the Earth’s surfaces (the water surface, ice,
land) absorb infrared radiation well, and, for this reason, in the thermal IR band
these physical objects are ideal black bodies. At the same time, in the radio-
frequency band the absorptive properties of the same media differ both from a
black body and from each other, which, generally speaking, just indicates the high
information capacity of microwave remote measurements.

6.1.1 Definition of a black body

A black body is an ideal body which allows the whole of the incident radiation to
pass into itself (without reflecting the energy) and absorbs within itself this whole
incident radiation (without passing on the energy). This property is valid for
radiation corresponding to all wavelengths and to all angles of incidence.
Therefore, the black body is an ideal absorber of incident radiation. All other
qualitative characteristics determining the behaviour of a black body follow from
this definition (see, for example, Siegel and Howell, 1972; Ozisik, 1973).

6.1.2 Properties of a black body

A black body not only absorbs radiation ideally, but possesses other important
properties which will be considered below.

Consider a black body at constant temperature, placed inside a fully insulated
cavity of arbitrary shape, whose walls are also formed by ideal black bodies at
constant temperature, which initially differs from the temperature of the body
inside. After some time the black body and the closed cavity will have a common
equilibrium temperature. Under equilibrium conditions the black body must emit
exactly the same amount of radiation as it absorbs. To prove this, we shall consider
what would happen if the incoming and outgoing radiation energies were not equal.
In this case the temperature of a body placed inside a cavity would begin to increase
or decrease, which would correspond to heat transfer from a cold to a heated body.
But this situation contradicts the second law of thermodynamics (the question is,
certainly, on the stationary state of an object and ambient radiation). Since, by
definition, the black body absorbs a maximum possible amount of radiation that
comes in any direction from a closed cavity at any wavelength, it should also emit a
maximum possible amount of radiation (as an ideal emitter). This situation becomes
clear if we consider any less perfectly absorbing body (a grey body), which should
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emit a lower amount of radiation as compared to the black body, in order that
equilibrium be maintained.

Let us now consider an isothermal closed cavity of arbitrary shape with black
walls. We move the black body inside the cavity into another position and change its
orientation. The black body should keep the same temperature, since the whole
closed system remains isothermal. Therefore, the black body should emit the same
amount of radiation as before. Being at equilibrium, it should receive the same
amount of radiation from the cavity walls. Thus, the total radiation received by
the black body does not depend on its orientation and position inside the cavity;
therefore, the radiation passing through any point inside a cavity does not depend on
its position or on the direction of emission. This implies that the equilibrium thermal
radiation filling a cavity is isotropic (the property of isotropy of black-body
radiation). And, thus, the net radiation flux (see equation (5.7)) through any
plane, placed inside a cavity in any arbitrary manner, will be strictly zero.

Consider now an element of the surface of a black isothermal closed cavity and
the elementary black body inside this cavity. Some part of the surface element’s
radiation falls on a black body at some angle to its surface. All this radiation is
absorbed, by definition. In order that the thermal equilibrium and radiation isotropy
be kept throughout the closed cavity, the radiation emitted by a body in the direction
opposite to the incident beam direction should be equal to the absorbed radiation.
Since the body absorbs maximum radiation from any direction, it should also emit
maximum radiation in any direction. Moreover, since the equilibrium thermal
radiation filling the cavity is isotropic, the radiation absorbed or emitted in any
direction by the ideal black surface encased in the closed cavity, and related to the
unit area of surface projection on a plane normal to the beam direction, should be
equal.

Let us consider a system comprising a black body inside a closed cavity which
is at thermal equilibrium. The wall of the cavity possesses a peculiar property:
it can emit and absorb radiation within a narrow wavelength band only. The
black body, being an ideal energy absorber, absorbs the whole incident radiation
in this wavelength band. In order that the thermal equilibrium be kept in a closed
cavity, the black body should emit radiation within the aforementioned wavelength
band; and this radiation can then be absorbed by the cavity wall, which absorbs in
the given wavelength band only. Since the black body absorbs maximum radiation
in a certain wavelength band, it should emit maximum radiation in the same band.
The black body should also emit maximum radiation at the given wavelength.
Thus, the black body is an ideal emitter at any wavelength. However, this in no
way implies uniformity in the intensity of black-body emission at different wave-
lengths (the ‘white noise’ property). The peculiar spectral (and, accordingly, correla-
tion) properties of black-body radiation could only be revealed by means of
quantum mechanics.

The peculiar properties of a closed cavity have no relation to the black body in
the reasoning given, since the emission properties of a body depend on its nature
only and do not depend on the properties of a cavity. The walls of a cavity can even
be fully reflecting (mirroring).
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If the temperature of a closed cavity changes, then, accordingly, the temperature
of a black body enclosed inside it should also change and become equal to the new
temperature of a cavity (i.e. a fully insulated system should tend to thermodynamic
equilibrium). The system will again become isothermal, and the energy of radiation
absorbed by a black body will again be equal to the energy of radiation emitted by it,
but it will slightly differ in magnitude from the energy corresponding to the former
temperature. Since, by definition, the body absorbs (and, hence, emits) the maximum
radiation corresponding to the given temperature, the characteristics of an enclosing
system have no influence on the emission properties of a black body. Therefore, the
total radiation energy of a black body is a function of its temperature only.

In addition, according to the second law of thermodynamics, energy transfer
from a cold surface to a hot one is impossible without doing some work at a
system. If the energy of radiation emitted by a black body increased with decreasing
temperature, then the reasoning could easily be constructed (see, for example, Siegel
and Howell, 1972), which would lead us to a violation of this law. As an example,
two infinite parallel ideal black plates are usually considered. The upper plate is
maintained at temperature higher than the temperature of the lower plate. If the
energy of emitted radiation decreased with increasing temperature, then the energy
of radiation, emitted by the lower plate per unit time, would be greater than the
energy of radiation emitted by the upper plate per unit time. Since both plates are
black, each of them absorbs the whole radiation emitted by the other plate. For
maintaining the temperatures of plates the energy should be rejected from the upper
plate per unit time and added to the lower plate in the same amount. Thus, it
happens, that the energy transfers from a less heated plate to more heated one
without any external work being done. According to the second law of thermody-
namics, this situation is impossible. Therefore, the energy of radiation emitted by a
black body, should increase with temperature. On the basis of these considerations
we come to the conclusion, that the total energy of radiation emitted by a black body
is proportional to a monotonously increasing function of thermodynamic tempera-
ture only.

All the reasoning we set forth above proceeding from thermodynamic considera-
tions represents quite important, but, nevertheless, only qualitative, laws of black-
body radiation. As was ascertained, classical thermodynamics is not capable of
formulating the quantitative laws of black-body radiation in principle.

6.1.3 Historical aspects

Until the middle of the nineteenth century a great volume of diverse experimental
data on the radiation of heated bodies was accumulated. The time had come to
comprehend the data theoretically. And it was Kirchhoff who took two important
steps in this direction. At the first step Kirchhoff, together with Bunsen, established
the fact that a quite specific spectrum (the set of wavelengths, or frequencies) of the
light emitted and absorbed by a substance corresponds to that particular substance.
This discovery served as a basis for the spectral analysis of substances. The second
step consisted in finding the conditions, under which the radiation spectrum of
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Figure 6.1. Classic experimental model of black-body source.

heated bodies depends only on their temperature and does not depend on the
chemical composition of the emitting substance. Kirchhoff considered theoretically
the radiation inside a closed cavity in a rigid body, whose walls possess some par-
ticular temperature. In such a cavity the walls emit as much energy as they absorb. It
was found that under these conditions the energy distribution in the radiation
spectrum does not depend on the material the walls are made of. Such a radiation
was called ‘absolutely (or ideally) black’.

For a long time, however, black-body radiation was, so to speak, a ‘thing-
in-itself’. Only 35 years later, in 1895, W. Wien and O. Lummer suggested the
development of a test model of an ideal black body to verify Kirchhoff’s theory
experimentally. This model was manufactured as a hollow sphere with internal
reflecting walls and a narrow hole in the wall, the hole diameter being small as
compared to the sphere diameter. The authors proposed to investigate the
spectrum of radiation issuing through this hole (Figure 6.1). Any light beam
undergoes multiple reflections inside a cavity and, actually, cannot exit through
the hole. At the same time, if the walls are at a high temperature the hole will
brightly shine (if the process occurs in the optical band) owing to the electromagnetic
radiation issuing from inside the cavity. It was this particular test model of a black
body on which the experimental investigations to verify thermal radiation laws were
carried out, and, first of all, the fundamental spectral dependence of black-body
radiation on frequency and temperature (the Planck formula) was established quan-
titatively. The success of these experimental (and, a little bit later, theoretical)
quantum-approach-based investigations was so significant that for a long time, up
until now, this famous reflecting cavity has been considered in general physics
textbooks as a unique black-body example. And, thus, some illusion of black
body exclusiveness with respect to natural objects arises. In reality, however (as
we well know both from the radio-astronomical and remote sensing data, and
from the data of physical (laboratory) experiments), the natural world around us,
is virtually saturated with physical objects which are very close to black-body models
in their characteristics.

First of all, we should mention here the cosmic microwave background (CMB) of
the universe — the fluctuation electromagnetic radiation that fills the part of the
universe known to us. The radiation possesses nearly isotropic spatial-angular
field with an intensity that can be characterized by the radiobrightness temperature
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of 2.73 K. The microwave background is, in essence, some kind of ‘absolute ether at
rest’ that physicists intensively sought at the beginning of the twentieth century. A
small dipole component in the spatial-angular field of the microwave background
allowed the researchers to determine, to a surprising accuracy, the direction and
velocity of motion of the solar system. The contribution of the microwave back-
ground as a re-reflected radiation should certainly be taken into account in
performing fine investigations of the emissive characteristics of terrestrial surfaces
from spacecraft.

The second (but not less important) source of black-body radiation is the star
nearest to the Earth — the Sun (see section 1.4). The direct radar experiments,
performed in the 1950s and 1960s, have indicated a complete absence of a radio-
echo (within the limits of the receiving equipment capability) within the wide wave-
length band — in centimetre, millimetre and decimetre ranges. Detailed spectral
studies of solar radiation in the optical and IR bands have indicated the presence
of thermal black-body radiation with a brightness temperature of 5800 K at the Sun.
In other bands of the electromagnetic field the situation is essentially more compli-
cated — along with black-body radiation there exist powerful, non-stationary quasi-
noise radiations (flares, storms), which are described, nevertheless, in thermal
radiation terms.

The third space object is our home planet, — the Earth, which possesses radiation
close to black-body radiation with a thermodynamic temperature of 287 K. The
basic radiation energy is concentrated in the 812 micrometre band, in which
almost all terrestrial surfaces possess black-body radiation properties. Just that
small portion of radiation energy which falls in the radio-frequency band is of
interest for microwave sensing. The detailed characteristics of radiation from
terrestrial surfaces in this band have shown serious distinctions of many terrestrial
media from the black-body model.

In experimental measurements of the radiation properties of real physical bodies
it is necessary to have an ideally black surface or a black emitter as a standard. Since
ideal black sources do not exist, some special technological approaches are applied to
develop a realistic black-body model. So, in optics these models represent hollow
metal cylinders having a small orifice and cone at the end, which are immersed in a
thermostat with fixed (or reconstructed) temperature (Siegel and Howell, 1972). In
the radio-frequency band segments of waveguides or coaxial lines, filled with
absorbing substance (such as carbon-containing fillers), are applied. Multilayer
absorbing covers, which are widely used in the military-technological area (for
instance, Stealth technology), are applied as standard black surfaces in this band.
It is clear, that objects covered with such an absorbing coat are strong emitters of the
fluctuation electromagnetic field. It is important also to note that in the radio-
frequency band a closed space with well-absorbing walls (such as a concrete with
various fillers) represents a black-body cavity to a good approximation. For these
reasons the performance of fine radiothermal investigations in closed rooms
(indoors) makes no sense. (Of interest is the fact that it was in a closed laboratory
room that in 1888 Hertz managed to measure for the first time the wavelength of
electromagnetic radiation.)
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6.2 BLACK-BODY RADIATION LAWS

But now we return to the quantitative laws of black-body radiation. The general
thermodynamic considerations allowed Kirchhoff, Boltzmann and Wien to derive
rigorously a series of important laws controlling the emission of heated bodies.
However, these general considerations were insufficient for deriving a particular
law of energy distribution in the ideal black-body radiation spectrum. It was
W. Wien who advanced in this direction more than the others. In 1893 he spread
the notions of temperature and entropy to thermal radiation and showed, that the
maximum radiation in the black-body spectrum displaces to the side of shorter
wavelengths with increasing temperature (the Wien displacement law); and at a
given frequency the radiation intensity can depend on temperature only, as the
parameter appeared in the (v/T) ratio. In other words, the spectral intensity
should depend on some function f(v/T). The particular form of this function has
remained unknown.

In 1896, proceeding from classical concepts, Wien derived the law of energy
distribution in the black-body spectrum (the Wien radiation law). However, as
was soon made clear, the formula of Wien’s radiation law was correct only in the
case of short (in relation to the intensity maximum) waves. Nevertheless, these two
laws of Wien have played a considerable part in the development of quantum theory
(the Nobel Prize, 1911).

J. Rayleigh (1900) and J. Jeans (1905) derived the spectral distribution of
thermal radiation on the basis of the assumption that the classical idea on the
uniform distribution of energy is valid. However, the temperature and frequency
dependencies obtained basically differed from Wien’s relationships.

According to the results of fairly accurate measurements, carried out before that
time, and to some theoretical investigations, Wien’s expression for spectral energy
distribution was invalid at high temperatures and long wavelengths. This circum-
stance forced Planck to turn to consideration of harmonic oscillators, which have
been taken as the sources and absorbers of radiation energy. Using some further
assumptions on the mean energy of oscillators, Planck derived Wien’s and the
Rayleigh—Jeans’ laws of radiation. Finally, Planck obtained the empirical
equation, which very soon was reliably confirmed experimentally on the basis, first
of all, of the Wien—Lummer black-body model. Searching for the theory modifica-
tions which would allow this empirical equation to be derived, Planck arrived at the
assumptions constituting the quantum theory basis (the Nobel Prize, 1918).

6.2.1 The Planck law (formula)

According to quantum statistics principles, the spectral volume density of radiation
energy can be determined (see relation (5.10)) by calculating the equilibrium dis-
tribution of photons, for which the radiation field entropy is maximum, and taking
into consideration that the photon energy with frequency v is equal to /v, where & is
the Planck constant (Table A.4). If the radiation field is considered to be a gas
obeying the Einstein—Bose statistics, then we obtain the Planck formula for the
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volume density of radiation (see, for example, Schilling, 1972; Amit and Verbin,
1999):
8mhv? 1

& [exp (hv/kT) — 1]

where k is the Boltzmann constant (Table A.4).

Apart from a rigorous quantum derivation of Planck’s formula, there exists a
spectrum of heuristic approaches (see, for example, Penner, 1959).

From the remote sensing point of view, of principal significance is the other
radiation field characteristic, namely, the spectral radiation intensity, which is
measured at once by remote sensing devices. With allowance for relation (5.12),
the spectral intensity of black-body radiation into the transparent medium with
refractive index n will be specified by the following expression:

2hn? 1
3 lexp (hwv/kT) — 1]

u,(T)dv = dv, (6.1)

L(T,v) = (6.2)
It can easily be seen from this relation that the black-body radiation into the
transparent medium is »n° times greater than when emitting into a vacuum (the
Clausius law).

In many practical applications in determining the spectral intensity of radiation
the wavelength is used instead of frequency. It is impossible to transfer from
frequency to wavelength by simply replacing the frequency with the wavelength in
expression (6.2), because this expression includes the differential quantity. However,
this expression can be transformed taking into account that the energy of radiation,
emitted within the frequency band dv, that includes frequency v, is equal to the
energy of radiation, emitted within the wavelength band dX that includes the

working wavelength A,
L(T.v)ldv| = 1,(T, \)[dA| (6.3)

The wavelength depends on the medium, in which the radiation propagates (see
section 1.6). Subscript 0 denotes that the considered medium is the vacuum. At the
same time, the electromagnetic radiation frequency does not depend on the medium.
The frequency and wavelength in a transparent dielectric medium () are related by
the equation:

o
v=-1 (6.4)
Supposing the refractive index of a transparent medium to be independent of the
frequency, we shall obtain, after appropriate differentiation, the expression of
Planck’s formula for the intensity of black-body radiation into the transparent
medium, expressed in terms of the wavelength in a medium, as:

2he] 1

L(T,\) = 2N [exp (heo/nAKT) — 1]

(6.5)

In the SI system the intensity, presented in such a form, is measured in W/(m3 Sr).
Often, in the IR band especially, the wavelength is measured in micrometres; then the
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dimension of radiation intensity will be W/(m? sr pum). However, it is convenient to
use the frequency presentation of Planck’s formula (6.2) in the cases where the
radiation propagates from one medium into another, since in this case the
frequency remains constant and the wavelength changes.

In many practical applications (remote sensing, heat transfer, radio-astronomy)
of interest is the surface density (per unit of the surface) of a spectral flux of black-
body radiation determined in the form of equation (5.5) and (5.9). Substituting the
spectral density value from (6.5), we have

C 1

T) = 6.6
) = a3 lexp (Co/nAT) — 1] (6.6)

where the quantities
C, = 27hc}; Cy = % (6.7)

were called the first and second radiation constants (see Table A.4).

Note that ¢,(7T') represents the amount of radiation energy emitted by the unit
area of the black-body surface at temperature 7' per unit time, in the wavelength
band unit, in all directions within the limits of the hemispherical solid angle. In the
SI system this quantity is measured in W/m®, and if the wavelength is measured
in micrometres then this quantity is measured in W/(m2 um).

Figure 6.2 presents the spectral distribution of the surface density of a mono-
chromatic black-body radiation flux ¢,(7'), calculated by formula (6.6) for n = 1. In
order to understand better the implication of this equation, Figure 6.2 gives the
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Figure 6.2. Hemispherical spectral radiation flux of black bodies for some values of
temperatures versus wavelengths. Black-body temperatures are shown by figures next to the
curves. Positions of spectral radiation flux maxima are shown by a dotted line.
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wavelength dependencies of hemispherical spectral surface density of radiation flux
for several values of absolute temperature. A peculiarity of Planck’s curves is the
increase of the energy of radiation, corresponding to all wavelengths, with increasing
temperature. As was shown in section 6.1, qualitative thermodynamic considerations
and everyday experience indicate that the energy of total radiation (including all
wavelengths) should increase with temperature. It also follows from Figure 6.2 that
this conclusion is also valid for the energy of radiation corresponding to each wave-
length. Another peculiarity is the displacement of maxima of the spectral surface
density of radiation flux to the side of shorter wavelengths with increasing tempera-
ture. The cross-sections of the plot in Figure 6.2 at fixed wavelengths, which
determine the radiation energy as a function of temperature, allow us to state that
the energy of radiation, emitted at the short-wave extremity of the spectrum,
increases with temperature faster than the energy of radiation corresponding to
greater wavelengths. Figure 6.2 indicates the position of the wavelength band in
the visible spectrum region. For a body at temperature of 555K only a very small
fraction of energy falls on the visible spectrum range, which is virtually imperceptible
by the human eye. Since the curves at lower temperatures are dropping from the red
section toward the violet extremity of the spectrum, then, at first, the red light
becomes visible with increasing temperature (the so-called Driper point, correspond-
ing to 525°C). At sufficiently high temperature the emitted light becomes white and
consists of a set of all wavelengths of the visible spectrum. The radiation spectrum of
the Sun is similar to the radiation spectrum of a black body at a temperature of
5800 K, and a considerable portion of released energy falls on the visible spectrum
range. (This type of radiation is sometimes called ‘white’ noise — as we see, quite
wrongly.) More likely, owing to very long biological evolution, the human eye
became most sensitive precisely in the spectrum region with maximum energy.

Equation (6.6) can be presented in a more convenient form that allows us to
avoid constructing the curves for each value of temperature; for this purpose
equation (6.6) is divided by temperature to the fifth power:

s wL(T,N) G |
(TN = = = G Texp (G AT — 11 (6

This equation determines quantity ¢,(7,\)/T" as a function of single variable AT
The plot of such a dependence is presented in Figure 6.3; it substitutes a set of curves
in Figure 6.2.

The Planck law for energy distribution in the black-body spectrum gives a
maximum value of the intensity of radiation that can be emitted by any body at
the given temperature and wavelength. This intensity plays a part of an optimum
standard, with which the characteristics of real surfaces can be compared.

But, more simply, approximate forms of the Planck law are sometimes applied.
However, it is necessary to bear in mind that they can be used only in that range,
where they provide acceptable accuracy.
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Figure 6.3. Hemispherical of black-body spectral radiation flux distribution versus
generalized coordinates.

6.2.2 The Wien radiation law
If the term exp (C,/AT) > 1, then equation (6.8) is reduced to the expression
I/\(T7 A) Cl

TS 2(AT)  exp (Cy/AT) (69)

which is known as the Wien radiation law. For the values of AT < 3000 um K this
formula gives an error within the limits of 1%.

6.2.3 The Rayleigh—Jeans radiation law

Another approximate expression can be obtained by expanding the denominator in
equation (6.8) into the Taylor series. If AT is essentially greater than C,, then the
series can be restricted by the second term of expansion, and equation (6.8) takes the
form:

LT _ ¢ 1
> aC (ATt

(6.10)

This equation is known as the Rayleigh—Jeans radiation law. This formula gives an
error within the limits of 1% for the values of AT > 7.8 x 10° um K. These values are
outside the range usually considered in IR thermal radiation, but they are of
principal importance for the radio-frequency band. The frequency presentation of
the Planck formula is usually applied in this band, and then the Rayleigh—Jeans law
takes the widely used form:
2 2
IV(T,V):ZLI/IICT:%I’!]CT. (6.11)
0

2
0}
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6.2.4 The Wien displacement law

Another quantity of interest, which relates to the black-body radiation spectrum, is
the wavelength J,,, to which corresponds the maximum of surface density of an
emitted energy flux. As is shown by the dotted curve in Figure 6.2, this maximum
displaces to the side of shorter wavelengths as the temperature increases. Quantity
A, can be found by differentiating the Planck function from equation (2.12) and by
equating the obtained expression to zero. As a result, the transcendental equation is
obtained

C, 1

5 1—exp(=Cy/\, T)’

AT = (6.12)

whose solution is as follows:
AT = C; (6.13)

and represents one of expressions of the Wien displacement law. The values of
constant Cj are given in Table A.4. According to equation (6.13), as the temperature
increases, the maxima of surface density of the radiation flux and its intensity
displace to the side of shorter wavelengths in inverse proportion to 7. If we
consider the black-body radiation into a transparent medium (with refractive
index n), then the Wien law takes the form of

M T = Cs, (6.14)

where A, , is the wavelength corresponding to the maximum of radiation in the
transparent medium.

Of interest is the fact that the substitution of the wavelength from the Wien
displacement law (6.13) into equation (6.8) results in the following expression:

G

(T, ) =T 7C3[exp (C>/Cs) — 1]

(6.15)

It follows from this relation, that the maximum value of radiation intensity increases
in proportion to temperature to the fifth power. Generally speaking, it is this relation
that was obtained by Wien in 1893.

It can easily be seen from the expression obtained that the maximum of spectral
intensity of the microwave background of the universe at radiation temperature of
2.73 K will be approximately equal to 1 mm.

6.2.5 The Stefan—Boltzmann law

Integrating ¢,(7T) over all wavelengths from zero to infinity (or, accordingly, ¢,(7T)
in the frequency presentation), we obtain by means of expressions for determinate
integrals (Gradshteyn and Ryzhik, 2000) the surface density of the total black-body
radiation flux ¢(T) as:

o) =] i |

{o.¢] o0

q,(T,v) dVZ?TJ I(T,v)dv = n*oT, (6.16)
0
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where the Stefan—Boltzmann constant o is equal (see Table A.4) to:

514
o= 1257;—%];3. (6.17)
Similar expressions can also be obtained for the total radiation intensity:
I(T) = J:ol,,(T, u)du:n2%T4 (6.18)
and for the total volume density of radiation (for vacuum):
u= J:C u,(T,v)dv = aT*, (6.19)

where « is called the radiation density constant (see Table A.4).

Let us consider now the instructive example, associated with the relation of the
amount of energy, emitted from the unit of black body’s surface into vacuum within
the whole frequency band and in the radio-frequency band separately. Using
relations (6.16), we obtain the total power, emitted by a black body from 1 square
metre at room temperature (300K), which is equal to 450 W. Now, using the
Rayleigh—Jeans law (6.11), we obtain the expression for the Stefan—Boltzmann law
in the long-wavelength approximation, as follows:

o(T) =3~ TV, (6.20)
%

From this expression we can easily obtain the estimate for the total power emitted by
a black body from 1 square metre at 7'= 300K throughout the radio-frequency
band from zero frequency up to 10" Hz (the wavelength is 3mm). It is equal to
107*W. Thus, the amount of energy falling on the whole radio-frequency band is
1077 times lower than the total power of black-body radiation. In this case an even
smaller part (107°) of the total power will fall on the whole, for example, centimetre
band. And, in spite of such small values of radiation power in the radio-frequency
band, modern microwave remote radio systems successfully record such low levels of
a thermal signal (see Chapter 3).

6.2.6 Correlation properties of black-body radiation

From the viewpoint of the theory of random processes (Chapter 2), the spectral
volume density of radiation energy u, (v) represents a spectral density of fluctuating
strengths E(¢) and H(t) of the thermal radiation field. This can easily be seen, taking
into consideration relations (1.17), (2.27), (5.13). In each of the planar waves into
which this field can be decomposed, the relation between the vectors of running
planar waves is given by expression (1.11), all directions of strengths being equiprob-
able. As a result of small transformations in (1.17), it can be seen that the electric and
magnetic energies are equal, and £ and H components in any arbitrary direction
have identical correlation functions but are not correlated among themselves. Thus,
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the correlation properties can be considered with respect to any component of the
electromagnetic field strength.

Let us find the correlation coefficient corresponding to the spectral density (6.1),
i.e. the quantity

R = o), (621)
where 5 [
B, (1) = - Jo u,(T,v)cos2mvdv (6.22)

Substituting here expression (6.1) for the spectral density and calculating the
integral, we obtain (Rytov, 1966):

33 2 15 d°
R, (1) ls[sh“ﬁ ﬁ3+sh2ﬁ} > 45
where L(() = cthf — (1/4) is the Langevin function, and 8 = 2x°kT/h (shx, cthx
are hyperbolic sine and cotangent).

The form of the correlation coefficient from the temporary lag is shown in
Figure 6.4 and, as should be expected, it certainly does not look like the delta-
function. First of all, we note that for (=1.37 (which corresponds to
7o = h/27wkT) the positive correlation is changed to a negative one. This implies
that for temporary shifts 7 < 7, the values of component E,(¢) in some fixed
direction p will more frequently have at instants ¢ and ¢ 4+ 7 the same sign, and for
T > 7y the opposite sign. The temporary lag 7, can be put in correspondence to the
spatial correlation radius )\, = ¢y, which to an accuracy of numerical coefficient
coincides with the wavelength A\, = 0.2(hc/kT) in the Wien displacement law.
From the comparison of these expressions we can obtain the following important
relation:

L(5), (6.23)

Ao = 0.35),,. (6.24)

05

Figure 6.4. Correlation coefficient of spectral black-body radiant energy density versus

T
generalized lag 8 = 27° kh—T
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It can easily be found from this relation that the spatial correlation radius of the
microwave background of the universe equals a quite macroscopic value, namely,
Ao = 0.35mm. It is interesting to mention, that earlier (in 1971) it was proposed to
measure the velocity of solar system motion relative to the microwave (‘absolute
ether at rest’) background by recording the variable part of the interferogram (in
other words, the correlation coefficient (6.24)) just at the place where it changes its
sign (near ) (Soglasnova and Sholomitskii, 1971).

At spatial distances greater than (4-5))\, the correlation sharply drops, and the
statistical process of emission at such scales can be represented as a non-correlated
random (white) noise. Generally speaking, it is this circumstance which is often used
in analysing thermal radiation.

6.3 THE KIRCHHOFF LAW

As we have noted above (Chapter 4), the fluctuation—dissipation theorem, which
represents one of the fundamental laws of statistical physics, establishes for an
arbitrary dissipative physical system the relationship between the spectral density
of spontaneous equilibrium fluctuations and its nonequilibrium properties and, in
particular, the energy dissipation in a system. For the wave field of an absorbing
half-space, i.e. for the field of radiation which can be recorded by an external
(relative to the emitting medium) instrument, the solution of the fluctuation electro-
dynamic problem directly results in the Kirchhoff law in the form of (4.20).

Before describing the properties of non-black physical bodies, it is useful to
introduce the definitions of emissive ability and absorbing ability and also to
consider the Kirchhoff law forms that are often used for analysing the emitting
half-space (i.e. when there are two material media with a sharp boundary between
them), as well as for analysing the radiation transfer processes in a transparent
infinite medium (the atmosphere). In the first case (the planar version) the
measuring instrument is inside one of media and measures the radiation of the
other one. In the second case (the solid version) the instrument is directly inside
the medium, whose radiation it just measures. Below we shall consider the first
version in detail. As far as the solid (three-dimensional) version is concerned, we
shall postpone the detailed study of radiation transfer processes for this version until
Chapter 9.

6.3.1 Emissive ability

This characteristic, which is sometimes called the emissivity, indicates what portion
of black-body radiation energy constitutes the radiation energy of a given body. The
emissive ability of a real physical body depends on such factors as its temperature, its
physical and chemical composition, its intrinsic geometrical structure, its degree of
surface roughness, the wavelength to which the emitted radiation corresponds, and
the angle at which the radiation is emitted. For remote microwave sensing problems
it is necessary to know the emissive ability both in any required direction (the



218 Black-body radiation [Ch. 6

angular characteristics) and at various wavelengths (the spectral characteristics). In
this case the degree of remote information capacity of angular and spectral char-
acteristics is strongly distinguished, generally speaking, depending on the type of a
physical object under study. This radiation characteristic is called the directional
emissive ability (or the directional emissivity).

In calculating a body’s total energy losses through radiation (as in heat-and-
power engineering problems) it is necessary to know the radiation energy in all
directions and, for this reason, the emissivity, averaged over all directions and wave-
lengths, is used in such calculations. For calculating a complicated heat exchange
through radiation between surfaces, the emissivities can be required, which are
averaged only over the wavelengths and not over the directions. So, the researcher
should possess the emissivity values, averaged in different ways, and they should be
obtained, most frequently, from the available experimental data.

In this book we shall keep to the definition of directional spectral emissivity. If
necessary, this emissivity can then be averaged over the wavelengths and the
directions, and, finally, over wavelengths and directions simultaneously. Averaged
over the wavelengths, they are called total (integral) quantities, and the quantities
averaged over the directions are called hemispherical quantities (Siegel and Howell,
1972).

Recalling the definitions of spectral intensity of emission from the unit of a
physical body’s surface (see section 5.1), we shall define the directional emissivity
as the ratio of the spectral intensity of a real surface 1,(r,{, T,...), which depends
on body’s temperature, physical and chemical composition, intrinsic geometrical
structure and degree of surface roughness, as well as on the observation angle and
working wavelength (frequency), to the black-body intensity I,z(v, T) at the same
temperature and at the same wavelength (frequency) (6.2):

L, T,v,Q,...)

K, (6, T,0,Q,...) = La(T.0)

(6.25)
This expression for emissivity is most general, since it includes the dependencies on
the wavelength, direction and temperature. The total and hemispherical character-
istics can be obtained by appropriate integration (Siegel and Howell, 1972).

As far as the volumetric version is concerned, here we should note that the
directional spectral emissivity of a unit homogeneous volume of the medium is
equal to the ratio of intensity of radiation, emitted by this volume in the given
direction, to the intensity of radiation emitted by a black body at the same tempera-
ture and wavelength.

6.3.2 Absorbing ability

The absorbing ability of a body is the ratio of the radiation flux absorbed by the
body to the radiation flux falling (incident) on the body. The incident radiation
possesses the properties inherent in a particular power source. The spectral distribu-
tion of the incident radiation energy does not depend on temperature or on the
physical nature of an absorbing surface (so long as the radiation, emitted by the
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surface, is not partially reflected back onto this surface). In this connection, in
defining the absorbing ability (as compared to emissivity), additional difficulties
arise, which are related to the necessity of taking into account the directional and
spectral characteristics of incident radiation.

By the directional spectral absorptivity a(r,Q, T, ...) we shall mean the ratio of
the spectral intensity of absorbed radiation 7,,(r, Q, v, T,...) to the spectral intensity
of incident radiation at the given wavelength and from the given direction
Loy(r,Q v, T,...):

L,r,T,v,Q,...)

TvQ .. )= .
o(n T 0, Q) Lot T,0,9,..)

(6.26)

In addition to the incident radiation dependence on the wavelength and
direction, the directional spectral absorptivity is also a function of temperature,
physical and physico-chemical properties of an absorbing surface.

6.3.3 The Kirchhoff law forms

This law establishes the relation between the abilities of emitting and absorbing the
electromagnetic energy by any physical body. This law can be presented, to an equal
degree of certainty, in terms of spectral, integral, directional or hemispherical quan-
tities. In the case of microwave sensing it is expedient for us to dwell on the direc-
tional properties. From equations (5.1) and (6.25), the energy of radiation, emitted
by a surface element from dA4 in the frequency band dv, within the limits of solid
angle d©2 and during time d¢, is equal to

dE, =k, (r, T,v,Q,.. ), 3(T,v)dA cos §dQdvdr. (6.27)

If we assume the element dA4 at temperature 7 to be inside the isothermal, ideally
black, closed cavity, also at temperature 7, then the intensity of radiation, falling on
the element d4 in the direction Q, will be equal to 1,5(T, v) (remember the property
of isotropy of radiation intensity of an ideal black cavity) (section 6.1). For main-
taining the isotropy of radiation inside an ideal black closed cavity, the fluxes of
absorbed and emitted radiation, determined by equations (6.26) and (6.27), should
be equal and, therefore, the following relation should be met:

K, (0, T,0,Q,..) = a,(r, T,v,Q,...). (6.28)

Equality (6.28) sets the relationship between the fundamental properties of
physical substances and is valid, without limitations, for all media in a state of
thermodynamic equilibrium. It represents the most general form of the Kirchhoff
law. It is just this form of the law that was presented by G. Kirchhoff in his famous
work published in 1860 (see Schopf (1978) for more details).

The following important corollary follows from (6.28). Since in its physical sense
quantity « is always less than unity, the emissive ability of any physical body is
concluded between zero and unity, i.e. 0 < x < 1. This characteristic is used very
widely in microwave sensing, since it allows us to estimate and compare the emission
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properties of investigated substances without resorting to the measurement of
radiation energy values.

Another formulation of Kirchhoff’s law, also set forth by him, is also possible.
The ratio of the radiation intensity of a physical body, heated up to temperature 7,
to its absorptivity is a universal function of temperature and frequency, which does
not depend on the physical and geometrical properties of a body. Proceeding from
(6.25), (6.26) and (6.28), we have:

L, T,v,Q,...)

T e ). (6.29)

Kirchhoff himself considered the finding of an explicit form of this universal function
to be ‘the problem of fundamental importance’ for physics (Schopf, 1978).

One further form of Kirchhoff’s law is used in microwave sensing (and we shall
use it later). It follows from the relations presented above:

L, T,,Q,...) = k(r, T,v,Q, .. )T, v). (6.30)

As we have seen, in section 1.4, electromagnetic waves propagate in free space,
where there exist two components of a wave, which oscillate at right angles with
respect to each other and with respect to the wave propagation direction. In the
particular case of equilibrium thermal radiation these two components of polariza-
tion are equal. Strictly speaking, relations (6.28)—(6.31) are fulfilled for each polar-
ization component, and, in order that they be valid for the total incident radiation,
the radiation should have equal polarization components. Thus, the original equi-
librium radiation is non-polarized (which, however, is invalid for grey bodies) (see
Chapter 7).

The Kirchhoff law was proved for the case of thermodynamic equilibrium in an
isothermal closed cavity and, hence, it is strictly valid only in the absence of a
resulting thermal flux directed towards the surface or away from it. Under real
conditions, as a rule, there exists a resulting flux of electromagnetic radiation, so
that relations (6.28) and (6.30) are approximate, strictly speaking. The validity of this
approximation is confirmed by reliable experimental data, according to which in the
majority of practical cases the ambient radiation field does not have any significant
influence on the values of emissive and absorbing abilities. Another confirmation of
this approximation is a substance’s ability to be at the state of local thermodynamic
equilibrium (section 4.4), in which the set of energy states during absorption and
emission processes corresponds, to a very close approximation, to their equilibrium
distributions (corresponding to the local temperature in this case). Thus, the
spreading of Kirchhoff’s law to natural nonequilibrium systems is not the result of
simple thermodynamic considerations, but, most likely, it is a result of the physical
nature of substances. Owing to this circumstance, in the majority of cases the
substance is capable of independently maintaining a local thermodynamic equilib-
rium and, thus, to possesses ‘independence’ of its properties from the ambient
radiation field.

In conclusion, we note that, as astrophysical investigations have shown, the
Kirchhoff law can actually also be applied in cases where the radiation is not in
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full equilibrium with the substance, and its distribution over frequencies essentially
differs from Planck’s one. However, the Kirchhoff law is not applicable in cases
where thermodynamic equilibrium conditions are strongly violated (nuclear explo-
sions, shock waves, the interplanetary medium). This law is not suitable for deter-
mining the emissivities of sources of non-thermal radiation (synchrotron, maser
radiation, thunderstorm activity) and sources of quasi-deterministic radiation
(radio- and TV-broadcasting, communications).






