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Abstract The present study pertains to the estimation problem for the parameters and reliability characteristics 

of the exponentiated inverted Weibull (𝐸𝐼𝑊) distribution under progressively type-II censoring scheme, where 

the units/ items are removed randomly during the experiments. The number of units/ items removed at each 

failure follows a Binomial probability law. For this purpose, maximum likelihood and Bayes estimators of 

exponentiated inverted Weibull distribution have been obtained. Bayesian procedure has been considered under 

the symmetric and asymmetric loss functions, while the model parameter follows the gamma prior distribution. 

Furthermore, a Monte Carlo simulation study is carried out to compare the performance of proposed estimators 

with corresponding maximum likelihood estimators (MLEs) in terms of their simulated risks. 

 

Keywords Bayes estimator; LINEX loss function; Maximum likelihood; MCMC Method; Reliability function; 

Squared error loss function; Progressive type-II censoring scheme; Hazard function. 

1. Introduction 

The two-parameter exponentiated inverted Weibull (𝐸𝐼𝑊) distribution has been proposed by Flaih et. al. [1]. 

The probability density function (pdf) of this model is given by, 

𝑓(𝑥|𝜃, 𝛽) = 𝜃𝛽𝑥−(𝛽+1) (𝑒−𝑥−𝛽
)

𝜃

;   𝑥 > 0; 𝜃 > 0, 𝛽 > 0              (1) 

and distribution function is of the form 

𝐹(𝑥|𝜃, 𝛽) = (𝑒−𝑥−𝛽
)

𝜃

;   𝑥 > 0                (2) 

Here, 𝜃 and 𝛽 both are shape parameters. The reliability (i.e., the probability of failure after time 𝑡) and hazard 

function (instantaneous failure rate) for model (1) with two shape parameters 𝜃 and 𝛽 are given by, 

𝑅(𝑡|𝜃, 𝛽) = 1 − (𝑒−𝑡−𝛽
)

𝜃

;   𝑡 > 0               (3) 

and 

𝐻(𝑡|𝜃, 𝛽) =
𝜃𝛽𝑡−(𝛽+1)(𝑒−𝑡−𝛽

)
𝜃

1−(𝑒−𝑡−𝛽
)

𝜃 ;   𝑡 > 0               (4) 

It may note here that the above equation reduces to the standard inverted Weibull (𝐼𝑊) distribution for 𝜃 = 1 

and also for the second parameter 𝛽 = 1 , it represents the exponentiated standard inverted exponential 

distribution. Hence, the exponentiated inverted Weibull (𝐸𝐼𝑊) distribution is nothing but a generalization of the 

exponentiated inverted exponential distribution as well as the inverted Weibull distribution. This new 

distribution also have some physical importance, as if there are 𝑚-components in a parallel system and the 

lifetimes of these components are independents and identically distributed (𝑖. 𝑖. 𝑑. ) as exponentiated inverted 

Weibull distribution. Then, the system lifetime variable has also exponentiated inverted Weibull distribution. 
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In lifetime scenario, it is often difficult to observe all the units/items of the experiment due to some specific or 

unspecific reasons like time and cost constraints. So, in this situation, we can remove some units from the 

experiment while they are still alive i.e, one can call it as censored data. In survival and reliability studies, we 

usually deal with these censored data. The type-I and type-II are the two most common and popular censoring 

schemes which is widely used in the fields of survival and reliability studies. In type-I censoring schemes, the 

experimental time is fixed but the number of observed failure is a random variable while in type-II censoring 

schemes, number of observed failure is fixed but the experimental time is a random variable, but none of these 

censoring schemes have discussed the importance of removals of the units/items occurs during the experiment 

due to some other uncontrolled causes. To overcome from this difficulty, a new censoring schemes is introduced 

besides the above two schemes, which is progressively type-I and progressively type-II censoring schemes, 

which allow the removals of the experimental units during the experiment. Here in this paper, we emphasise 

only on progressive type-II censoring scheme, which may be describes as follows: Suppose, we have 𝑛 

experimental units are put on test at time 0 and going to observe 𝑚 failure units during the experiment. The 

experiment proceeds in such a way that when first failure 𝑋1 is observed, 𝑅1 of the surviving units are randomly 

selected from remaining (𝑛 − 1) surviving units and then removed i.e, we get 𝑅1 removals from the experiment. 

And immediate after the second failure 𝑋2 is obtained, again, 𝑅2 of the surviving units are randomly selected 

from remaining (𝑛 − 𝑅1 − 2) surviving units and removed i.e, 𝑅2 removals obtained. This procedure continues 

untill the 𝑚𝑡ℎ failures obtained. Then, at this instance, the experiment terminates and remaining 𝑅𝑚 = 𝑛 − 𝑅1 −

𝑅2 − 𝑅3−. . . −𝑅𝑚−1 − 𝑚 surviving units are randomly removed from the experiment. If theses removals 𝑅1 =

𝑅2 = 𝑅3 =. . . 𝑅𝑚−1 = 𝑅𝑚 = 0, then 𝑚 = 𝑛, which correspond to complete sample situation and if 𝑅1 = 𝑅2 =

𝑅3. . . = 𝑅𝑚−1 = 0 , then 𝑅𝑚 = 𝑛 − 𝑚 , which is simply conventional type-II censoring scheme. Thus, the 

progressive type-II censoring scheme is the generalization of type-II censoring schemes. Statistical inferences 

based on estimation of parameters for different lifetime models under progressive type-II censoring scheme 

have been studied by several authors such as Cohen [7], Mann [9], Child and Balakrishnan [6], and 

Balakrishnan and Aggrawala [3] and so on. Note that in these schemes, the removals 𝑅1, 𝑅2, 𝑅3, . . ., are pre-

fixed. However, in some practical situations, the number of removals may occur at random, see, Tse et. al. [15], 

Wu and Chang [16], Yuen and Tse [17] etc. For example, Consider a doctor perform an experiment with n 

cancer patients but after the death of the first patient, some patient leave the experiment and go for treatment to 

other doctor/hospital. Similarly, after the second death a few more leave and so on. Finally, the doctor stops 

taking observation as soon as the predetermined numbers of deaths (say, m) are recorded. 

An important element, in point estimation problem, is the specification of the loss function. The most popular 

loss function used in the estimation problem is the quadratic or squared error loss function (SELF), which can be 

easily justified on the grounds of minimum variance-unbiased estimation. However, the weakness of this loss 

function is that it is symmetric and gives an equal weight to the overestimation and underestimation of the same 

magnitude. But, in some real situations, overestimation can lead to more severe or less severe consequences than 

underestimation, or vice versa. For example, in the estimation of reliability and failure rate functions, an 

overestimation is usually much more serious than an underestimation. Subsequently, the use of an asymmetrical 

loss function, which associates greater importance to overestimation or underestimation, can be considered for 

the estimation of the parameters. Also, use of symmetric loss function may be inappropriate as has been 

recognized by Canfield [4] and Varian [18]. Thus, a number of asymmetric loss functions are available in the 

statistical literature, and one of the most widely used asymmetric loss function is the LINEX (linear - 

exponential) loss function, originally proposed by Varian [18] and popularized by Zellner [19], which has been 

found to be appropriate in the situation where overestimation is more serious than underestimation or vice-versa. 

Let, 

𝛥 = (�̂� − 𝜃) 

Where �̂� is an estimate of 𝜃. LINEX loss function may be expressed as, 

𝐿(𝛥) ∝ (𝑒𝛿𝛥 − 𝛿𝛥 − 1);     𝛿 ≠ 0               (5) 
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Where 𝛿  is the loss parameter which reflects the direction and degree of asymmetry. The loss parameter 𝛿 

allows different shapes of this loss function. If 𝛿 > 0, then the LINEX loss function is quite asymmetric about 

zero with overestimation being more costly than underestimation and vice-versa. For 𝛿 close to zero, the LINEX 

loss function is approximately squared error loss and therefore almost symmetric. Several authors have used this 

loss function in various estimation and prediction problems. Using this loss function, the posterior expectation 

of the LINEX loss function (5) is, 

𝐸𝜃[𝐿(�̂� − 𝜃)] ∝ 𝑒𝛿�̂�𝐸𝜃[𝑒−𝛿𝜃] − 𝛿(�̂� − 𝐸𝜃[𝜃]) − 1              (6) 

Where, 𝐸𝜋(·) denotes the posterior expectations with respect to posterior density of 𝜃. By a result of Zellner 

[19], the (unique) Bayes estimator of parameter𝜃, which is denoted by �̂�𝐵𝐿 under the LINEX loss function, is the 

value which minimizes (6). It is given by, 

�̂�𝐵𝐿 = −
1

𝛿
log (𝐸𝜃 [𝑒−𝛿𝜃|𝑥

∼
])                (7) 

provided that the expectation 𝐸𝜃 [𝑒−𝛿𝜃|𝑥
∼

] exists and is finite. The Bayes estimate of 𝜃  under SELF is the 

posterior mean of 𝜃. 

The main objective of this paper is to derive the estimates of the unknown parameters and reliability 

characteristics under Bayesian and non-Bayesian paradigm based on progressively type-II censoring scheme. 

These estimates are obtained for informative prior under two loss functions namely; squared error loss function 

and LINEX loss function receptively. It may be noted here that the estimates obtained are not in nice close 

forms and they can be analysed by any numerical integration technique. Here, we used MCMC technique to 

solve the integration involve in explicit equations. Also, we compare the MLEs with corresponding Bayes’ 

estimators under the assumption of independent gamma prior of the unknown parameters by Monte-Carlo 

simulations. The rest of the paper is organized as follows: the maximum likelihood estimators (MLEs) of the 

parameters and reliability characteristics are obtained in section  2 . In section  3 , we have obtained Bayes 

estimators for unknown parameters of the (𝐸𝐼𝑊) distribution under progressively type-II censoring scheme. 

The estimates are obtained based on the squared error loss function (SELF) and LINEX loss functions. The risk 

of estimates has been obtained. The comparison of Bayes estimator and correspond MLE under both loss 

functions in term of their simulated risks (average loss over sample space) have been studied in section 4. 

Finally, conclusions are presented in section 5. 

 

2. Maximum Likelihood Estimation (MLE) 

In this section, we discussed the maximum likelihood estimates (MLE’s) of the parameters and reliability 

characteristics of exponential inverted Weibull (𝐸𝐼𝑊) distribution. Suppose, we have 𝑛 identical items put on 

test. Let 𝑋1:𝑚:𝑛, 𝑋2:𝑚:𝑛, . . . , 𝑋𝑚:𝑚:𝑛  be progressive type-II censored samples of size 𝑚  from a continuous 

distribution with distribution function (2) and density function (1) with 𝑅1, 𝑅2, 𝑅3, . . . , 𝑅𝑚  removals. For 

simplicity of notation, we will use 𝑥𝑖  instead of 𝑋𝑖:𝑚:𝑛 , with i=1,2,...,m. For progressive censoring with 

predetermined number of removals 𝑅 = (𝑅1 = 𝑟1, 𝑅2 = 𝑟2, 𝑅3 = 𝑟3, . . . , 𝑅𝑚−1 = 𝑟𝑚−1, 𝑅𝑚 = 𝑟𝑚) . Then, the 

likelihood function based on all 𝑚 progressively type-II censored samples is given by (see, Cohen [7] and 

Balakrishnan and Aggrawala [3]), 

𝐿1(𝑥; 𝜃, 𝛽/𝑅 = 𝑟) = 𝐶 ∏ 𝑓𝑚
𝑖=1 (𝑥𝑖/𝜃, 𝛽)[1 − 𝐹(𝑥𝑖/𝜃, 𝛽)]𝑅𝑖              (8) 

where C is a constant and expressed as, 

𝐶 = 𝑛(𝑛 − 𝑅1 − 1)(𝑛 − 𝑅1 − 𝑅2 − 2)(𝑛 − 𝑅1 − 𝑅2 − 𝑅3 − 3). . . (𝑛 − 𝑅1 − 𝑅2 − 𝑅3−. . . −𝑅𝑚−1 − 𝑚 + 1) 

and 0 < 𝑅𝑖 < (𝑛 − 𝑚 − 𝑅1 − 𝑅2 − 𝑅3−. . . 𝑅𝑖−1) for i=1,2,3,...,m-1. 

Now, substituting (1) and (2) in equation (8), we get 

𝐿1(𝑥; 𝜃, 𝛽/𝑅 = 𝑟) = 𝐶𝜃𝑚𝛽𝑚𝑒−𝜃 ∑ 𝑥𝑖
−𝛽𝑚

𝑖=1 ∏ (𝑥𝑖
−(𝛽+1)

)𝑚
𝑖=1 ∏ [1 − 𝑒−𝜃𝑥𝑖

−𝛽

]
𝑅𝑖

𝑚
𝑖=1                       (9) 

Here, it may be noted that the removals at each stage of the experiment is not fix i.e, 𝑅𝑖 is a random variable and 

assume to be follows a Binomial law with specified probability p. Therefore, the probability of 𝑅𝑖 removals after 

the 𝑖𝑡ℎ failure occurs, that is, 
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𝑃(𝑅1 = 𝑟1; 𝑝) = (𝑛−𝑚
𝑟1

) 𝑝𝑟1(1 − 𝑝)𝑛−𝑚−𝑟1              (10) 

and for i = 2, 3,..., m-1, 

𝑃(𝑅𝑖 = 𝑟𝑖/𝑅𝑖−1 = 𝑟𝑖−1. . . 𝑅1 = 𝑟1) = (𝑛−𝑚−∑𝑖−1
𝑗=1

𝑟𝑖
) 𝑝𝑟𝑖(1 − 𝑝)𝑛−𝑚−∑ 𝑟𝑗

𝑖−1
𝑗=1          (11) 

Now, further we assume that the removals 𝑅𝑖 occurs is independent of 𝑋𝑖′𝑠 for all i. Then, the joint likelihood 

function of all 𝑋 = (𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑚) and 𝑅 = (𝑅1, 𝑅2, 𝑅3, . . . , 𝑅𝑚) may be written as, 

𝐿(𝑥, 𝑟; 𝜃, 𝛽, 𝑝) = 𝐿1(𝑥; 𝜃, 𝛽/𝑅 = 𝑟)𝑃(𝑅 = 𝑟, 𝑝)            (12) 

Where, 
𝑃(𝑅 = 𝑟; 𝑝) = 𝑃(𝑅𝑚−1 = 𝑟𝑚−1/𝑅𝑚−2 = 𝑟𝑚−2, . . , 𝑅1 = 𝑟1)

  × (𝑅𝑚−2 = 𝑟𝑚−2/𝑅𝑚−3 = 𝑟𝑚−3, . . , 𝑅1 = 𝑟1)

    . . .× 𝑃(𝑅2 = 𝑟2/𝑅1 = 𝑟1)

=
(𝑛−𝑚)!

(𝑛−𝑚−∑ 𝑟𝑗
𝑖−1
𝑗=1 )! ∏ 𝑟𝑗

𝑚−1
𝑗=1

𝑝∑ 𝑟𝑗
𝑚−1
𝑗=1 (1 − 𝑝)(𝑚−1)(𝑛−𝑚)−∑ (𝑚−𝑗)𝑚−1

𝑗=1 𝑟𝑗

         (13) 

Now, using (9), (12) and (13), we can write the combined likelihood function in the following form, 

𝐿(𝑥, 𝑟; 𝜃, 𝛽, 𝑝) ∝ 𝜃𝑚𝛽𝑚𝑒−𝜃 ∑ 𝑥𝑖
−𝛽𝑚

𝑖=1 ∏ (𝑥𝑖
−(𝛽+1)

)𝑚
𝑖=1 ∏ [1 − 𝑒−𝜃𝑥𝑖

−𝛽

]
𝑅𝑖

𝑚
𝑖=1 𝑝∑ 𝑟𝑗

𝑚−1
𝑗=1 (1 −

𝑝)(𝑚−1)(𝑛−𝑚)−∑ (𝑚−𝑗)𝑚−1
𝑗=1 𝑟𝑗                (14) 

Then, log-likelihood (LogL=l) function can be written as, 

𝑙 = 𝑙𝑜𝑔𝐿 ∝ 𝑚ln𝜃 + 𝑚ln𝛽 − (𝛽 + 1) ∑ ln𝑚
𝑖=1 𝑥𝑖 − 𝜃 ∑ 𝑥𝑖

−𝛽𝑚
𝑖=1 + 𝑅𝑖 ∑ ln𝑚

𝑖=1 [1 − (𝑒−𝑥−𝛽
)

𝜃

]

+ ∑ 𝑟𝑗
𝑚−1
𝑗=1 ln𝑝 + (𝑚 − 1)(𝑛 − 𝑚) − ∑ (𝑚 − 𝑗)𝑚−1

𝑗=1 𝑟𝑗ln(1 − 𝑝)
                (15) 

The MLEs of 𝜃 and 𝛽 can be found by simultaneously solving the following non-linear normal equations which 

are as follows, 

∂𝑙

∂𝜃
=

𝑚

𝜃
− ∑ 𝑥𝑖

−𝛽𝑚
𝑖=1 + ∑ 𝑅𝑖

𝑚
𝑖=1

𝑥𝑖
−𝛽

𝑒
−𝜃𝑥

𝑖
−𝛽

(1−𝑒
−𝜃𝑥

𝑖
−𝛽

)

             (16) 

and 

∂𝑙

∂𝛽
=

𝑚

𝛽
− ∑ ln𝑚

𝑖=1 𝑥𝑖 + 𝜃𝛽 ∑ 𝑅𝑖
𝑚
𝑖=1

𝑥𝑖
−(𝛽+1)

𝑒
−𝜃𝑥

𝑖
−𝛽

(1−𝑒
−𝜃𝑥

𝑖
−𝛽

)

            (17) 

As we can see that the equations (16) and (17) are not in nice closed form, therefore we propose to use the N-R 

method to obtain the MLE’s. If �̂� and �̂� are the MLE’s of the parameters, then by using the invariance property 

of the MLE, the corresponding MLEs of the reliability �̂�𝑀𝐿(𝑡) and hazard function �̂�𝑀𝐿(𝑡) can be obtained by 

replacing 𝜃 by their MLEs in (3) and (4), respectively, 

�̂�𝑀𝐿(𝑡) = 1 − (𝑒−𝑡−�̂�
)

�̂�

               (18) 

�̂�𝑀𝐿(𝑡) =
�̂��̂�𝑡−(�̂�+1)(𝑒−𝑡−�̂�

)

�̂�

1−(𝑒−𝑡−�̂�
)

�̂�
         (19) 

Since, 𝑃(𝑅, 𝑝) does not depend on model parameters 𝜃 and 𝛽. Hence, the MLE of Binomial parameter p can be 

found by maximizing the likelihood function (15) directly. The first order derivative of equation (15) with 

respect to p is, 

∂𝐿

∂𝑝
=

∑ 𝑟𝑗
𝑚−1
𝑗=1

𝑝
−

(𝑚−1)(𝑛−𝑚)−∑ (𝑚−𝑗)𝑚−1
𝑗=1 𝑟𝑗

(1−𝑝)
             (20) 

putting (
∂𝐿

∂𝑝
) = 0 and solving, we get the MLE of p as, 

�̂� =
∑ 𝑟𝑗

𝑚−1
𝑗=1

∑ 𝑟𝑗
𝑚−1
𝑗=1 +∑ (𝑚−𝑗)𝑚−1

𝑗=1 𝑟𝑗
               (21) 
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3. Bayes Estimation 

In this section, we have developed the Bayesian estimation procedure for the parameter𝜃, reliability function 

and hazard function for the considered model based progressively type-II censored data with Binomial removals 

under both symmetric asymmetric loss functions namely, squared error and LINEX loss function. In order to 

obtain Bayes estimators of parameters 𝜃  and 𝛽 , we must assume that the model parameters 𝜃  and 𝛽  are 

randomly distributed. Thus, we need to specify a appropriate prior distribution for parameters. It may be noted 

that there does not exists any conjugate priors for unknown parameters 𝜃 and 𝛽 consequently, we assume it as 

independently distributed. In such a case, there are many ways to choose the appropriate priors. Here, we 

considered independent gamma priors as our appropriate prior with density functions of the following forms for 

the unknown parameters 𝜃 and 𝛽, 

𝑔1(𝜃) ∝ 𝜃𝑎−1𝑒−𝑏𝜃;   𝜃 > 0,   𝑎, 𝑏 > 0            (22) 

𝑔2(𝛽) ∝ 𝛽𝑐−1𝑒−𝑑𝛽;   𝛽 > 0,   𝑐, 𝑑 > 0            (23) 

where a, b, c and d are the hyper-parameters. Here, one can easily see that it covers wide variety of prior 

believes due to its high flexibility in nature and can be considered as suitable prior for 𝜃 and 𝛽. Thus, the joint 

prior distribution of (𝜃, 𝛽) as, 

𝑔(𝜃, 𝛽) = 𝑔1(𝜃)𝑔2(𝛽);   𝜃 > 0, 𝛽 > 0             (24) 

Then, combining the priors given by (24) with the likelihood function given by (14), we can obtain the joint 

posterior distribution of (𝜃, 𝛽) as, 

𝜋 (𝜃, 𝛽/𝑥
∼

, 𝑟) ∝ 𝜃𝑚+𝑎−1𝛽𝑚+𝑐−1𝑒−(𝑏𝜃+𝑑𝛽+𝜃 ∑ 𝑥𝑖
−𝛽𝑚

𝑖=1 ) ∏ 𝑥𝑖
−(𝛽+1)𝑚

𝑖=1 ∏ [1 − 𝑒−𝜃𝑥𝑖
−𝛽

]
𝑅𝑖

𝑚
𝑖=1         (25) 

 

Bayes estimator under squared error loss function(𝑺𝑬𝑳𝑭)  

from (25), the Bayes estimates of 𝜃 and 𝛽 under squared error loss function can be derived as, 

�̂�𝐵𝑆 = 𝐸𝜋 [𝜃|𝑥
∼

, 𝑟] = 𝑘−1 ∫ ∫ 𝜃𝑚+𝑎∞

𝛽=0

∞

𝜃=0
𝛽𝑚+𝑐−1𝜙(𝜃, 𝛽)𝜁(𝜃, 𝛽)𝜓(𝜃, 𝛽)𝑑𝜃𝑑𝛽         (26) 

and 

�̂�𝐵𝑆 = 𝐸𝜋 [𝛽|𝑥
∼

, 𝑟] = 𝑘−1 ∫ ∫ 𝜃𝑚+𝑎−1∞

𝛽=0

∞

𝜃=0
𝛽𝑚+𝑐𝜙(𝜃, 𝛽)𝜁(𝜃, 𝛽)𝜓(𝜃, 𝛽)𝑑𝜃𝑑𝛽         (27) 

respectively. Now, Bayes estimates of the reliability and hazard function based on SELF may be obtained as, 

�̂�(𝑡)𝐵𝑆 = 𝐸𝜋 [𝑅(𝑡)|𝑥
∼

, 𝑟] = 𝑘−1 ∫ ∫ (1 − 𝑒−𝜃𝑡−𝛽
)

∞

𝛽=0

∞

𝜃=0
𝜃𝑚+𝑎−1𝛽𝑚+𝑐−1𝜙(𝜃, 𝛽)𝜁(𝜃, 𝛽)𝜓(𝜃, 𝛽)𝑑𝜃𝑑𝛽  (28) 

and 

�̂�(𝑡)𝐵𝑆 = 𝐸𝜋 [𝐻(𝑡)|𝑥
∼

, 𝑟] = 𝑘−1 ∫ ∫
𝜃𝑚+𝑎𝛽𝑚+𝑐𝑡−(𝛽+1)𝑒−𝜃𝑡−𝛽

𝜙(𝜃,𝛽)𝜁(𝜃,𝛽)𝜓(𝜃,𝛽)

(1−𝑒−𝜃𝑡−𝛽
)

∞

𝛽=0

∞

𝜃=0
𝑑𝜃𝑑𝛽           (29) 

respectively. 

 

Bayes estimator under Linex Loss Function(𝑳𝑳𝑭)  

The Bayes estimates of 𝜃 and 𝛽 under Linex loss function (5) is written as, 

�̂�𝐵𝐿 = −
1

𝛿
ln𝐸𝜋 [𝑒−𝛿𝜃|𝑥

∼
, 𝑟] = −

1

𝛿
ln {𝑘−1 ∫ ∫ 𝑒−𝛿𝜃∞

𝛽=0

∞

𝜃=0
𝜃𝑚+𝑎−1𝛽𝑚+𝑐−1𝜙(𝜃, 𝛽)𝜁(𝜃, 𝛽)𝜓(𝜃, 𝛽)𝑑𝜃𝑑𝛽}  (30) 

and 

�̂�𝐵𝐿 = −
1

𝛿
ln𝐸𝜋 [𝑒−𝛿𝛽|𝑥

∼
, 𝑟] = −

1

𝛿
ln {𝑘−1 ∫ ∫ 𝑒−𝛿𝛽∞

𝛽=0

∞

𝜃=0
𝜃𝑚+𝑎−1𝛽𝑚+𝑐−1𝜙(𝜃, 𝛽)𝜁(𝜃, 𝛽)𝜓(𝜃, 𝛽)𝑑𝜃𝑑𝛽} (31) 

respectively. Now, Bayes estimates of the reliability and hazard function based on Linex loss function can be 

describe as, 

𝑅(𝑡)̂𝐵𝐿 = −
1

𝛿
ln𝐸𝜋 [𝑒−𝛿𝑅(𝑡)|𝑥

∼
, 𝑟]

= −
1

𝛿
ln {𝑘−1 ∫ ∫ 𝑒

−𝛿(1−𝑒−𝜃𝑡−𝛽
)∞

𝛽=0

∞

𝜃=0
𝜃𝑚+𝑎−1𝛽𝑚+𝑐−1𝜙(𝜃, 𝛽)𝜁(𝜃, 𝛽)𝜓(𝜃, 𝛽)𝑑𝜃𝑑𝛽}

    (32) 
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and

�̂�(𝑡)𝐵𝐿 = −
1

𝛿
ln𝐸𝜋 [𝑒−𝛿𝐻(𝑡)|𝑥

∼
, 𝑟]

= −
1

𝛿
ln {𝑘−1 ∫ ∫ [𝑒

−
𝛿𝜃𝛽𝑡−(𝛽+1)𝑒−𝜃𝑡−𝛽

(1−𝑒−𝜃𝑡−𝛽
)

]
∞

𝛽=0

∞

𝜃=0
𝜃𝑚+𝑎−1𝛽𝑚+𝑐−1𝜙(𝜃, 𝛽)𝜁(𝜃, 𝛽)𝜓(𝜃, 𝛽)𝑑𝜃𝑑𝛽}

 (33) 

respectively. 

Where, 

𝑘 = 𝜃𝑚+𝑎−1𝛽𝑚+𝑐−1𝑒−(𝑏𝜃+𝑑𝛽+𝜃 ∑ 𝑥𝑖
−𝛽𝑚

𝑖=1 ) ∏ 𝑥𝑖
−(𝛽+1)𝑚

𝑖=1 ∏ [1 − 𝑒−𝜃𝑥𝑖
−𝛽

]
𝑅𝑖

𝑚
𝑖=1 , 

𝜙 = 𝜙 (𝑒−(𝑏𝜃+𝑑𝛽+𝜃 ∑ 𝑥𝑖
−𝛽𝑚

𝑖=1 )
), 

𝜓 = 𝜓 (∏ [1 − 𝑒−𝜃𝑥𝑖
−𝛽

]
𝑅𝑖

𝑚

𝑖=1

) 

and 𝜁 = 𝜁 (∏ 𝑥𝑖
−(𝛽+1)𝑚

𝑖=1 ) 

As we can observe from the above expressions that the Bayes estimators obtained by using different loss 

function can not be solved analytically since it is not in nice close form. Therefore, one needs to use any 

numerical techniques to solve it. Here, we discuss the use of Gibbs sampling procedure (MCMC) to simulate 

samples from posterior distribution. For more details about this procedure, see Hastings [8] and Smith and 

Robert [14]. In MCMC technique, we have considered the Metropolis-Hastings algorithms to generate samples 

from posterior distributions. The Gibbbs sampling procedure is an algorithms for simulating from the full 

conditional posterior distribution while metropolis-hastings generates samples from an arbitrary proposal 

distribution (see, Metropolis et al. [10]). In order to apply this technique, the full conditional posterior 

distributions of the parameters 𝜃 and 𝛽 can be written as, 

𝜋1 (𝜃|𝛽, 𝑥
∼

, 𝑟) ∝ 𝜃𝑚+𝑎−1𝑒−𝜃(𝑏+∑ 𝑥𝑖
−𝛽𝑚

𝑖=1 ) ∏ [1 − 𝑒−𝜃𝑥𝑖
−𝛽

]
𝑅𝑖

𝑚
𝑖=1            (34) 

𝜋2 (𝛽|𝜃, 𝑥
∼

, 𝑟) ∝ 𝛽𝑚+𝑐−1𝑒−(𝑑𝛽+𝜃 ∑ 𝑥𝑖
−𝛽𝑚

𝑖=1 ) ∏ 𝑥𝑖
−(𝛽+1)𝑚

𝑖=1 ∏ [1 − 𝑒−𝜃𝑥𝑖
−𝛽

]
𝑅𝑖

𝑚
𝑖=1          (35) 

respectively. The following MCMC procedure taken into account to generate posterior samples from the above 

full conditionals. 

• The initial guess of parameters 𝜃 and 𝛽, say (𝜃0, 𝛽0). 

• Start with i=1. 

• Using Metropolis-Hasting algorithm, generate posterior samples (𝜃𝑖 , 𝛽𝑖)  for 𝜃  and 𝛽  from 

𝜋1 (𝜃|𝛽, 𝑥
∼

, 𝑟) and 𝜋2 (𝛽|𝜃, 𝑥
∼

, 𝑟) respectively, where asymptotic normal distribution of full conditional 

densities are considered as proposal distributions. 

• Repeat steps (II)-(III), for all i=1, 2, 3,...,N and obtained (𝜃1, 𝛽1), (𝜃2, 𝛽2),(𝜃3, 𝛽3),...,(𝜃𝑁 , 𝛽𝑁). 

• Now, on the basis of obtained sample in step (IV), compute the Bayes estimates of the parameters 𝜃 

and 𝛽 under different loss functions as, 

 

Under SELF: 

�̂�𝐵𝑆 = 𝐸[𝜃|𝑑𝑎𝑡𝑎] ≈
1

𝑁
∑ 𝜃𝑖

𝑁
𝑖=1 . 

�̂�𝐵𝑆 = 𝐸[𝛽|𝑑𝑎𝑡𝑎] ≈
1

𝑁
∑ 𝛽𝑖

𝑁
𝑖=1 . 

𝑅(𝑡)̂𝐵𝑆 = 𝐸[𝑅(𝑡)|𝑑𝑎𝑡𝑎] ≈
1

𝑁
∑ (1 − 𝑒−𝜃𝑖𝑡−𝛽𝑖)𝑁

𝑖=1 . 

𝐻(𝑡)̂𝐵𝑆 = 𝐸[𝐻(𝑡)|𝑑𝑎𝑡𝑎] ≈
1

𝑁
∑

𝜃𝑖𝛽𝑖𝑡−(𝛽𝑖+1)(𝑒−𝜃𝑖𝑡−𝛽𝑖
)

1−(𝑒−𝜃𝑖𝑡−𝛽𝑖
)

𝑁
𝑖=1 . 

Under Linex loss function: 

�̂�𝐵𝐿 = −
1

𝛿
ln{𝐸[𝜃|𝑑𝑎𝑡𝑎]} ≈ −

1

𝛿
ln {

1

𝑁
∑ 𝑒−𝛿𝜃𝑖𝑁

𝑖=1 }. 
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�̂�𝐵𝐿 = −
1

𝛿
ln{𝐸[𝛽|𝑑𝑎𝑡𝑎]} ≈ −

1

𝛿
ln {

1

𝑁
∑ 𝑒−𝛿𝛽𝑖𝑁

𝑖=1 }. 

𝑅(𝑡)̂𝐵𝐿 = −
1

𝛿
ln{𝐸[𝑅(𝑡)|𝑑𝑎𝑡𝑎]} ≈ −

1

𝛿
ln {

1

𝑁
∑ (1 − 𝑒−𝜃𝑖𝑡−𝛽𝑖 )𝑁

𝑖=1 }. 

𝐻(𝑡)̂𝐵𝐿 = −
1

𝛿
ln{𝐸[𝐻(𝑡)|𝑑𝑎𝑡𝑎]} ≈ −

1

𝛿
ln {

1

𝑁
∑

𝜃𝑖𝛽𝑖𝑡
−(𝛽𝑖+1) (𝑒−𝜃𝑖𝑡−𝛽𝑖)

1 − (𝑒−𝜃𝑖𝑡−𝛽𝑖)

𝑁

𝑖=1

}. 

4. Simulation Study 

In this section, we discuss the comparison study of the performances of the proposed estimators under SELF and 

LINEX loss functions with their corresponding maximum likelihood estimators (MLEs). The comparisons are 

based on the simulated risks (average loss over sample space). It may be mentioned here that the obtained MLEs 

and Bayes estimators under different loss functions are not in closed form. Therefore, N-R method and MCMC 

method have been used to compute these. These calculations are made on the basis of Monte Carlo simulation 

study of 1000 samples. Since, our study comprises the progressively type-II censored sample with Binomial 

removals, we need to simulate progressively type-II censored samples with Binomial removals from specified 

EIW distribution and propose to use of the following algorithms. 

• Specify the value of n and m. 

• Specify the value of parameters 𝜃, 𝛽 and p. 

• Generate random number 𝑅𝑖  using the Binomial law with specified probability i.e., 

𝑅𝑖 ∼ 𝐵(𝑛 − 𝑚 − ∑ 𝑅𝑗
𝑖−1
𝑗=1 , 𝑝), for i=1, 2, 3,...,m-1. 

• Set 𝑅𝑚 according to the following relation: 𝑅𝑚 = {
𝑛 − 𝑚 − ∑ 𝑅𝑗

𝑚−1
𝑗=1 ; 𝑛 − 𝑚 − ∑ 𝑅𝑗

𝑚−1
𝑗=1 > 0

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

• Generate m independent U(0,1) random variables 𝑍1, 𝑍2, 𝑍3, . . . , 𝑍𝑚. 

• For the given values of the progressive type-II censoring schemes 𝑅𝑖 (i=1, 2, 3,...,m). 

set 𝑉𝑖 = 𝑍𝑖

1/(𝑖+𝑅𝑚+...+𝑅𝑚−𝑖+1)
 ((i= 1, 2,...,m). 

• Set 𝑈𝑖 = 1 − 𝑉𝑚𝑉𝑚−1, . . . , 𝑉𝑚−𝑖+1  (i=1,2,...,m), then 𝑈1, 𝑈2, 𝑈3, . . . , 𝑈𝑚  are the progressively type-II 

censored samples with Binomial removals of size m from U(0,1). 

• Finally, for given values of parameters 𝜃 and 𝛽, set 𝑥𝑖 = 𝐹−1(𝑈) (i=1,2,3,...,m). Then, (𝑥1, 𝑥2, . . . , 𝑥𝑚) 

is the required progressive type-II censored samples with Binomial removals of size m from the EIWD. 

Here, we generate random sample of size 20, 30 and 50 from the specific distribution for fixed value of 

𝑝 = 0.4. The values of 𝑚 are chosen such that the sample observations are 60% and 80% censored. 

• Next, the MLEs and Bayes estimators of the parameters 𝜃 and 𝛽 are evaluated. Also, the estimators of 

reliability R(t) and hazard functions H(t) may be obtained for specified time t=2 hrs. respectively. 

• The Bayes estimates are obtained under gamma informative prior using squared error loss function and 

linex loss function. 

• The choice of the hyper parameters may be chosen in such a way that if we consider any two 

independent information as prior mean and variance of 𝜃 and 𝛽 then, the prior mean (say, 𝜈) equals to 

the true value of the parameter with varying prior variance (say, 𝜂). The prior variance indicates the 

confidence of our prior guess. A large prior variance shows less confidence in prior guess and resulting 

prior distribution is relatively flat. On other hand, small prior variance indicates greater confidence in 

prior guess. In our case, we have chosen the prior mean equals to the true value of the parameter as 𝜈 is 

taken as 1.5 and 3.0 for 𝜃 and 𝛽, respectively with a prior variance 𝜂= 0.5 (small) giving (𝑎 = 3.0, 𝑏 =

4.5, 𝑐 = 18, 𝑑 = 6). 

• In order to consider linex loss function, we have taken four choices of loss parameter 𝛿 say, (𝛿 =

0.5,2.0 for over estimation and 𝛿 = −0.5, −2.0 for under estimation). 

• Repeat the above steps 1000 times. Then we obtain the means and mean squared error (MSEs) for 

different sample size n and censoring sizes m. The ML estimates of 𝜃 , 𝛽 , 𝑅(𝑡)  and 𝐻(𝑡)  and 

corresponding Bayes estimates for informative prior are obtained and are summarized in table(1-7). 
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• The estimators �̂�𝑀𝐿 and �̂�𝑀𝐿 represents the maximum likelihood estimators of the parameters 𝜃 and 𝛽 

respectively, while �̂�𝐵𝑆, �̂�𝐵𝑆 and �̂�𝐵𝐿, �̂�𝐵𝐿  are corresponding the Bayes estimators of parameters under 

SELF and Linex loss functions respectively. 

From this extensive study, we may observed that the performances of Bayes estimator of 𝜃, 𝛽, 𝑅(𝑡) and 𝐻(𝑡) 

better than the corresponding MLEs for all considered choices of the censoring parameters. Under linex loss 

function, we noticed that the risk of the Bayes estimators for 𝛿 = 0.5 and 𝛿 = 2 is least as compared to the 

negative values of the delta. We can also conclude that the maximum likelihood estimator is less efficient than 

the Bayes estimator since MLE shows the larger risk in all cases. All computational algorithms are calculated 

with help of R software. 

Table 1: Estimate of θ and their corresponding MSE (in second rows) when p=0.4. 

n m Criteria �̂�𝑴𝑳 �̂�𝑩𝑺 
𝜹=-0.5 𝜹=0.5 𝜹=-2 𝜹=2 

�̂�𝑩𝑳𝟏 �̂�𝑩𝑳𝟐 �̂�𝑩𝑳𝟑 �̂�𝑩𝑳𝟒 

20 

12 
AE 1.6040 1.5491 1.5680 1.5307 1.6295 1.4791 

MSE 0.2297 0.1360 0.1484 0.1255 0.2011 0.1030 

16 
AE 1.6213 1.5645 1.5824 1.5473 1.6424 1.4990 

MSE 0.2287 0.1306 0.1441 0.1193 0.2128 0.0950 

30 

18 
AE 1.5615 1.5364 1.5467 1.5262 1.5783 1.4966 

MSE 0.1175 0.0925 0.0972 0.0882 0.1239 0.0777 

24 
AE 1.5577 1.5323 1.5479 1.5172 1.5982 1.4744 

MSE 0.1162 0.0830 0.0900 0.0773 0.1218 0.0657 

50 

30 
AE 1.5370 1.5256 1.5302 1.5210 1.5442 1.5073 

MSE 0.0728 0.0642 0.0660 0.0625 0.0719 0.0581 

40 
AE 1.5457 1.5330 1.5410 1.5251 1.5656 1.5019 

MSE 0.0623 0.0535 0.0558 0.0514 0.0641 0.0462 

Table 2: Estimate of β and their corresponding MSE (in second rows) when p=0.4. 

n m Criteria �̂�𝑴𝑳 �̂�𝑩𝑺 
𝜹=-0.5 𝜹=0.5 𝜹=-2 𝜹=2 

�̂�𝑩𝑳𝟏 �̂�𝑩𝑳𝟐 �̂�𝑩𝑳𝟑 �̂�𝑩𝑳𝟒 

20 

12 
AE 3.3744 3.1801 3.2126 3.1483 3.3135 3.0559 

MSE 0.8728 0.3323 0.3685 0.3001 0.5050 0.2253 

16 
AE 3.3014 3.1872 3.2092 3.1654 3.2766 3.1012 

MSE 0.5711 0.2998 0.3232 0.2781 0.4050 0.2233 

30 

18 
AE 3.2158 3.1463 3.1620 3.1306 3.2097 3.0843 

MSE 0.4455 0.2854 0.3009 0.2707 0.3533 0.2119 

24 
AE 3.1999 3.1352 3.1524 3.1181 3.2048 3.0675 

MSE 0.3366 0.2138 0.2269 0.2016 0.2723 0.1704 

50 

30 
AE 3.1211 3.1034 3.1089 3.0979 3.1255 3.0814 

MSE 0.2148 0.1865 0.1902 0.1828 0.2018 0.1725 

40 
AE 3.1092 3.0907 3.0973 3.0841 3.1173 3.0643 

MSE 0.1679 0.1434 0.1469 0.1400 0.1581 0.1306 

Table 3: Estimate of reliability function and their corresponding MSE (in second rows) when p=0.4. 

n m Criteria �̂�𝑴𝑳(𝒕) �̂�𝑩𝑺(𝒕) 
𝜹=-0.5 𝜹=0.5 𝜹=-2 𝜹=2 

�̂�𝑩𝑳𝟏(𝒕) �̂�𝑩𝑳𝟐(𝒕) �̂�𝑩𝑳𝟑(𝒕) �̂�𝑩𝑳𝟒(𝒕) 

20 

12 
AE 0.1615 0.1693 0.1695 0.1686 0.1708 0.1673 

MSE 0.2496 0.2413 0.2392 0.2401 0.2380 0.2413 

16 
AE 0.1622 0.1683 0.1665 0.1658 0.1675 0.1649 

MSE 0.2466 0.2406 0.2410 0.2416 0.2401 0.2425 

30 

18 
AE 0.1657 0.1702 0.1687 0.1683 0.1695 0.1676 

MSE 0.2429 0.2385 0.2390 0.2394 0.2383 0.2421 

24 
AE 0.1630 0.1644 0.1668 0.1662 0.1677 0.1653 

MSE 0.2414 0.2330 0.2389 0.2384 0.2381 0.2413 

50 

30 
AE 0.1675 0.1688 0.1682 0.1680 0.1685 0.1677 

MSE 0.2393 0.2322 0.2383 0.2384 0.2380 0.2388 

40 
AE 0.1683 0.1699 0.1691 0.1688 0.1696 0.1684 

MSE 0.2379 0.2324 0.2368 0.2371 0.2364 0.2375 

 



Vishwakarma PK                                     Journal of Scientific and Engineering Research, 2022, 9(2):113-122 

 

Journal of Scientific and Engineering Research 

121 

 

Table 4: Estimate of Hazard function and their corresponding MSE (in second rows) when p=0.4 

n m Criteria �̂�𝑴𝑳(𝒕) �̂�𝑩𝑺(𝒕) 
𝜹=-0.5 𝜹=0.5 𝜹=-2 𝜹=2 

�̂�𝑩𝑳𝟏(𝒕) �̂�𝑩𝑳𝟐(𝒕) �̂�𝑩𝑳𝟑(𝒕) �̂�𝑩𝑳𝟒(𝒕) 

20 

12 
AE 6.2297 5.8215 5.9843 5.6789 6.4733 5.2562 

MSE 4.0952 2.2760 1.9942 1.3144 3.7144 0.8452 

16 
AE 6.0734 5.8217 5.9483 5.7395 6.2733 5.4400 

MSE 2.6490 1.8307 1.6564 1.2113 2.6298 0.8071 

30 

18 
AE 5.9018 5.7405 5.8356 5.6856 6.0648 5.4658 

MSE 2.1241 1.5892 1.5374 1.2362 2.1347 0.9213 

24 
AE 5.8728 5.7618 5.8234 5.6580 6.0786 5.4174 

MSE 1.5871 1.2948 1.1542 0.9004 1.6970 0.6642 

50 

30 
AE 5.7067 5.6662 5.6987 5.6454 5.7788 5.5656 

MSE 1.0309 1.0285 0.9351 0.8613 1.0608 0.7652 

40 
AE 5.6781 5.6380 5.6746 5.6098 5.7721 5.5131 

MSE 0.8027 0.8553 0.7234 0.6545 0.8469 0.5707 

 

5. Concluding remarks 

In this paper, Bayesian and non-Bayesian estimation problems have been considered for the unknown 

parameters, reliability and hazard function of the exponentiated inverted Weibull distribution (𝐸𝐼𝑊𝐷) under the 

progressively type-II censoring scheme with Binomial removals. Since, the maximum likelihood estimator 

obtained is not in nice closed form hence, the N-R method is used to obtain the MLEs. Furthermore, we have 

considered Bayes estimation of the unknown parameters based on different loss functions and it’s expressions 

cannot obtained in explicit form. Therefore, in order to solve this, MCMC technique has been utilised.  

Finally, the Monte Carlo simulation study has been carried out to check the performances of the proposed 

estimators with their corresponding MLEs. On the basis of comparison of simulated risks of estimators, it is 

found that Bayes estimators perform better than maximum likelihood estimation and Bayes estimator under 

LINEX is also more efficient than the Bayes estimator under SELF in most of the situation since, we observed 

that the simulated risks of the Bayes estimators that are obtained based on LINEX loss function are smaller than 

the corresponding risks of the estimators, which are obtained, based on squared error loss function. So, Bayes 

estimate under Linex loss function is preferable to Bayes estimate under squared error loss function or 

asymmetric loss function is more appropriate than the symmetric loss function.  
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