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Abstract. We have investigated inhomogeneous generalization of Bianchi type
VIh string cosmological model for stiff perfect fluid distribution. To obtain the
deterministic solution of Einstein’s field equations, we assume that the isotropic
pressure p is equal to string rest density ρ. Each of the cases 1 + h = 0 and
1 + h 6= 0 gives rise to families of universe. The model obtained is expanding,
shearing and non-rotating universe. Some physical and geometrical features of
the model are also discussed.
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1 Introduction

Present cosmology is very well defined by various Bianchi type cosmologi-
cal models, which are completely homogeneous and anisotropic, but Maccal-
lum [1], Collins and Hawking [2] have emphasized that at early stage of its
evolution, the universe may have been highly inhomogeneous and anisotropic.
It could become homogeneous and isotropic through the cosmological expan-
sion. So construction of exact inhomogeneous generalization of certain Bianchi
type cosmological models is the main issue to study the process of homoge-
nization and isotropization of the universe. Remarkable work has been done in
obtaining various generalize inhomogeneous Bianchi cosmological models. Be-
linskii et al. [3] and Barrow and Tippler [4]. Wainwright et al. [5] have obtained
some exact solutions, which generalize Bianchi type III , V and VIh models for
vacuum and for stiff perfect fluid. Carmeli et al. [6] have constructed new inho-
mogeneous generalizations of Bianchi type III , V and VIh models for vacuum
and for the case in which mass less scalar field is present. Roy and Narain [7]
have derived solutions, which generalize Bianchi type VI0 cosmological models
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for perfect fluid distribution. Roy and Prasad [8] have obtained solutions, which
generalize the Bianchi type VIh cosmological models with perfect fluid. Roy
and Prasad [9] have also derived solutions generalizing the Bianchi type VIh
cosmological models with stiff perfect fluid and radiation.

The large scale distribution of galaxies in our universe show that the material
distribution can satisfactorily distributed by perfect fluid. It is, however, hy-
pothesized that universe might have undergone a series of phase transition after
a big bang explosion. These phase transition produce vacuum domain wall,
strings and monopoles. Among these, cosmic strings play a significant interest
as these act gravitational lenses which give rise to density perturbation leading
to the formation of galaxies. The general relativistic formalism of cosmic string
is due to Latelier [10, 11]. Stachel [12] has developed massless string. Tyagi
et al. [13] have obtained the solutions of field equations for inhomogeneous
Bianchi type VI0 string dust cosmological model of perfect fluid distribution. So
far a considerable amount of work has been done on cosmic strings and string
cosmological models by Krori et al. [14, 15], Tikekar and Patel [16], Bali and
Singh [17].

In this paper, we have investigated inhomogeneous generalization of Bianchi
type VIh string cosmological model for stiff perfect fluid distribution. For the
complete deterministic solution of the Einstein’s field equations, we assume that
the isotropic pressure p is equal to string rest density ρ. We have studied for:
(i) 1 + h 6= 0, β4 6= 0 (but any constant k); (ii) 1 + h 6= 0, β4 = 0; and (iii)
1 + h = 0, β4 6= 0. The various physical and geometrical aspects of the models
are also discussed.

2 Solution of the Field Equations

We take the line element in the form

ds2 = e2α(dx2 − dt2) + eβ+γ+2xdy2 + eβ−γ+2hxdz2 , (1)

where α = α(x, t), β = β(t), and γ = γ(t), h being constant. The universe
described by the line element (1) is filled with co-moving string perfect fluid
satisfying the Einstein’s field equations (in gravitational units 8πG = c = 1).

Rji −
1

2
Rgji = −T ji = −

[
(ρ+ p)viv

j + pgji − λxix
j
]
, (2)

where T ji is the energy-momentum tensor for a cloud of massive strings and
perfect fluid distribution, vi is a unit flow vector and xi satisfies the conditions
viv

i = −xixi = −1, vixi = 0.

Here ρ is the rest energy of the cloud of strings with massive particles attached
to them, p is the pressure and λ – the density of tension that characterizes the
strings. The unit space-like vector xi represents the string direction in the cloud,
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i.e. the direction of anisotropy and the unit time-like vector vi describes the four-
velocity vector of the matter satisfying the following conditions gijvivj = −1.

In the present scenario, the co-moving coordinates are taken as

vi = (0, 0, 0, e−α) , (3)

and choose xi parallel to x-axis so that

xi = (e−α, 0, 0, 0) . (4)

The Einstein field equations ( 2) for the line element (1) lead to the following
system of equations:

e−2α
[
β44 +

3

4
β2
4 +

1

4
γ24 − α4β4 − (1 + h)α1 − h

]
= −p+ λ , (5)

e−2α
[
α44 − α11 +

1

2
(β44 − γ44) +

1

4
(β4 − γ4)2 − h2

]
= −p , (6)

e−2α
[
α44 − α11 +

1

2
(β44 + γ44) +

1

4
(β4 + γ4)2 − 1

]
= −p , (7)

e−2α
[

1

4
(β2

4 − γ24) + α4β4 + (1 + h)α1 − (1 + h+ h2)

]
= ρ . (8)

α1β4 + (1 + h)α4 −
1

2
(1 + h)β4 −

1

2
(1− h)γ4 = 0 . (9)

On subtracting equation (6) from (7), we get

γ44 + β4γ4 = (1− h2) . (10)

On adding equations (6) and (7), we get

e−2α
[
2α44 − 2α11 + β44 +

1

2
β2
4 +

1

2
γ24 − 1− h2

]
= −2p . (11)

Equation (8) together with the stiff fluid equation of state, i.e. ρ = p, imply

e−2α
[1

2
(β2

4 − γ24) + 2α4β4 + 2(1 + h)α1 − 2(1 + h+ h2)
]

= 2p . (12)

From equations (11) and (12), we get[
2α44− 2α11 +β44 +β2

4 + 2α4β4 + 2(1 +h)α1− (3 + 2h+ 3h2)
]

= 0, (13)

The three equations (9), (10) and (13) are in three unknowns α, β, and γ. We
solve them for the following three different cases.
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CASE I: 1 + h 6= 0 and but any constant k.

Equation (9) implies

α = φ+
1

2
β +

1

2

(1− h
1 + h

)
γ , (14)

where α = φ[(1 + h)x− β]. Hence from equations (10), (13) and (14), we get[
k2 − (1 + h)2

]
(φ′′ − φ′ + 1) = 0 .

If [k2 − (1 + h)2] 6= 0, then

φ′′ − φ′ + 1 = 0 , (15)

where a prime (′) denotes differentiation w.r.t. [(1 + h)x− β].

Equation (15) gives

φ = n1 + n2e
[(1+h)x−β] + [(1 + h)x− β] , (16)

where n1 and n2 are constants of integration.

Now taking β4 = k on integration, we get

β = kt+ k1 , (17)

where k1 is constant of integration.

Equation (10) gives on integration

γ = c1 + c2e
−kt +

(1− h2)

k
t , (18)

where c1 and c2 are constants of integration.

φ = n1 + n2e
[(1+h)x−(kt+k1)] + [(1 + h)x− (kt+ k1)] . (19)

Therefore,

α = L1e
[(1+h)x−kt] + L2e

−kt + L3t+ (1 + h)x+ L4 , (20)

where

L1 = n2e
−k ; L2 =

1

2

(1− h)

(1 + h)
c2 ;

L3 =
(1− h)2 − k2

2k
; and L4 = n1 −

k

2
+

1

2

(1− h)

(1 + h)
c1

are new constants.

So the line element (1) becomes in this case
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ds2 = exp
{

2
[
L1e

[(1+h)x−kt] + L2e
−kt + L3t+ (1 + h)x+ L4

]}
× (dx2 − dt2) + exp[c2e

−kt + (L5 + k)t+ L6 + 2x]dy2

+ exp[−c2e−kt + (k − L5)t+ L7 + 2hx]dz2 , (21)

where L5 =
(1− h2)

k
, L6 = k + c1 and L7 = k − c1.

CASE II: 1 + h 6= 0 and β4 = 0.

Equation (10) gives on integration

γ = (1− h2)
t2

2
+ l1t+ l2 . (22)

Taking now β4 = 0 on integration we get

β = l (23)

and hence equation (9) gives

α = (1− h)2
t2

4
+

1

2

(1− h)

(1 + h)
l1t+ L , (24)

L being arbitrary functions of x only and l, l1 and l2 are constants of integration.

Equation (13) determines L as

L = m1 +m2e
(1+h)x + (1 + h)x , (25)

where m1 and m2 are constants of integration.

Therefore,

α = (1− h)2
t2

4
+

1

2

(1− h)

(1 + h)
l1t+m1 +m2e

(1+h)x + (1 + h)x . (26)

So the line element (1) becomes in this case

ds2 = exp 2
{

(1− h)2
t2

4
+

1

2

(1− h
1 + h

)
l1t+m1 +m2e

(1+h)x + (1 + h)x
}

× (dx2 − dt2) + exp
{

(1− h2)
t2

2
+ l1t+ l2 + l + 2x

}
dy2

+ exp
{
−(1− h2)

t2

2
− l1t− l2 + l + 2hx

}
dz2 . (27)
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CASE III: 1 + h = 0 and β4 6= 0.

Equation (9) implies
α =

γ4
β4
x+Q(t) , (28)

where Q is an arbitrary function of t; whereas equation (10) implies

γ4 = s1e
−β , (29)

where s1 is a constant of integration.

From equations (13), (28) and (29), we get

x
[ d2
dt2

(γ4
β4

)
+ β4

d

dt

(γ4
β4

)]
+
[d2Q
dt2

+ β4
dQ

dt
− 2
]

+
β44 + β2

4

2
= 0 , (30)

This implies that
d2

dt2

(
γ4
β4

)
+ β4

d

dt

(
γ4
β4

)
= 0, (31)

From equations (29) and (31), we get

β4 =
s1
a1

exp
[
−
(

1 +
a1
s1

)
β
]
, (32)

expβ =
[s1 + a1

a2
t+ a4

]s1/(s1+a1)
, (33)

and
γ =

a2s1
a1

exp
(a1
s1
β
)

+ a3 . (34)

Again from (30) which implies that[d2Q
dt2

+ β4
dQ

dt
− 2
]

+
β44 + β2

4

2
= 0 . (35)

From equations (33) and (35), we get

Q =
2a2

2s1 + a1

[(s1 + a1
a2

) t2
2

+ a4t
]

− 1

2

( s1
s1 + a1

)
log
[(s1 + a1

a2

)
t+ a4

]
+
a2a5
a1

[(s1 + a1
a2

)
t+ a4

]a1/(s1+a1)
+ a6 . (36)

From equations (28), (29), (32), (33) and (36), we get
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α =
(
a2 +

a2a5
a1

)[(s1 + a1
a2

)
t+ a4

]a1/(s1+a1)
+
( 2a2

2s1 + a1

)[(s1 + a1
a2

) t2
2

+ a4t
]

− 1

2

( s1
s1 + a1

)
log
[(s1 + a1

a2

)
t+ a4

]
+ a6 . (37)

After using suitable coordinate transformations and renaming of constants, the
line element (1) reduces to the form

ds2 = Bt
− s1
s1+a1 exp

[
2(Cx+ C ′)t

a1
s1+a1 + 2

( s1 + a1
2s1 + a1

)
t2
]
(dx2 − dt2)

+ t
s1

s1+a1 exp
(
C ′′t

a1
s1+a1 + 2x

)
dy2

+ t
s1

s1+a1 exp
(
− C ′′t

a1
s1+a1 + 2hx

)
dz2 , (38)

where

B =
(s1 + a1

a2

)− s1
s1+a1 exp

{
2a6 −

2a22a
2
4

(s1 + a1)(2s1 + a1)

}
,

C =
(s1 + a1

a2

) a1
s1+a1 a2 ,

C ′ =
a5a2
a1

(s1 + a1
a2

) a1
s1+a1 , and

C ′′ =
a2s1
a1

(s1 + a1
a2

) a1
s1+a1

are new constants.

3 Physical and Geometrical Properties

The physical and geometrical properties of the model are given as follows:

Case I: Magnitude of rotation ω is zero, i.e

ω = 0 . (39)

The expansion scalar θ of the model is given by

θ =
(−kL1)e(1+h)x−kt − kL2e

−kt + L3 + k

exp[L1e(1+h)x−kt + L2e−kt + L3t+ (1 + h)x+ L4]
. (40)

The shear σ of the model is given by

σ =

√
{2((−kL1)e(1+h)x−kt−kL2e−kt+L3)− k}2+3{−c2ke−kt+L5}2

2
√

3 exp[L1e(1+h)x−kt+L2e−kt+L3t+(1+h)x+L4]
.

(41)
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The pressure p and the rest density ρ of the model are given by

p = ρ

=
e(1+h)x−ktL1{(1+h)2−k2}−L2k

2e−kt− 1
4 (−c2ke−kt + L5)2+L8

exp[2{L1e(1+h)x−kt+L2e−kt+L3t+(1+h)x+L4}]
,

(42)

where L8 =
k2

4
+ L3 + h.

The string tension density λ of the model is given by

λ=
k2 − (1 + h)2

exp[2(L1e(1+h)x−kt + L2e−kt+L3t+(1+h)x+L4)]
(43)

The deceleration parameter q of the model is given by

q= −1−3eα
ekt
[
2(L1e

(1+h)x+L2)− L3

k e
kt
]
−
(
L1e

(1+h)x+L2− L3

k e
kt
)2[

L1e(1+h)x+L2−(L3

k − 1)ekt
]2 .

(44)

Case II: The magnitude of rotation ω is zero, i.e.

ω = 0 . (45)

The expansion scalar θ of the model is given by

θ =
(1− h)2

t

2
+

1

2

(1− h
1 + h

)
l1

exp
[
(1− h)2

t2

4
+

1

2

(1− h
1 + h

)
l1t+m1+m2e(1+h)x+(1 + h)x

] . (46)

The shear σ of the model is given by

σ =

√[
(1− h)2t+

(1− h
1 + h

)
l1

]2
+ 3
[
(1− h2)t+ l1

]2
2
√

3 exp
[
(1−h)2

t2

4
+

1

2

(1−h
1+h

)
l1t+m1+m2e(1+h)x+(1+h)x

] .
(47)

The pressure p and the rest density ρ of the model are given by

p = ρ

=
m2(1 + h)2e(1+h)x − 1

4 [(1− h2)t+ l1]2 + h

exp
{

(1−h)2
t2

2
+
(1−h

1+h

)
l1t+2m1+2m2e(1+h)x+2(1+h)x

} . (48)
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The string tension density λ of the model is given by

λ =
−(1 + h)2

exp
{

(1−h)2
t2

2
+
(1−h

1+h

)
l1t+2m1+2m2e(1+h)x+2(1+h)x

} . (49)

The deceleration parameter q of the model is given by

q = −1− 3eα
[ 2(1 + h)2

{(1− h2)t+ l1}2
− 1
]
. (50)

Case III: The magnitude of rotation ω is zero, i.e

ω = 0 . (51)

The expansion scalar θ of the model is given by

θ =
(R1x+R

′

1)t
− s1
s1+a1 +R2t+R3t

−1

√
Bt

−s1
2(s1+a1) exp

{
(Cx+ C ′)t

a1
s1+a1 +R2t2

} , (52)

where

R1 = a1

(s1 + a1
a2

)−s1/(s1+a1)
,

R′1 = a5

(s1 + a1
a2

)−s1/(s1+a1)
,

R2 =
s1 + a1
2s1 + a1

, and

R3 =
s1

2(s1 + a1)
.

The shear σ of the model is given by

σ =

√
4
[
(R1x+R′1)t

− s1
s1+a1 +R2t−2R3t−1

]2
+ 3
[
R4t
− s1
s1+a1

]2
2
√

3
√
B t

−s1
2(s1+a1) exp

[
(Cx+ C ′)t

a1
s1+a1 +R2t2

] . (53)

The pressure p and the rest density ρ of the model are given by

ρ = p

=
2R3(R1x+R′1)t

− 2s1+a1
s1+a1 −R2

3t
−2− 1

4R
2
4t
− 2s1
s1+a1 +R2R3−1

Bt
−s1
s1+a1 exp

[
2(Cx+ C ′)t

a1
s1+a1 +2R2t2

] . (54)
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The string tension density λ of the model is given by

λ =
2R3(2R3 − 1)

Bt
−s1
s1+a1

+2
exp

[
2(Cx+ C ′)t

a1
s1+a1 + 2R2t2

] . (55)

The deceleration parameter q of the model is given by

q = −1− 3eα

[ (R1x+R′1)
( −s1
s1 + a1

)
t
− 2s1+a1
s1+a1 + 2R2 −R3t

−2[
(R1x+R′1)t

− s1
s1+a1 + 2R2t+R3t−1

]2
− (R1x+R′1)t

− s1
s1+a1 + 2R2T −R3T

−1

(R1x+R′1)T
− s1
s1+a1 + 2R2t+R3t−1

]
. (56)

4 Conclusion

We have investigated inhomogeneous generalization of Bianchi type VIh string
cosmological model for stiff fluid. We have studied for: (i) 1 + h 6= 0, β4 6= 0
(but any constant k); (ii) 1 + h 6= 0, β4 = 0; and (iii) 1 + h = 0, β4 6= 0.

In Case I, the model (21) starts expanding at t = 0. The expansion θ in the
model increases as time increases, i.e. θ → ∞ as t → ∞, when k > 0 and
L3 < 0, however the expansion θ in the model decreases as time increases and
expansion stops at t = ∞, when k > 0 and L3 > 0. For large values of t, the
ratio of the shear σ and expansion θ tends to a finite value, i.e.

σ

θ
=

[
(2L3 − k)

2
+ 3L2

5

] 1
2

2
√

3 (L3 + k)

is a constant. Hence, the model does not approach isotropy for large values of
t. The fluid flow is irrotational, and it is observed that the energy density ρ
and the string tension density λ tend to constant values as t → 0 and x → 0.
At a later stage both ρ and λ approach zero when t → ∞ and x → ∞ as
expected. Therefore, the string will disappear from the universe at a later time.
As t → 0 and x → 0, the deceleration parameter, q, approaches to −1 when
L1 = −L2 and L3 = 0 as in de Sitter universe. Therefore, the model describes
an accelerating phase of the universe. In general the model represents expanding,
shearing and non-rotating universe.

In Case II, the model (27) starts expanding at t = 0 and as t → ∞, θ becomes
zero, i.e. the expansion stops. For large values of t, the ratio of the shear σ and
the expansion θ tends to a finite value, i.e.

σ

θ
=

1√
3

[
1 + 3

(
1 + h

1− h

)2
]
,
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where 1− h 6= 0. Hence, the model does not approach isotropy for large values
of t. The fluid flow is irrotational, and it is observed that the energy density ρ
and the string tension density λ tend to constant values as t → 0 and x → 0.
At a later stage both ρ and λ approach zero when t → ∞ and x → ∞ as
expected. Therefore, the string will disappear from the universe at a later time.
As t→ 0, x→ 0, deceleration parameter q approaches 0 when m1 = −m2 and

h = ± l√
3
− 1, i.e., the universe expands at a constant rate.

When m1 = −m2 and
(1 + h)

2

l2
<

1

3
, the parameter q approaches a value,

greater than zero. Therefore, the model presents a decelerating phase of the
universe;

q < −1 when m1 = −m2 and
(1 + h)

2

l2
>

1

2
, therefore, the model suggests

super-exponential expansion of the universe.

The parameter q = −1 when m1 = −m2 and h = ± l√
2
− 1, i.e. the model

represents exponential expansion of the universe (also known as de Sitter ex-
pansion). In general the model represents expanding, shearing and non-rotating
universe.

In Case-III, the model (38) starts with a big bang at t = 0 when
s1

s1 + a1
< 1

and goes on expanding till t = ∞. When
s1

s1 + a1
< 0 and t → ∞, θ becomes

zero. It is clear that as t increases, the ratio of the shear σ and the expansion θ

tends to a finite value, i.e.
σ

θ
→ 1√

3
as t → ∞ when

s1
s1 + a1

> −1. Hence,

the model does not approach isotropy for large values of t. The fluid flow is
irrotational and it is observed that t→ 0 and x→ 0, the energy density ρ→∞,
when

s1
s1 + a1

< 1 and as t→∞ and x→∞, ρ→ 0 when 0 <
s1

s1 + a1
< 1.

As t → 0 and x → 0, the string tension density λ → ∞ when
s1

s1 + a1
< 1

and as t → ∞ and x → ∞, λ → 0 when
s1

s1 + a1
< 2, therefore, the string

will disappear from the universe at a later time. The deceleration parameter q
approaches to -1 as t→ 0 and

s1
s1 + a1

< 0, as in de Sitter universe. The model

represents accelerating universe. In general the model represents expanding,
shearing and non-rotating universe.
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