Bioremediation of Pollutants

From Genetic Engineering to Genome Engineering

Edited by Vimal Chandra Pandey Vijai Singh

ELSEVIER

Bioremediation of Pollutants

This page intentionally left blank

Bioremediation of Pollutants

From Genetic Engineering to Genome Engineering

Edited by

Vimal Chandra Pandey

Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Vijai Singh

Department of Biosciences, Indrashil University, Rajpur, India

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2020 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-819025-8

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Joe Hayton Acquisitions Editor: Marisa LaFleur Editorial Project Manager: Lena Sparks Production Project Manager: Bharatwaj Varatharajan Cover Designer: Mark Rogers

Typeset by MPS Limited, Chennai, India

Dedication

Dedicated to our beloved families

This page intentionally left blank

Contents

About Forew Prefac	About the editorsxForewordxPrefacexx		xv xix xxi xxi xxiii xxv
Part	I	Phytoremediation	1
	-	premediation—a holistic approach for remediation of heavy	
n	ieta	ls and metalloids	3
S	иту	a Pathak, Aditya Vikram Agarwal and Vimal Chandra Pandey	
	1.1		3
		Heavy metals and metalloids	5
	1.3		5
	1.4	Phytoremediation	7
	1.5	Strategies for phytoremediation	7
	1.6	Biological mechanism of heavy-metal phytoremediation	8
	1.7	Factors affecting heavy-metal phytoremediation	9
	1.8	Plants used for phytoremediation	10
	1.9	Enhancing phytoremediation	11
	.10	Advantages and disadvantages of phytoremediation	12
	.11	Conclusion	13
		owledgments	13
		lict of interest	13
R	lefer	rences	14
e: w P	ndo vaste Pooja	of potential native weeds and grasses for phytoremediation of crine-disrupting pollutants discharged from pulp paper industry e a Sharma, Surendra Pratap Singh, Siddhartha Pandey, Arti Thanki Nitin Kumar Singh	17
2	.1	Introduction	17
2	.2	Physicochemical analysis of wastewater of pulp paper industry	19
2	.3	Endocrine-disrupting pollutants from pulp paper industry waste	20
	.5	Phytotoxicity and genotoxicity of pulp paper industry waste Phytoremediation of heavy metals from complex organometallic	25
		pollutants	27

	2.6	Strategy of phytoremediation	28			
	2.7	Heavy metals uptake by transport, translocation, and transformation	31			
	2.8	Toxicity of heavy metals on human health	32			
	2.9	Conclusion and future scope	34			
	Ackr	nowledgment	34			
	Refe	rences	34			
3		nsgenic plants in phytoremediation of organic pollutants	39			
	Sant	osh Kumar Mishra, Priya Ranjan Kumar and Ravi Kant Singh				
	3.1	Introduction	39			
	3.2	5	41			
	3.3	5	44			
	3.4		45			
	3.5	5	45			
	3.6		47			
	3.7		49			
	3.8	5 1	49			
	3.9		50			
	2 10	phytoremediation	50			
	3.10		50			
	2 1 1	enhanced degradation of organic pollutants	50			
	3.11	Conclusion	52			
		rences	52			
	Furu	ner reading	55			
4	-	Progress, prospects, and challenges of genetic engineering in				
		oremediation	57			
		eta Jha				
	4.1		57			
	4.2	Overview of biotechnological approaches to improve efficiency of phytoremediation	59			
	4.3	Major concerns and future perspectives	105			
		nowledgments	108			
		rences	108			
5	Rece	ent advances in phytoremediation using genome engineering				
	CRISPR-Cas9 technology					
	Pallavi Saxena, Nitin Kumar Singh, Harish, Amit Kumar Singh,					
		hartha Pandey, Arti Thanki and Tara Chand Yadav				
	5.1	Introduction	125			
	5.2	Recent advances in genetic engineering using CRISPR-Cas9 for				
		phytoremediation	127			
	5.3	Future perspective	133			
	5.4	Conclusion	135			
	Refe	rences	135			

Pa	rt II	Microbial Remediation	143
6	End	ophytes—the hidden world for agriculture, ecosystem, and	
	envi	ronmental sustainability	145
	Shul	bhi Srivastava, Madhubanti Chaudhuri and Vimal Chandra Pandey	
	6.1	Introduction	145
		Plant growth-promoting endophytes	146
	6.3	1 1 5	146
	6.4	Endophyte-assisted phytoremediation	153
	6.5	Conclusion	154
	Refe	prences	154
7		ineering bacterial aromatic dioxygenase genes to improve	
		emediation	161
		haspati Mishra, S. Veeranna and Jitendra Kumar	1.61
	7.1		161
	7.2	Oxygenases are the key enzymes in aromatic degradation	162
	7.3	Molecular interventions targeting dioxygenase genes to understand	170
	74	aromatic compound degradation	172
	7.4 7.5	, e e	175 176
	7.5 7.6	Ethical issues pertaining to bioremediation trials Conclusion	176
		nowledgments	170
		losure statement	177
		erences	177
		her reading	185
8	Mic	robial remediation progress and future prospects	187
Ū		u Jariyal, Manish Yadav, Nitin Kumar Singh, Suman Yadav,	201
		harma, Swati Dahiya and Arti Thanki	
	8.1	Introduction	187
	8.2	Microorganisms associated with bioremediation	189
	8.3	Biodegradation and bioremediation	198
	8.4	Factors involved in microbial remediation	200
	8.5	Genetically engineered microbes and their role in degradation	201
	8.6	Optimization of bioremediation process	205
	8.7	Conclusion	206
	Refe	erences	207
9	Dev	elopment of biologically-based activated carbon for advanced	
	wate	er and wastewater treatment process	215
	Ravi	Kant Singh, Santosh Kumar Mishra, Balasubramanian Velramar and	d
	•	a Ranjan Kumar	
	9.1		215
	9.2	Biological activated carbon process	216

	9.3	Mechanisms of pollutants degradation in biological activated carbon filtration	218
	0.4	Conclusion and future remarks	218
		rences	222
	Kelei	ences	223
10	The	role of microorganism in bioremediation for sustainable	
	envir	onment management	227
	Arun	Kumar Pal, Jyotsna Singh, Ramendra Soni, Pooja Tripathi, Madhu	
	Kaml	le, Vijay Tripathi and Pradeep Kumar	
	10.1	Introduction	227
	10.2	2 Types of bioremediation	228
	10.3	3 Types of microorganisms used in bioremediation	229
	10.4	Bioremediation of mined wasteland	231
	10.5	5 Bioremediations of landfill leachates	232
	10.6	Bioremediation of aqua culture waste	232
	10.7	Microbial nitrification and denitrification in sediments	233
	10.8	B Bioremediations of contaminated soil and water	234
	10.9	Antibiotics bioremediation	237
	10.10	Biodegradability of antibiotics	240
	10.11	Antibiotic degradation in soil	240
	10.12	2 Bioremediation of dye from textile industry	240
	10.13	B Degradation of dye	241
	10.14	Conclusion	241
	Author contributions		241
	Ackn	owledgment	241
	Conf	licts of interest	241
	Refe	rences	242
11	Biore	eactor and bioprocess technology for bioremediation of	
	dome	estic and municipal wastewater	251
	Nitin	Kumar Singh, Siddhartha Pandey, Rana Pratap Singh,	
	Khali	id Muzamil Gani, Manish Yadav, Arti Thanki and Tarun Kumar	
	11.1	Background	251
	11.2	Bioremediation: an overview	252
	11.3		252
	11.4	Wastewater treatment using biological processes	253
	11.5	Common operational stresses of bioreactors	256
	11.6	Case studies on field-scale bioreactors	258
	11.7	Conclusions	269
	Refe	rences	271
12	Meta	genomics approach for bioremediation: challenges and	
	persp	pectives	275
	Indra	n Mani	
	12.1	Introduction	275

	12.2	Metagenomics	276
		•	278
		Use of metagenomics in bioremediation	278
	12.5	Conclusion, challenges, and future perspective	282
		owledgments	282
	Refer	rences	282
13	Micr	obial bioremediation of industrial effluents and pesticides	287
	0	i Bhattacharjee, Nisarg Gohil, Sachin Vaidh, Krunal Joshi,	
	÷	ıdra Singh Vishwakarma and Vijai Singh	
		Introduction	287
		Microbial bioremediation of industrial effluents	289
		Microbial bioremediation of pesticides	291
		Microbial bioremediation of hydrocarbons	293
		Conclusion and future remarks	295
		owledgements	296
	Refer	rences	296
14	Syntl	netic biology approaches for bioremediation	303
	0	i Bhattacharjee, Nisarg Gohil and Vijai Singh	
		Introduction	303
		Overview of synthetic biology	304
		Prospects of synthetic biology in bioremediation	306
		Conclusion and future remarks	308
		owledgment	309
	Refer	rences	309
15	Micr	obial indicators and biosensors for bioremediation	313
	Ankita Chaurasia, Nihal Mohammed, Molka Feki Tounsi and		
	•	el Trabelsi	
	15.1	Introduction	313
	15.2	Biosensors development	314
	15.3	Pollution monitoring	316
	15.4	Case studies	316
	15.5	Perspectives	323
	Refer	rences	324
16	Biosu	urfactant-based bioremediation	333
		unjeet Singh, Vijay Kumar, Satyender Singh, Daljeet Singh Dhanjal,	
		ka Datta, Deepansh Sharma, Nitin Kumar Singh and Joginder Singh	
	16.1	Introduction	333
	16.2	Biosurfactants: surface-active compounds	334
	16.3	Biosurfactant-producing microbes	336
	16.4	Classification of biosurfactants	336
	16.5	Parameters regulating the properties of biosurfactants	341
	16.6	Biosurfactant for heavy metal remediation	344

xi

	16.7	Biosurfactants for hydrocarbon remediation	345
	16.8	Biosurfactants production through genetic modification	346
	16.9	Conclusion and future perspectives	347
	Refer	ences	347
17	Engir	neered bacteria for bioremediation	359
	Gaure	av Sanghvi, Arti Thanki, Siddhartha Pandey and Nitin Kumar Singh	
	17.1	Introduction	359
	17.2	Why microbes?	361
	17.3	Metabolic engineering	361
	17.4	Recombinant DNA technology	363
	17.5	Plasmids	363
	17.6	Expression systems	364
	17.7	Family shuffling and genome shuffling	366
	17.8	Omics and bioremediation	366
	17.9	Genomics	367
	17.10	Metagenomics	367
	17.11	Screening, assembling, and sequencing	368
	17.12	Metagenome sequencing techniques	368
	17.13	Florescence-activated cell sorting	368
	17.14	DNA microarrays	369
	17.15	Transcriptomics approach	369
	17.16	Novel approaches	370
	17.17	Future prospects for bioremediation	371
	Refer		371
18	Biofil	m in bioremediation	375
	Indra	Mani	
	18.1	Introduction	375
	18.2	Strategies for use of biofilms in bioremediation	377
	18.3	Types of pollutants remediated by biofilms	379
	18.4	Current status of use of biofilm in bioremediation	380
	18.5	Conclusion, challenges, and future perspective	382
	Ackn	owledgments	382
	Refer	ences	382
19	Gene	tic engineering approaches for detecting environmental	
	pollut	tants	387
	Nisar	g Gohil, Gargi Bhattacharjee and Vijai Singh	
	19.1	Introduction	387
	19.2	Biosensors for detecting pollutants	388
	19.3		394
	Ackn	owledgements	395
	Refer	•	395

20	Curr	ent status, challenges and future of bioremediation	403
	Gajendra Singh Vishwakarma, Gargi Bhattacharjee, Nisarg Gohil and		
	Vijai Singh		
	20.1	Introduction	403
	20.2	Bioremediation process and classification	403
	20.3	Current status of bioremediation	405
	20.4	Advancement in phytoremediation	408
	20.5	Challenges in bioremediation	409
	20.6	Conclusion and future remarks	411
	Acknowledgments		412
	References		412
21	Engi	neered microbes and evolving plastic bioremediation technology	417
	Alka	Kumari and Doongar R. Chaudhary	
	21.1	Introduction	417
	21.2	Stages of polymer biodegradation	419
	21.3	Biotechnological intrusion in bioremediation technology	424
	21.4	Genes in plastic degradation: an overview	426
	21.5	Synthetic biology approaches	428
	21.6	Conclusion and future remarks	435
	Refer	rences	436
Ind	dex 44		

Recent advances in phytoremediation using genome engineering CRISPR—Cas9 technology

5

Pallavi Saxena¹, Nitin Kumar Singh², Harish¹, Amit Kumar Singh³, Siddhartha Pandey⁴, Arti Thanki⁵ and Tara Chand Yadav^{6, *}

¹Department of Botany, Mohanlal Sukhadia University, Udaipur, India, ²Department of Environment Science and Engineering, Marwadi University, Rajkot, India, ³Department of Biochemistry, University of Allahabad, Allahabad, India, ⁴Department of Civil Engineering, Chalapathi Institute of Technology, Guntur, India, ⁵Department of Environment Science and Engineering, Marwadi University, Rajkot, India, ⁶Department of Biotechnology, Indian Institute of Technology, Roorkee, India *Corresponding author

5.1 Introduction

Technological advances made by humans have been phenomenal ever since man adopted technology. The development pace has jumped by leaps and bounds, since the industrial revolution in England during the 17th century, but it also created a Frankenstein called pollution which continues to engulf the Earth and its environment. Over the years, pollution has been continuously rising with major forms being in the air, water, and soil, which has had many health and well-being implications for humans. Among others industrial activities, human activities such as mining, burning of fossil fuels, industrial waste, and massive usage of agrochemicals are the main stream sources of contamination nowadays (Wuana and Okieimen, 2011). The scientific community had been at odds in finding a solution for mitigating its ill effects, without hampering the development trajectory. The term phytoremediation refers to the cleaning act of pollutants with the help of plants. Basically, it is a technique to restore soil fertility and to cleanse the soil. Today more than 500 plant species are reported to have appreciable phytoremediation potential (Krämer, 2010). Besides, it also helps in mitigation of soil erosion along with for the maintenance of biodiversity, sequestration of carbon, and increased biomass production. Furthermore, it also helps in restoration of natural flora and fauna resulting in formation of surmising landscapes. Phytoremediation is an ecofriendly, solar energy driven, and cost-effective approach in comparison to the conventional methods,