INSTRUMENTAL METHODS OF ANALYSIS (Theory) Course Content:

UNIT –I 10 Hours

a. UV Visible spectroscopy

Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations. Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors-Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode. Applications – Spectrophoto metric titrations, Single component and multi component analysis

b. Fluorimetry

Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications

UNIT -II 10 Hours

a. IR spectroscopy

Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications

- b. Flame Photometry-Principle, interferences, instrumentation and applications
- **c.** Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications
- **d. Nepheloturbidometry** Principle, instrumentation and applications

UNIT -III 10 Hours

Introduction to chromatography

- **a. Adsorption and partition column chromatography-**Methodology, advantages, disadvantages and applications.
- **b. Thin layer chromatography-** Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.
- **c. Paper chromatography-**Introduction, methodology, development techniques, advantages, disadvantages and applications
- **d. Electrophoresis** Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications

UNIT –IV 08 Hours

- **a. Gas chromatography -** Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications
- **b. High performance liquid chromatography (HPLC)-**Introduction, theory, instrumentation, advantages and applications.

UNIT -V 07 Hours

a. Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications

- **b.** Gel chromatography- Introduction, theory, instrumentation and applications
- c. Affinity chromatography- Introduction, theory, instrumentation and applications

Recommended Books (Latest Editions)

- 1. Instrumental Methods of Chemical Analysis by B.K Sharma
- 2. Organic spectroscopy by Y.R Sharma
- 3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
- 4. Vogel's Text book of Quantitative Chemical Analysis by A.I. Vogel
- 5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
- 6. Organic Chemistry by I. L. Finar
- 7. Organic spectroscopy by William Kemp
- 8. Quantitative Analysis of Drugs by D. C. Garrett
- 9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
- 10. Spectrophotometric identification of Organic Compounds by Silverstein