momentum and angular momentum, system of variable mass, elastic and inelastic collisions, rigid body degrees of freedom, Euler's theorem.

UNIT - IV

Molecular rotations (as rigid bodies), moment Free oscillations of simple systems: Equilibrium; inertia, di and tri atomic molecules, intrinsic spin precessional motion, motion of a top, gyroscope.

Elastic constants for an isotropic solid, their interest relation, torsion of a cylinder, bending of bean applications to cantilever.

UNIT - V

Kinematics of moving fluid, equation of continuity Euler's law for fluidity.

Viscous fluids, streamline and turbulent flow, flow through a capillary tube, Poisvilles law, Reynold number, Stoke's law, theory of rotation viscometer effect of temperature and pressure on the viscosity liquids.

Text and Reference books:

- E.M. Purcell, Editor, Berkeley Physics Course Vol. 1, Mechanics, McGraw Hill.
- R.P. Feynmann, R.B. Leighton, M. Sands, Th Feynmann Lectures in Physics, Vol. 1. B publications, Bombay, Delhi, Calcutta, Madras

PAPER-II

OSCILLATIONS, WAVES AND ACOUSTICS

UNIT - I

concept of potential well, small oscillations approximation, solutions, linear and transverse oscillations of a mass between two springs, diatomic molecule, reduced mass concept.

Damped and forced oscillations: Damped oscillations; critical damping, Q of an oscillator. Forced oscillator with one degree of freedom; Transient and steady state oscillations, resonance energy absorption, low and high frequency responses.

UNIT - II

Free oscillations of system with two degrees of freedom: Two dimensional oscillator; normal modes, longitudinal and transverse oscillation of coupled masses, energy transfer between modes, coupled pendulum.

Fourier analysis: Fourier series and Fourier coefficients; simple examples (square wave, saw-tooth wave, half and full wave rectifier), use of exponential representation for harmonic oscillations, expression for Fourier coefficients. Non-periodic disturbance; representation by Fourier integral, Fourier transform. Case of a wave train of finite length, constancy of Dx Dk (the uncertainty product).

UNIT - III

Wave equation: Waves in a one-dimensional chain of particles; classical wave equation; wave velocity, boundary conditions and normal modes, dispersion relations, dispersion waves, acoustic and optical modes.

Waves in continuous media: Speed of transverse Text and Reference Books: waves on a uniform string, speed of longitudinal waves in a fluid, energy density and energy transmission in waves, typical measurements, dispersion in waves, group velocity and phase velocity, their measurements.

Superposition of waves: Linear homogenous equations and the superposition principle, interference in space and energy distribution; beats and combination tones.

UNIT -IV

Ultrasonics: Production, detection, and applications of ultrasonic waves

Vibrations in bounded systems: Normal modes of a bounded system; harmonics, the quality of sound, Chladni's figures, Vibration of a drum. Noise and Music; Limits of human audibility; intensity and loudness, bel and decibel. Music scale and musical instruments.

UNIT - V

Reflection, refraction, and diffraction of sound: Acoustic impedance of a medium, percentage reflection, and refraction at a boundary, impedance matching for transducers. Diffraction of sound; principle of a sonar system, sound ranging.

Applied acoustics: Transducers and their characteristics, recording and reproduction of sound, measurement of frequency, velocity, waveform, and intensity. The acoustics of halls, reverberation period, Sabine's formula.

- Waves and Oscillations, Berkley Physics Course Vol. III
- Vibrations and waves, I.G. Main (Cambridge University Press)
- The Physics of Vibrations and Waves, H.J. Pain, McMillan (1975).
- Oscillations, Waves and Acoustics (In Hindi) by Kakani, Bhandari & Kalra